Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
The digital terrain model of Greenland is constructed on the basis of GEUS's topographic datasets from the official geological maps of Greenland in scale ratio 1:100.000 and 1:500.000. The DEM is created using an interpolation method called Topo to Raster function in ArcGIS Desktop which is primarily supported by contour lines, coastlines and elevation points. The creation of the DEM was divided into in sub-areas based on the map sheet frames from the geological map of Greenland in 1:500.000 scale and assembled as a raster mosaic. The DEM was created with the spatial coordinate reference system WGS 1984 / UTM Zone 24N Complex with a resolution of a 100x100 meter grid. Based on the final DEM, a hillshade efect of the terrain has been constructed.
-
Exploration companies are obliged to report their activities to the Ministry of Minerals and Resources (MMR). Now reports are delivered in digital format, but were previously delivered in paper, to the Geological Survey of Denmark and Greenland (GEUS). They are scanned and released reports are available under Reports. Digital restoration The data that the reports hold is thus available, but stored as images in scanned pdf?s. The geochemical data of 4 reports (Allen & Harris, 1980; Coppard et al., 1992; Harris et al., 1992 and Pearson & Joudrie, 1995) have been digitized. I.e. the reports have be optically characterised and the sample locations georeferenced. The matching of the sample locations and geochemically referenced samples does not always match. Meaning that a sample that has coordinate may not have geochemical results, and a sample with geochemical measurements might not have coordinate. The reporting of the analytical facilities and precision is sparse. Detection limits, analytical uncertainty and reliability are generally not reported. Analytical methods and analysed grain fractions of sediment samples also not reported. When all these issues have been listed, it should be noted that errors may occur. From the digital restoration of scanned paper to optically characterisation of the scanned text and numbers errors may be introduced. The user is cautioned to these issues. Upload to data base To make the data available on the web, upload to GEUS sample data base is required. To fit into the sample data base, some adjustments had to be made. Sample names modified, collector created etc., resulting in modified sample names, relative to the ones used in the reports. The reports from which the samples occur in are not mentioned in the data base. Hence the four reports and links to them are listed below:
-
Basic information about the location of on- and offshore drillholes from Greenland for scientific research, mineral and oil and gas exploration. If available, a link to a report or summary sheet is specified that is the original source of information. The data is from 1948 through to 2019 and subject to change as new information becomes available from scientific reports, press releases and company documents.
-
The Samba database contains information about geophysical investigations made in the Danish sector, acquired according to the Danish Act on the Use of the Subsoil. The data is acquired in relation to investigation for oil/gas, geothermal energy, the storage of gas or salt. That is: Seismic (2D & 3D) acquisitions, CSEM as well as other magnetic and gravity acquisitions shipborne as well as airborne. The dataset also contains geophysical measurement performed in the deep wells and meta data about the seismic surveys. The data has been submitted by the licensees. The database is updated on an ongoing basis.
-
The gravity compilation is based on data stored in the national/Nordic gravity data base at the DTU Space. This data base contains for Greenland data surveyed by DTU Space on behalf of the geodetic survey authorities “Danish Agency for Data Supply and Efficiency” (SDFE) and its predecessor agencies “National Survey and Cadastre” (KMS) and the Geodetic Institute (GI), with some data dating back to the 1950’s. Older data have been rectified into modern gravity datums (absolute gravimetry and IGSN71). The national data contains both surface, airborne and marine data, mainly in the coastal ice-free regions and offshore (Forsberg et al, 2001, Kenyon et al, 2008). Airborne, marine and land data from a number of external data sources are also included in the data base after a QC process, including high-level airborne data from the GAP91/92 campaigns (Brozena et al, 1993) and recent data from NASA OIB (MacGregor et al., 2021) and OMG projects (Fenty et al., 2016). Marine data in the Baffin Bay and Davis Strait and land data from the Geodetic Survey Division, Canada (Veronneau 2010, pers.comm.), and a number of other marine and land data from a large set of contributors have also been included in the compilation, including marine data from Alfred Wegener Institute (Germany), land and marine data from Orkustofnun (Iceland), and a number of released commercial data sources. In areas void of gravity data, satellite-derived altimetry data have been used as fill-in (DTU 15, Andersen et al. 2017). The compiled grids have been based on public domain and some proprietary data sources, and has been computed for the area 58-85°N, 78-7°W on a 0.02°x 0.05° grid, using rigorous downward continuation of airborne data to the terrain surface, with terrain corrections from a detailed digital terrain and ice sheet surface model, and long-wavelength satellite gravity data from GRACE and GOCE satellites (Forsberg and Olesen, 2010). The data are available as a free-air (Faye) anomaly grid as well as a derived terrain-corrected Bouguer anomaly grid (land and ice sheet areas only), computed in GRS80 with density 2.67 g/cm3. The ice sheet Bouguer anomaly data are derived using the ice sheet thickness model of Bamber et al., 2013. The free-air gravity grid (v1) have also have been used as the primary background data also for the latest geoid models of Greenland (GGEOID16).
