Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
The National well database (Jupiter) among other things contains water level measurements from Danish wells. The database contains water level measurements from the municipalities, the groundwater-monitoring program, the regions soil pollution investigations and from the establishment of new wells. The database is updated on an ongoing basis.
-
Exploration companies are obliged to report their activities to the Ministry of Minerals and Resources (MMR). Now reports are delivered in digital format, but were previously delivered in paper, to the Geological Survey of Denmark and Greenland (GEUS). They are scanned and released reports are available under Reports. Digital restoration The data that the reports hold is thus available, but stored as images in scanned pdf?s. The geochemical data of 4 reports (Allen & Harris, 1980; Coppard et al., 1992; Harris et al., 1992 and Pearson & Joudrie, 1995) have been digitized. I.e. the reports have be optically characterised and the sample locations georeferenced. The matching of the sample locations and geochemically referenced samples does not always match. Meaning that a sample that has coordinate may not have geochemical results, and a sample with geochemical measurements might not have coordinate. The reporting of the analytical facilities and precision is sparse. Detection limits, analytical uncertainty and reliability are generally not reported. Analytical methods and analysed grain fractions of sediment samples also not reported. When all these issues have been listed, it should be noted that errors may occur. From the digital restoration of scanned paper to optically characterisation of the scanned text and numbers errors may be introduced. The user is cautioned to these issues. Upload to data base To make the data available on the web, upload to GEUS sample data base is required. To fit into the sample data base, some adjustments had to be made. Sample names modified, collector created etc., resulting in modified sample names, relative to the ones used in the reports. The reports from which the samples occur in are not mentioned in the data base. Hence the four reports and links to them are listed below:
-
Protected areas in Greenland. The data are converted from the WFS that the ministery of mineral resources (MMR) in Greenland provides. Links are provided in the online resources.
-
This view presents data from stream sediment geochemical mapping of West and South Greenland (Steenfelt, 2001a). Stream sediment samples were collected from 1979 to 1998 with as even coverage as possible from low-order streams and with a sampling density between 1 sample per 5 km2 and 1 sample per 50 km2, mostly around 1 sample per 30 km2. With few exceptions, the 0.1 mm grain size fractions of 500-g samples were analysed for major and trace elements by two or three methods. After careful quality control and elimination of bias between analytical values determined by different methods or at different times (calibration), the most reliable analytical data were selected as the final consistent dataset, containing data from 7122 samples analysed for up to 43 elements (see Steenfelt 1999, 2001b for details on data selection and calibration). Major element oxides and volatiles are determined by X-Ray Fluorescence Spectrometry (XRF) and loss on ignition, respectively. Loss on ignition mostly reflects the amount of organic material in stream sediment samples. As the aim is to show the regional variation in the chemistry of the minerogenic component of the stream sediment, volatiles are not included in the major element composition which is recalculated as volatile-free oxides. Instead, volatiles are listed in a separate column for documentation. Locally, high loss on ignition may be caused by high contents of carbonate in the stream sediment of streams draining rare occurrences of marble or carbonatites. For detailed or more accurate studies, the CO2 concentrations of the stream sediment samples should be measured, or the amount of carbonate minerals estimated by microscopy. Trace element data are from methods determining total concentrations (XRF, Instrumental Neutron Activation, Delayed Neutron Counting). The quality of the trace element data varies (see Steenfelt 1999, 2001b) In the present dataset, all values below lower detection limit are indicated by the digit 0. Sample location Before 1993, sample sites were originally marked on topographic maps at the scale 1:100,000 and their positions were later digitised and later again corrected, when a new topographic reference was introduced around year 2000. From 1993 onwards, GPS was used to determine sample positions.
-
This view presents data selected from the geochemical mapping of North Greenland that are relevant for an evaluation of the potential for zinc mineralisation: CaO, K2O, Ba, Cu, Sr, Zn. The data represent the most reliable analytical values from 2469 stream sediment and 204 soil samples collected and analysed over a period from 1978 to 1999 plus a large number of reanalyses in 2011. The compiled data have been quality controlled and calibrated to eliminate bias between methods and time of analysis as described in Thrane et al., 2011. In the present dataset, all values below lower detection limit are indicated by the digit 0. Sampling The regional geochemical surveys undertaken in North Greenland follows the procedure for stream sediment sampling given in Steenfelt, 1999. Thrane et al., 2011 give more information on sampling campaigns in the area. The sample consists of 500 g sediment collected into paper bags from stream bed and banks, alternatively soil from areas devoid of streams. The sampling density is not consistent throughout the covered area and varies from regular with 1 sample per 30 to 50 km2 to scarce and irregular in other areas. Analyses were made on screened < 0.1 mm or <0.075 mm grain size fractions.
-
The dataset contains outlines of archived historical unpublished geological maps and sections of Greenland mostly created by GGU and GEUS but also some other institutes from 1916 onwards at various scales.
-
The Greenland Geochronology database compiles published U-Pb geochronology from a wide range of literature sources and normalizes and recasts the data into consistent ratios and uncertainty levels; specifically all errors are given at the 1 sigma level. Importantly, this normalization provides coherence across the dataset. Additionally, ratios are verified against ages and have, if necessary, been corrected to ensure an internally consistent dataset. Systematic collation and assessment of geochronological data can be best achieved by means of a database which holds information within a structured and consistent framework which permits querying to extract relevant data and minimises difficulty in cross comparison of age information where different standards have been used.
-
The regional aeromagnetic datasets were acquired from the Alfred Wegener Institute for Polar and Marine Research (AWI), Bremerhaven, Germany, in four field campaigns along the coastal regions of Northeast Greenland from 1993-1996. The line spacing ranges both in inline and crossline direction from 10-40 km and the levels range up to 3700 m. Presented maps are based on data reprocessed by GEUS.
-
The AEM Greenland 19941998 are detailed surveys with combined electromagnetic and magnetic measurements that were carried out within a collaboration between GEUS/GGU and the Greenland Government in six selected areas of expected high mineral potential in Greenland. In total, 75 000 line km covering an area of 23 000 km² were measured in the project. Line spacing was 200 400 m (inline direction) and flight altitudes were typically around 120 m. With exception of one survey the collected electromagnetic data were time-domain data (GEOTEM system).
-
Dataset containing a summary of geological information for known mineral occurrences on Greenland. The information includes the location, size, mineral commodities, mineralisation type, exploration history and a geological description of the deposit. The data has been collected and compiled from fieldwork investigations conducted by geological surveys, academic researchers and mineral exploration companies.
Geus Geonetworks metadata catalogue