Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 109
  • Categories  

    The geophysical data available on the Greenland Mineral Resources Portal are both released company data and data acquired based on public funding (AEM and Aeromag surveys). The AEM Greenland 1994-1998 project, encompassed high resolution detailed multi-parameter surveys (electromagnetic, magnetic and partly radiometric) in the years 1994, 1995, 1996, 1997, and 1998 survey 1 and survey 2 producing a total of 75 000 line kilometres. The Aeromag projects, encompassed high resolution magnetic surveys conducted in 1992, 1995, 1996, 1997, 1998, 1999, 2001, 2012 and 2013 producing a total of more than 550 000 line kilometres. The projects were financed by the governments of Greenland and Denmark. More detailed information on the available geophysical date is given in Geology and Ore No. 22.

  • Categories  

    The dataset contains outlines of archived historical unpublished geological maps and sections of Greenland mostly created by GGU and GEUS but also some other institutes from 1916 onwards at various scales.

  • Categories  

    The digital terrain model of Greenland is constructed on the basis of GEUS's topographic data set from the official geological maps of Greenland in scale ratios 1:100 000 and 1:500 000. The data base is primarily supported by contour lines, coastlines and support points. The terrain model is assembled as a mosaic in sub-areas based on the map sheet frames from the geological map of Greenland in 1:500 000. The terrain model is made in the coordinate system WGS 1984 Complex UTM Zone 24N with the dimensions in a 100 x 100 m grid. Based on the digital terrain model, a shadow map of the terrain has been constructed.

  • Categories  

    The digital geological map shows the surface geology. The map is a result of the systematic geological mapping of Denmark. The map is digitized from maps originating from fieldwork, where sediment samples are collected at 1m depth using a hand auger with a sample spacing of 100 - 200 m. This version 6 from 2021 classifies 91 % of Denmark's area. The map is supplemented in an ongoing process. The legend shows 82 different sediment types. The map is published in GEUS report 2021/68, where further information is available in Danish.

  • Categories  

    Non-confidential mineral exploration licence reports and other geoscientific reports have been recieved by Greenlandic authorities and subsequently send to GEUS in accordance with the Mineral Resources Act of Greenland (1 January 2010) and associated regulations. This dataset allows to search in the database using alphanumeric and geographic search criteria and to access report metadata. It is also possible to download the actual report as a PDF file.

  • Categories  

    All active small scale licences. The data are converted from the WFS that th ministery of mineral resources (MMR) in Greenland provides. Links are provided in the online resources

  • Categories  

    Samples of surface material, i.e. stream sediment, soil, and scree have been collected over large parts of Greenland from 1974 onwards mainly as part of mineral exploration programmes and more broadly for geochemical mapping by means of stream sediment (Steenfelt 1999, 2001). Following various sample preparation procedures, like drying and screening, making concentrates of heavy minerals from stream sediment or soil, certain fractions of the samples have been chemically analysed at diverse laboratories where a range of analytical methods were applied as they became available over the years. The present dataset contains the analytical data from stream sediment as they were received from the laboratories together with administrative data, including sample location and grain-size fraction analysed. Many samples have been analysed at more than one laboratory and by more than one method and the analytical data for each sample and grain size fraction are listed lab by lab and method by method in the same row. The majority of the samples were collected and analysed before year 2000. More recent data from South-East and North Greenland have been added (Kolb et al 2016).

  • Categories  

    This view presents data selected from the geochemical mapping of North Greenland that are relevant for an evaluation of the potential for zinc mineralisation: CaO, K2O, Ba, Cu, Sr, Zn. The data represent the most reliable analytical values from 2469 stream sediment and 204 soil samples collected and analysed over a period from 1978 to 1999 plus a large number of reanalyses in 2011. The compiled data have been quality controlled and calibrated to eliminate bias between methods and time of analysis as described in Thrane et al., 2011. In the present dataset, all values below lower detection limit are indicated by the digit 0. Sampling The regional geochemical surveys undertaken in North Greenland follows the procedure for stream sediment sampling given in Steenfelt, 1999. Thrane et al., 2011 give more information on sampling campaigns in the area. The sample consists of 500 g sediment collected into paper bags from stream bed and banks, alternatively soil from areas devoid of streams. The sampling density is not consistent throughout the covered area and varies from regular with 1 sample per 30 to 50 km2 to scarce and irregular in other areas. Analyses were made on screened < 0.1 mm or <0.075 mm grain size fractions.