-
Protected areas in Greenland. The data are converted from the WFS that the ministery of mineral resources (MMR) in Greenland provides. Links are provided in the online resources.
-
Greenland mineral assessment workshops have been held on Sedimentary-hosted Copper, type: redbed-, revett- and reduced-facies type in 2009, Various Rare Earth Elements deposit types in 2010 (this workshop was not carried out according to the 'three-part quantitative assessment' method), Sedimentary-hosted zinc SEDEX- and MVT-type in 2011, Magmatic nickel; komatiite-hosted, contact- and conduit-type in 2012 and Vein- and skarn type Tungsten in 2013 and Orogenic gold type in 2014. Most of the workshops, besides the one on rare earth elements, have been following the processes and methodologies used in the 'three-part quantitative assessment' method of the U.S. Geological Survey described by Singer (1993). The method does not define deposits or provide mineral resource or reserve estimates according to industrial or international recognised certified standards. The objective is to produce a probabilistic estimate of unknown/undiscovered deposits and corresponding probabilistic estimates of the total amount of metals down to one kilometre depth. The estimates do not take into account economic, technical, social or environmental factors. In the 'three-part quantitative assessment' method, an expert panel reviewed and discussed all available knowledge and data for a specific region (Tract) to assess the possibility of finding new undiscovered deposits within this Tract. The expert panels consisted of geologists from universities, research institutions, Surveys as well as private exploration and mining companies. The experts have either expertise in/worked with the deposit type in focus, with the regional and/or local geology relevant for the tracts being assessed or have expertise from exploration/mining projects for the deposit type in focus elsewhere in the world. One or two international top-experts on the mineral deposit type in focus for the different workshops have also participated in the workshop. After reviewing the available knowledge and data the members of the panel made their individual estimates (bids) of the number of undiscovered deposits they believed could be found under the best circumstances in a tract. The bids are based on the characteristics derived from descriptive mineral deposit models and a number of key-literature on the mineralisation type. In several of the workshops, critical elements have also been considered in the mineralising system (e.g. McCuaig & Hronsky 2014) associated with the deposit type in focus, when carrying out the bids. A panel discussion of the bids led to a consensus bid, which was used as input to a statistical Monte Carlo simulation. Based on established grade-/tonnage models of e.g. known tungsten deposits worldwide, this simulation can provide a prediction on how much undiscovered metals could be found within a Tract. The 'Tracts' are spatial polygons that define a certain area that was found to be permissive for the concerned mineral deposit type and which constitutes the same level of geology, knowledge and data coverage. Tracts are named with a unique name, tract area is given in square kilometre and consensus bids from team under N90, N50, N10, N05 and N01 headings of undiscovered metals deposits at different confidence levels. The statistics from the Monte Carlo simulation is shown under the headings Numbers of unknown deposits and Deposit density.
-
The dataset contains rock sample geochemistry collected from 1957 to 2007 in south to central west Greenland analyzed with different methods that have been published in 3 reports.
-
The dataset contains the General Batymetric Chart of the Oceans (GEBCO) based on GEBCO_2019 Grid from 2019. The dataset has been projected to WGS 84 / IBCAO Polar Stereographic projection (EPSG:3996) and extends down to 50° latitude. The complete data set provides global coverage, spanning 89° 59' 52.5''N, 179° 59' 52.5''W to 89°: 59' 52.5''S, 179° 59' 52.5''E on a 15 arc-second grid. It consists of 43200 rows x 86400 columns, giving 3,732,480,000 data points. The data values are pixel-centre registered i.e. they refer to elevations at the centre of grid cells. The GEBCO_2019 Grid is a continuous, global terrain model for ocean and land with a spatial resolution of 15 arc seconds. The grid uses as a ‘base’ Version 1 of the SRTM15+ data set (Olson et al, 2014). This data set is a fusion of land topography with measured and estimated seafloor topography. It is largely based on version 11 of SRTM30+ (Becker et al, 2009; Sandwell et al, 2014), augmented with the gridded bathymetric data sets developed by the four Seabed 2030 Regional Centers. The published data were recalculated on a cell-registered grid for use by GEBCO. The GEBCO_2019 Grid includes data sets from a number of international and national data repositories and regional mapping initiatives.
-
The National well database (Jupiter) among other things contains water level measurements from Danish wells. The database contains water level measurements from the municipalities, the groundwater-monitoring program, the regions soil pollution investigations and from the establishment of new wells. The database is updated on an ongoing basis.