Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
This view presents data selected from the geochemical mapping of North Greenland that are relevant for an evaluation of the potential for zinc mineralisation: CaO, K2O, Ba, Cu, Sr, Zn. The data represent the most reliable analytical values from 2469 stream sediment and 204 soil samples collected and analysed over a period from 1978 to 1999 plus a large number of reanalyses in 2011. The compiled data have been quality controlled and calibrated to eliminate bias between methods and time of analysis as described in Thrane et al., 2011. In the present dataset, all values below lower detection limit are indicated by the digit 0. Sampling The regional geochemical surveys undertaken in North Greenland follows the procedure for stream sediment sampling given in Steenfelt, 1999. Thrane et al., 2011 give more information on sampling campaigns in the area. The sample consists of 500 g sediment collected into paper bags from stream bed and banks, alternatively soil from areas devoid of streams. The sampling density is not consistent throughout the covered area and varies from regular with 1 sample per 30 to 50 km2 to scarce and irregular in other areas. Analyses were made on screened < 0.1 mm or <0.075 mm grain size fractions.
-
The geophysical data available on the Greenland Mineral Resources Portal are both released company data and data acquired based on public funding (AEM and Aeromag surveys). The AEM Greenland 1994-1998 project, encompassed high resolution detailed multi-parameter surveys (electromagnetic, magnetic and partly radiometric) in the years 1994, 1995, 1996, 1997, and 1998 survey 1 and survey 2 producing a total of 75 000 line kilometres. The Aeromag projects, encompassed high resolution magnetic surveys conducted in 1992, 1995, 1996, 1997, 1998, 1999, 2001, 2012 and 2013 producing a total of more than 550 000 line kilometres. The projects were financed by the governments of Greenland and Denmark. More detailed information on the available geophysical date is given in Geology and Ore No. 22.
-
The Samba database among other things contains information about deep wells in the Danish sector, acquired according to the Danish Act on the Use of the Subsoil. That is: exploration, appraisal, delimitation and production wells related to oil/gas. Also wells with other purposes such as: geothermal energy, gas storage, salt production and scientific research. The data sets contains technical, administrative and geological information about the well and about the geophysical measurements undertaken in the well (well logs and reports). Data are submitted by the company to whom the permission has been granted. The database is updated on an ongoing basis.
-
The Raw stream sediment samples dataset is data as they have been delivered from the laboratories, i.e. values below detection limit often spelled as negative but zero may also apply. The data are not controlled by a geologist. In addition, they may not have been reported.
-
The Geological Survey of Denmark and Greenland has previously conducted sampling campaigns of heavy mineral concentrate in Greenland. The sampling methods are described according to their sampling years below. Unfortunately, not all the samples have reported as the campaigns in have not been undertaken on regional scale and therefore fallen under smaller projects or sampled under projects that have had other objects, and not all elements were considered relevant in the reports, translating to that metadata concerning the analyses are missing. All together there are geochemical analyses of 725 heavy mineral concentrate samples. The samples that are mentioned in reports below, are 319 in number, and do not comprise all heavy minerals samples collected the specified years. Samples collected in un-mentioned campaigns do occur in the full list. Use of data that is not mentioned here, needs caution and the quality should be weighed against other data. Years 1982-1986 A regional sampling campaign was conducted between 1982 and 1986, these samples are described in Appel 1989. These samples comprise the analysis batch numbers 10, 36 and 55. Numbers 10, 36 are analysed at Activation Laboratories and 55 analysed at Bondar-Clegg and Co. Ltd., both in Canada. In this campaign 210 samples were collected and are all sampled in the area around Nuuk. Sampling procedure: In the field: The coastal areas were accessed by boat while inland areas were accessed by helicopter. Four litres of coarse gravel and sand were collected and sieved through a 6 mesh of brass. The fines (c. 10 %) was panned and inspected in ultraviolet light and the scheelite grains counted. In the laboratory: The samples were dried and separated by bromoform, the heavy material was weighed and the scheelite grains counted again. A small splitter separated c. 0.5 gram of each sample for analysis of W, Mo, Pb, Cu, Cr, Co, V, Mn, Zr, Ni and Fe. During the years the sampling programme as well as the analysis methods changed. In 1983 the four litres were added up to five. In 1985 the material increased to 5-6 litres (or 10 kg). In 1986 a plastic sieve with 1 mm holes used and filled three times (5-8 kg) for each sample, the volume of fines was measured. C. 10 gram of each sample was analysed by Bondar-Clegg for (Sc, Cr, Fe, Co, Ni, As, Se, Rb, Mo, Ag, Cd, Sb, CS, BA, La, Eu, Tb, Yb, Hf, Ta, W, Ir, Au, Th and U) analyses. The reader should note that the analyses below