Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
Zircon age data as gathered from literature and GEUS samples
-
All active exploitation licences. The data are converted from the WFS that th ministery of mineral resources (MMR) in Greenland provides. Links are provided in the online resources
-
The regional-scale gamma spectrometry data are associated with two collaboration projects involving the Geological Survey of Greenland (GGU) and the Danish Atomic Energy Commission’s Research Establishment. The projects' objectives were to outline areas with an elevated uranium potential in two regions of Greenland: The airborne radiometric surveys in southern and central West Greenland in 1975/76 and the SYDURAN project in South Greenland in 1979-1982. To acquire the data, four-channel gamma ray spectrometers were mounted upon an aircraft (1975/76 surveys) and a helicopter (SYDURAN project). The vehicles flew along shoreline and valley contour lines at low average terrain clearances of 100 and 50 m respectively. The data were recorded without GPS systems, and so positioning was estimated when known landmarks were passed. This means that the dataset is sparse and inhomogeneous, and the spatial accuracy remains low. The gamma-spectrometer had been calibrated at a pad facility at Risø, which enabled the conversion of recorded counts per second into simulated concentrations of radioactive components in the surface of the overflown terrain. Large parts of the data (surveys from 1975/76) were originally stored on magnetic tapes and data were transferred to datafiles in 2003 to make them digital accessible. Most data were retrieved and are now available as ASCII files.
-
The gravity compilation is based on data stored in the national/Nordic gravity data base at the DTU Space. This data base contains for Greenland data surveyed by DTU Space on behalf of the geodetic survey authorities “Danish Agency for Data Supply and Efficiency” (SDFE) and its predecessor agencies “National Survey and Cadastre” (KMS) and the Geodetic Institute (GI), with some data dating back to the 1950’s. Older data have been rectified into modern gravity datums (absolute gravimetry and IGSN71). The national data contains both surface, airborne and marine data, mainly in the coastal ice-free regions and offshore (Forsberg et al, 2001, Kenyon et al, 2008). Airborne, marine and land data from a number of external data sources are also included in the data base after a QC process, including high-level airborne data from the GAP91/92 campaigns (Brozena et al, 1993) and recent data from NASA OIB (MacGregor et al., 2021) and OMG projects (Fenty et al., 2016). Marine data in the Baffin Bay and Davis Strait and land data from the Geodetic Survey Division, Canada (Veronneau 2010, pers.comm.), and a number of other marine and land data from a large set of contributors have also been included in the compilation, including marine data from Alfred Wegener Institute (Germany), land and marine data from Orkustofnun (Iceland), and a number of released commercial data sources. In areas void of gravity data, satellite-derived altimetry data have been used as fill-in (DTU 15, Andersen et al. 2017). The compiled grids have been based on public domain and some proprietary data sources, and has been computed for the area 58-85°N, 78-7°W on a 0.02°x 0.05° grid, using rigorous downward continuation of airborne data to the terrain surface, with terrain corrections from a detailed digital terrain and ice sheet surface model, and long-wavelength satellite gravity data from GRACE and GOCE satellites (Forsberg and Olesen, 2010). The data are available as a free-air (Faye) anomaly grid as well as a derived terrain-corrected Bouguer anomaly grid (land and ice sheet areas only), computed in GRS80 with density 2.67 g/cm3. The ice sheet Bouguer anomaly data are derived using the ice sheet thickness model of Bamber et al., 2013. The free-air gravity grid (v1) have also have been used as the primary background data also for the latest geoid models of Greenland (GGEOID16).
-
Protected areas in Greenland. The data are converted from the WFS that the ministery of mineral resources (MMR) in Greenland provides. Links are provided in the online resources.
-
Historical mineral exploration and exploitation licences in Greenland. The data are converted from the WFS that the ministery of mineral resources (MMR) in Greenland provides. Links are provided in the online resources.
-
In the present database there are 1269 unique samples. Soil samples have been collected in areas without river beds. Preferably stream samples have been collected, but areas where temporarily no stream beds are present, soil samples have been collected as an alternative for geochemical mapping purpose. Five samples in this package are originally from the report Compilation of data sets for a geochemical Atlas (Steenfelt, 1999). These samples have been analysed by "UNKNOWN" methods at "UNKNOWN" laboratories. In fact these samples have been calibrated and corrected for analytical bias, see Steenfelt 1999, for further information.
-
This view presents data selected from the geochemical mapping of North Greenland that are relevant for an evaluation of the potential for zinc mineralisation: CaO, K2O, Ba, Cu, Sr, Zn. The data represent the most reliable analytical values from 2469 stream sediment and 204 soil samples collected and analysed over a period from 1978 to 1999 plus a large number of reanalyses in 2011. The compiled data have been quality controlled and calibrated to eliminate bias between methods and time of analysis as described in Thrane et al., 2011. In the present dataset, all values below lower detection limit are indicated by the digit 0. Sampling The regional geochemical surveys undertaken in North Greenland follows the procedure for stream sediment sampling given in Steenfelt, 1999. Thrane et al., 2011 give more information on sampling campaigns in the area. The sample consists of 500 g sediment collected into paper bags from stream bed and banks, alternatively soil from areas devoid of streams. The sampling density is not consistent throughout the covered area and varies from regular with 1 sample per 30 to 50 km2 to scarce and irregular in other areas. Analyses were made on screened < 0.1 mm or <0.075 mm grain size fractions.
-
Ujarassiorit is a mineral hunt competition open to residents of Greenland. Participants can submit rock samples from Greenland to the Ministry of Minerals Ressources (MMR) for evaluation and may be selected for a prize.
-
This map is the first national map showing the depth in meters to the uppermost redox interface in sediments of Quaternary age. The redox interface indicates the transition from the oxidized to the reduced geochemical environment in sediments. The redox interface was identified according to the colors of the sediments in 11,999 wells and is shown for 1x1 km grid-cells. For grid-cells with multiple site information, the depth to the redox interface is indicated by an average value. For grid-cells without any field information, the depth of the redox interface was established based on information about 1) geological setting, 2) morphology, 3) depths to redox boundaries at nearby field sites, 4) GEUS surface geology map, 5) topography, and 6) the pre-quaternary surface. The method for this first national redox-map and the data used is described in GEUS report no. 93 (2006) entitled Beregning af nitrat-reduktionsfaktorer for zonen mellem rodzonen og frem til vandløbet. Data og metode for 1.generationskortet (in Danish). The Redox map is also described in Vand og Jord (2011) 18: 37-39 (in Danish).
Geus Geonetworks metadata catalogue