Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 109
  • Categories  

    Historical mineral exploration and exploitation licences in Greenland. The data are converted from the WFS that the ministery of mineral resources (MMR) in Greenland provides. Links are provided in the online resources.

  • Categories  

    The dataset represents the location of towns, settlements and airfields in Greenland. Each town and settlement have the number of inhabitants updated officially from Asiaq September 2018.

  • Categories  

    GEUS' Earthquake Portal provides information on all recorded earthquakes in Greenland. The data are extracted from GEUS' earthquake database and are updated daily. As a result, the timing, locations, and magnitudes of events may change as new data are added and existing events are revised. Continuous quality control is carried out, aiming to identify and remove explosions – typically related to military exercises or the removal of old munitions. Therefore, the list may change over time, and some uncertainty may be associated with the determination of epicentres and depths. The portal displays information for each earthquake, including the time of occurrence (year, month, day, hour, minute, second) in Greenwich Mean Time (GMT), the geographical location and depth of the epicentre, and the local magnitude measured on the Richter scale. Earthquake data can be exported from the portal according to the defined zoom level and map extent.

  • Categories  

    Intrusions and magmatic complexes are central, when it comes to an assessment of the economic geological potential of a region. There are many of these in Greenland, and only a few of them have been examined in detail for their economic potential. In Nielsen (2002), tertiary intrusions and complexes in East Greenland were described, and later on information on intrusions and magmatic complexes in all of Greenland, were modelled based on the same methodology. The information has been compiled by GEUS geologists.

  • Categories  

    The geological maps of Denmark on a scale of 1:400,000 focus on the Danish basin and its geological structures. The map includes areas that extend from the geological age 'Basis Kalk' and the Kalk Gruppen. The 'Basis Kalk' map shows the depth in metres, where 'Basis Kalk' denotes the area that forms the basis for all layers younger than the Early Cretaceous. Over the majority of the mapped area, this surface is level with the base of the Kalk Group, but where the limestone is eroded away, the surface is equal to the base of the Quaternary. The depth to 'Basis Kalk' is calculated as the depth to the base of the deposits younger than Denmark plus the thickness of the Kalk group. The map is published in DGU Map Series no. 29 from 1991, where further information about the mapping can be obtained.

  • Categories  

    This view presents data selected from the geochemical mapping of North Greenland that are relevant for an evaluation of the potential for zinc mineralisation: CaO, K2O, Ba, Cu, Sr, Zn. The data represent the most reliable analytical values from 2469 stream sediment and 204 soil samples collected and analysed over a period from 1978 to 1999 plus a large number of reanalyses in 2011. The compiled data have been quality controlled and calibrated to eliminate bias between methods and time of analysis as described in Thrane et al., 2011. In the present dataset, all values below lower detection limit are indicated by the digit 0. Sampling The regional geochemical surveys undertaken in North Greenland follows the procedure for stream sediment sampling given in Steenfelt, 1999. Thrane et al., 2011 give more information on sampling campaigns in the area. The sample consists of 500 g sediment collected into paper bags from stream bed and banks, alternatively soil from areas devoid of streams. The sampling density is not consistent throughout the covered area and varies from regular with 1 sample per 30 to 50 km2 to scarce and irregular in other areas. Analyses were made on screened < 0.1 mm or <0.075 mm grain size fractions.

  • Categories  

    All active exploitation licences. The data are converted from the WFS that th ministery of mineral resources (MMR) in Greenland provides. Links are provided in the online resources

  • Categories  

    The Greenland Geochronology database compiles published U-Pb geochronology from a wide range of literature sources and normalizes and recasts the data into consistent ratios and uncertainty levels; specifically all errors are given at the 1 sigma level. Importantly, this normalization provides coherence across the dataset. Additionally, ratios are verified against ages and have, if necessary, been corrected to ensure an internally consistent dataset. Systematic collation and assessment of geochronological data can be best achieved by means of a database which holds information within a structured and consistent framework which permits querying to extract relevant data and minimises difficulty in cross comparison of age information where different standards have been used.

  • Categories  

    Zircon age data as gathered from literature and GEUS samples

  • Categories  

    This view presents data from stream sediment geochemical mapping of West and South Greenland (Steenfelt, 2001a). Stream sediment samples were collected from 1979 to 1998 with as even coverage as possible from low-order streams and with a sampling density of mostly around 1 sample per 30 km2 but up to 1 sample per 5 km2 in parts of South Greenland. The 0.1 mm grain size fractions of 500-g samples were analysed for major and trace elements by two or three methods. After careful quality control, selection of the most reliable analytical data and elimination of analytical bias (calibration), the final consistent dataset, named batch 2005, contains data from 7122 samples analysed for up to 43 elements (see Steenfelt 1999, 2001b for details on data selection and calibration). In batch 2005, values below lower detection limit are indicated by the digit 0. Sample location Before 1997, sample sites were originally marked on topographic maps at the scale 1:100,000 and their positions were later digitised and later again corrected, when a new topographic reference was introduced around year 2000. From 1997 onwards, GPS was used to determine sample positions.