Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
The geophysical data available on the Greenland Mineral Resources Portal are both released company data and data acquired based on public funding (AEM and Aeromag surveys). The AEM Greenland 1994-1998 project, encompassed high resolution detailed multi-parameter surveys (electromagnetic, magnetic and partly radiometric) in the years 1994, 1995, 1996, 1997, and 1998 survey 1 and survey 2 producing a total of 75 000 line kilometres. The Aeromag projects, encompassed high resolution magnetic surveys conducted in 1992, 1995, 1996, 1997, 1998, 1999, 2001, 2012 and 2013 producing a total of more than 550 000 line kilometres. The projects were financed by the governments of Greenland and Denmark. More detailed information on the available geophysical date is given in Geology and Ore No. 22.
-
Zircon age data as gathered from literature and GEUS samples
-
GEUS' Earthquake Portal provides information on all recorded earthquakes in Greenland. The data are extracted from GEUS' earthquake database and are updated daily. As a result, the timing, locations, and magnitudes of events may change as new data are added and existing events are revised. Continuous quality control is carried out, aiming to identify and remove explosions – typically related to military exercises or the removal of old munitions. Therefore, the list may change over time, and some uncertainty may be associated with the determination of epicentres and depths. The portal displays information for each earthquake, including the time of occurrence (year, month, day, hour, minute, second) in Greenwich Mean Time (GMT), the geographical location and depth of the epicentre, and the local magnitude measured on the Richter scale. Earthquake data can be exported from the portal according to the defined zoom level and map extent.
-
The Samba database among other things contains information about deep wells in the Danish sector, acquired according to the Danish Act on the Use of the Subsoil. That is: exploration, appraisal, delimitation and production wells related to oil/gas. Also wells with other purposes such as: geothermal energy, gas storage, salt production and scientific research. The data sets contains technical, administrative and geological information about the well and about the geophysical measurements undertaken in the well (well logs and reports). Data are submitted by the company to whom the permission has been granted. The database is updated on an ongoing basis.
-
Exploration companies are obliged to report their activities to the Ministry of Minerals and Resources (MMR). Now reports are delivered in digital format, but were previously delivered in paper, to the Geological Survey of Denmark and Greenland (GEUS). They are scanned and released reports are available under Reports. Digital restoration The data that the reports hold is thus available, but stored as images in scanned pdf?s. The geochemical data of 4 reports (Allen & Harris, 1980; Coppard et al., 1992; Harris et al., 1992 and Pearson & Joudrie, 1995) have been digitized. I.e. the reports have be optically characterised and the sample locations georeferenced. The matching of the sample locations and geochemically referenced samples does not always match. Meaning that a sample that has coordinate may not have geochemical results, and a sample with geochemical measurements might not have coordinate. The reporting of the analytical facilities and precision is sparse. Detection limits, analytical uncertainty and reliability are generally not reported. Analytical methods and analysed grain fractions of sediment samples also not reported. When all these issues have been listed, it should be noted that errors may occur. From the digital restoration of scanned paper to optically characterisation of the scanned text and numbers errors may be introduced. The user is cautioned to these issues. Upload to data base To make the data available on the web, upload to GEUS sample data base is required. To fit into the sample data base, some adjustments had to be made. Sample names modified, collector created etc., resulting in modified sample names, relative to the ones used in the reports. The reports from which the samples occur in are not mentioned in the data base. Hence the four reports and links to them are listed below:
-
This view presents data selected from the geochemical mapping of North Greenland that are relevant for an evaluation of the potential for zinc mineralisation: CaO, K2O, Ba, Cu, Sr, Zn. The data represent the most reliable analytical values from 2469 stream sediment and 204 soil samples collected and analysed over a period from 1978 to 1999 plus a large number of reanalyses in 2011. The compiled data have been quality controlled and calibrated to eliminate bias between methods and time of analysis as described in Thrane et al., 2011. In the present dataset, all values below lower detection limit are indicated by the digit 0. Sampling The regional geochemical surveys undertaken in North Greenland follows the procedure for stream sediment sampling given in Steenfelt, 1999. Thrane et al., 2011 give more information on sampling campaigns in the area. The sample consists of 500 g sediment collected into paper bags from stream bed and banks, alternatively soil from areas devoid of streams. The sampling density is not consistent throughout the covered area and varies from regular with 1 sample per 30 to 50 km2 to scarce and irregular in other areas. Analyses were made on screened < 0.1 mm or <0.075 mm grain size fractions.
-
Uniform aerial photographic coverage of Greenland was achieved in 1978-1987 at 1: 150 000 scale by Mark Hurd Aerial Surveys, Inc., Minneapolis, Minnesota, U.S.A., for the Danish Geodetic Institute [Weidick, 1995]. The photography is now administered by the Danish Geodata Agency, see also http://eng.gst.dk/maps-topography/greenland/aerial-photos-of-greenland. The camera used for these black and white photographs was a Wild RC 10 with a super wide angle lens (focal length = 88 cm). The airplane used by Mark Hurd was a Gates Lear Jet 25C. By setting the flying height to app. 14 km the image scale of 1:150 000 was achieved [Bengtsson & Jørgensen, 1980]. In an attempt to avoid blind areas, caused by the precipitous mountainsides in combination with the use of a super wide angle lens, the photographs were taken with a length-lap of 80%, and a side-lap of 40%. In the subsequent use of the photography (for aerotriangulation, mapping and scanning) generally only every other image were used (as you will see from the photo number shown on this web-page). The photo center coordinates are from the aerotriangulation by the Danish Geodata Agency. Please contact GST for the high resolution photos.
-
Intrusions and magmatic complexes are central, when it comes to an assessment of the economic geological potential of a region. There are many of these in Greenland, and only a few of them have been examined in detail for their economic potential. In Nielsen (2002), tertiary intrusions and complexes in East Greenland were described, and later on information on intrusions and magmatic complexes in all of Greenland, were modelled based on the same methodology. The information has been compiled by GEUS geologists.
-
All active small scale licences. The data are converted from the WFS that th ministery of mineral resources (MMR) in Greenland provides. Links are provided in the online resources
-
This view presents data from stream sediment geochemical mapping of West and South Greenland (Steenfelt, 2001a). Stream sediment samples were collected from 1979 to 1998 with as even coverage as possible from low-order streams and with a sampling density of mostly around 1 sample per 30 km2 but up to 1 sample per 5 km2 in parts of South Greenland. The 0.1 mm grain size fractions of 500-g samples were analysed for major and trace elements by two or three methods. After careful quality control, selection of the most reliable analytical data and elimination of analytical bias (calibration), the final consistent dataset, named batch 2005, contains data from 7122 samples analysed for up to 43 elements (see Steenfelt 1999, 2001b for details on data selection and calibration). In batch 2005, values below lower detection limit are indicated by the digit 0. Sample location Before 1997, sample sites were originally marked on topographic maps at the scale 1:100,000 and their positions were later digitised and later again corrected, when a new topographic reference was introduced around year 2000. From 1997 onwards, GPS was used to determine sample positions.
Geus Geonetworks metadata catalogue