  • Categories  

    A summary geological description of 18 areas on Greenland containing mineral occurrences is provided with references. The information was provided by the Mining and Mineral Resources Authority of Greenland and represents the main geological features with respect to the formation of occurrences.

  • Categories  

    The Geological Survey of Denmark and Greenland has previously conducted sampling campaigns of heavy mineral concentrate in Greenland. The sampling methods are described according to their sampling years below. Unfortunately, not all the samples have reported as the campaigns in have not been undertaken on regional scale and therefore fallen under smaller projects or sampled under projects that have had other objects, and not all elements were considered relevant in the reports, translating to that metadata concerning the analyses are missing. All together there are geochemical analyses of 725 heavy mineral concentrate samples. The samples that are mentioned in reports below, are 319 in number, and do not comprise all heavy minerals samples collected the specified years. Samples collected in un-mentioned campaigns do occur in the full list. Use of data that is not mentioned here, needs caution and the quality should be weighed against other data. Years 1982-1986 A regional sampling campaign was conducted between 1982 and 1986, these samples are described in Appel 1989. These samples comprise the analysis batch numbers 10, 36 and 55. Numbers 10, 36 are analysed at Activation Laboratories and 55 analysed at Bondar-Clegg and Co. Ltd., both in Canada. In this campaign 210 samples were collected and are all sampled in the area around Nuuk. Sampling procedure: In the field: The coastal areas were accessed by boat while inland areas were accessed by helicopter. Four litres of coarse gravel and sand were collected and sieved through a 6 mesh of brass. The fines (c. 10 %) was panned and inspected in ultraviolet light and the scheelite grains counted. In the laboratory: The samples were dried and separated by bromoform, the heavy material was weighed and the scheelite grains counted again. A small splitter separated c. 0.5 gram of each sample for analysis of W, Mo, Pb, Cu, Cr, Co, V, Mn, Zr, Ni and Fe. During the years the sampling programme as well as the analysis methods changed. In 1983 the four litres were added up to five. In 1985 the material increased to 5-6 litres (or 10 kg). In 1986 a plastic sieve with 1 mm holes used and filled three times (5-8 kg) for each sample, the volume of fines was measured. C. 10 gram of each sample was analysed by Bondar-Clegg for (Sc, Cr, Fe, Co, Ni, As, Se, Rb, Mo, Ag, Cd, Sb, CS, BA, La, Eu, Tb, Yb, Hf, Ta, W, Ir, Au, Th and U) analyses. The reader should note that the analyses below detection limit is given as "0" (zero) and not analysed as "-1" for the samples collected in this campaign (year 1982-1986, i.e. batch numbers 10, 35 and 55). Year 1991 In 1991, 106 streams were sampled for heavy mineral concentrate, in the southern part of the Nuuk area, between 62°30?N and 64°N. Sample procedure was as follows: 5-10 litres of detrital material, < 5 cm, were collected, from 2-5 sub-localities in the stream bed. Wet sieving split the sample in less-than and bigger-than 0.5 mm, and the coarser fraction inspected for economic minerals. The fine fraction was heavy minerals concentrate was produced using a rotary panning device "goldhound" (see Erfurt et al., 1992 for reference). The heavy mineral concentrate was shipped to Denmark and dried and further spilt for analytical purposes. Activation Laboratories, Canada, analysed the samples for 35 elements including gold, with INAA and ICP-ES. Analyses batches are numbered 10 and 36. Unique samples number 103 for these two batches. In additional batch 41, has analysed Pb, Cu, Ni and Zn. Year 2004 The analyses batch no. 193 and 194 have been described in GEUS report 2004/42, and were sampled in 2003 in the Qaanaaq region in North-West Greenland. Six samples were collected in this campaign and sieving of 1.0 mm material on site and a pre-concentrate by panning of the fine fraction. In Copenhagen minerals with > 2.8 g/cm3 density was produced by heavy liquid separation. The rest The remaining 406 samples (analyses batch numbers: 10, 15, 21, 35, 36, 41, 55, 165, 166, 193, 194, 374, 375, 376, 1014, 1015, 1016, 1017, 1029, 1030, 1051, 1052, 1077 and 1078) have been analysed in addition to the laboratories mentioned above, at Risø National Laboratory in Denmark. As reports have not been available for writing up these analyses, the description is limited to the analyses. Chances are, however, that sampling procedures are similar to the descriptions above. The analyses below detection limits of the remaining 406 unique samples have not been consistent, but are presented as "0" or as negative values and elements that have not been measured as "0" or empty cells.