detection limit is given as "0" (zero) and not analysed as "-1" for the samples collected in this campaign (year 1982-1986, i.e. batch numbers 10, 35 and 55). Year 1991 In 1991, 106 streams were sampled for heavy mineral concentrate, in the southern part of the Nuuk area, between 62°30?N and 64°N. Sample procedure was as follows: 5-10 litres of detrital material, < 5 cm, were collected, from 2-5 sub-localities in the stream bed. Wet sieving split the sample in less-than and bigger-than 0.5 mm, and the coarser fraction inspected for economic minerals. The fine fraction was heavy minerals concentrate was produced using a rotary panning device "goldhound" (see Erfurt et al., 1992 for reference). The heavy mineral concentrate was shipped to Denmark and dried and further spilt for analytical purposes. Activation Laboratories, Canada, analysed the samples for 35 elements including gold, with INAA and ICP-ES. Analyses batches are numbered 10 and 36. Unique samples number 103 for these two batches. In additional batch 41, has analysed Pb, Cu, Ni and Zn. Year 2004 The analyses batch no. 193 and 194 have been described in GEUS report 2004/42, and were sampled in 2003 in the Qaanaaq region in North-West Greenland. Six samples were collected in this campaign and sieving of 1.0 mm material on site and a pre-concentrate by panning of the fine fraction. In Copenhagen minerals with > 2.8 g/cm3 density was produced by heavy liquid separation. The rest The remaining 406 samples (analyses batch numbers: 10, 15, 21, 35, 36, 41, 55, 165, 166, 193, 194, 374, 375, 376, 1014, 1015, 1016, 1017, 1029, 1030, 1051, 1052, 1077 and 1078) have been analysed in addition to the laboratories mentioned above, at Risø National Laboratory in Denmark. As reports have not been available for writing up these analyses, the description is limited to the analyses. Chances are, however, that sampling procedures are similar to the descriptions above. The analyses below detection limits of the remaining 406 unique samples have not been consistent, but are presented as "0" or as negative values and elements that have not been measured as "0" or empty cells.
-
A series of Aster band ratios highlighting mineral distributions. Band ratio color composite images to distinguish variability of lithology in the area. Preprocessing of the Aster scenes encompasses atmospheric, radiometric and topographic corrections before masking non-outcrop pixels and generating the final mosaic. The calibrated radiance data is converted to apparent surface reflectance using a radiative transfer program, Atmospheric and Topographic Correction (ATCOR-3), in rugged terrain mode. The ATCOR rugged terrain mode utilizes a surface elevation model to adjust illumination levels. Calibration and adjusting the apparent surface reflectance values from the ATCOR-3 processing was not feasible due to lack of ground-based reflectance measurements.
-
The place names data set is from the book 'Northern East Greenland's research history and place names' by A.K. Higgins, which GEUS published in 2010, with associated maps which have now been converted to web GIS format. Via free text search, you can find the place names with their explanations and their location on the map.
-
The map is based on selected seismic data up to 2001. The map shows the structural conditions at depth for the 'Top Kalk' surface, from the central to the eastern part of the Danish North Sea. 'Top Kalk' denotes the surface which forms the basis of the Tertiary deposits (except Denmark). The map is described in GEUS Bulletin No. 13. 2007.
-
Zircon age data as gathered from literature and GEUS samples
-
Exploration companies are obliged to report their activities to the Ministry of Minerals and Resources (MMR). Now reports are delivered in digital format, but were previously delivered in paper, to the Geological Survey of Denmark and Greenland (GEUS). They are scanned and released reports are available under Reports. Digital restoration The data that the reports hold is thus available, but stored as images in scanned pdf?s. The geochemical data of 4 reports (Allen & Harris, 1980; Coppard et al., 1992; Harris et al., 1992 and Pearson & Joudrie, 1995) have been digitized. I.e. the reports have be optically characterised and the sample locations georeferenced. The matching of the sample locations and geochemically referenced samples does not always match. Meaning that a sample that has coordinate may not have geochemical results, and a sample with geochemical measurements might not have coordinate. The reporting of the analytical facilities and precision is sparse. Detection limits, analytical uncertainty and reliability are generally not reported. Analytical methods and analysed grain fractions of sediment samples also not reported. When all these issues have been listed, it should be noted that errors may occur. From the digital restoration of scanned paper to optically characterisation of the scanned text and numbers errors may be introduced. The user is cautioned to these issues. Upload to data base To make the data available on the web, upload to GEUS sample data base is required. To fit into the sample data base, some adjustments had to be made. Sample names modified, collector created etc., resulting in modified sample names, relative to the ones used in the reports. The reports from which the samples occur in are not mentioned in the data base. Hence the four reports and links to them are listed below: