Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 110
  • Categories  

    The area in South-East Greenland between 62°30’N and 66°30’N was targeted for its mineralisation potential through data collection and renewed mapping during the collaborative ‘SEGMENT’ project (2009-2014) between the Geological Survey of Denmark and Greenland (GEUS) and the Bureau of Minerals and Petroleum (BMP, now Ministry of Mineral Resources, MMR). The main aims of the ‘SEGMENT’ project included: • Compiling a regional stream sediment geochemical and till indicator mineral survey; • Compiling a regional aeromagnetic survey of South-East Greenland; • Conduct geological field investigations in order to characterise the main lithology and as the basis for geological research, including petrology, structural geology, geochemistry and geochronology; • Evaluate economic geology and mineral potential through field investigations, using geological parameter in order to be able to predict possible mineralisation; • Revise the existing 1:500 000 geological map of South-East Greenland; and • Integrated data interpretation to describe and provide a geological model for the geological evolution of South-East Greenland and assess the mineral of potential of the region. The details behind the data collection and mapping efforts under the ‘SEGMENT’ project are summarized in the GEUS report by Kolb et al. (2016) which provides an overview of the geology and the lithological units within the mapping area between 62°N and 66°30’N.

  • Categories  

    Nationwide geophysical database for environmental and raw material data, also known as GERDA (GEophysical Relational DAtabase). The database contains various types of geophysics, including geoelectrics, electromagnetics, borehole logs and seismic. All data is freely available for download on the GEUS website. The database is updated continuously.

  • Categories  

    The Geological Survey of Denmark and Greenland has previously conducted sampling campaigns of heavy mineral concentrate in Greenland. The sampling methods are described according to their sampling years below. Unfortunately, not all the samples have reported as the campaigns in have not been undertaken on regional scale and therefore fallen under smaller projects or sampled under projects that have had other objects, and not all elements were considered relevant in the reports, translating to that metadata concerning the analyses are missing. All together there are geochemical analyses of 725 heavy mineral concentrate samples. The samples that are mentioned in reports below, are 319 in number, and do not comprise all heavy minerals samples collected the specified years. Samples collected in un-mentioned campaigns do occur in the full list. Use of data that is not mentioned here, needs caution and the quality should be weighed against other data. Years 1982-1986 A regional sampling campaign was conducted between 1982 and 1986, these samples are described in Appel 1989. These samples comprise the analysis batch numbers 10, 36 and 55. Numbers 10, 36 are analysed at Activation Laboratories and 55 analysed at Bondar-Clegg and Co. Ltd., both in Canada. In this campaign 210 samples were collected and are all sampled in the area around Nuuk. Sampling procedure: In the field: The coastal areas were accessed by boat while inland areas were accessed by helicopter. Four litres of coarse gravel and sand were collected and sieved through a 6 mesh of brass. The fines (c. 10 %) was panned and inspected in ultraviolet light and the scheelite grains counted. In the laboratory: The samples were dried and separated by bromoform, the heavy material was weighed and the scheelite grains counted again. A small splitter separated c. 0.5 gram of each sample for analysis of W, Mo, Pb, Cu, Cr, Co, V, Mn, Zr, Ni and Fe. During the years the sampling programme as well as the analysis methods changed. In 1983 the four litres were added up to five. In 1985 the material increased to 5-6 litres (or 10 kg). In 1986 a plastic sieve with 1 mm holes used and filled three times (5-8 kg) for each sample, the volume of fines was measured. C. 10 gram of each sample was analysed by Bondar-Clegg for (Sc, Cr, Fe, Co, Ni, As, Se, Rb, Mo, Ag, Cd, Sb, CS, BA, La, Eu, Tb, Yb, Hf, Ta, W, Ir, Au, Th and U) analyses. The reader should note that the analyses below detection limit is given as "0" (zero) and not analysed as "-1" for the samples collected in this campaign (year 1982-1986, i.e. batch numbers 10, 35 and 55). Year 1991 In 1991, 106 streams were sampled for heavy mineral concentrate, in the southern part of the Nuuk area, between 62°30?N and 64°N. Sample procedure was as follows: 5-10 litres of detrital material, < 5 cm, were collected, from 2-5 sub-localities in the stream bed. Wet sieving split the sample in less-than and bigger-than 0.5 mm, and the coarser fraction inspected for economic minerals. The fine fraction was heavy minerals concentrate was produced using a rotary panning device "goldhound" (see Erfurt et al., 1992 for reference). The heavy mineral concentrate was shipped to Denmark and dried and further spilt for analytical purposes. Activation Laboratories, Canada, analysed the samples for 35 elements including gold, with INAA and ICP-ES. Analyses batches are numbered 10 and 36. Unique samples number 103 for these two batches. In additional batch 41, has analysed Pb, Cu, Ni and Zn. Year 2004 The analyses batch no. 193 and 194 have been described in GEUS report 2004/42, and were sampled in 2003 in the Qaanaaq region in North-West Greenland. Six samples were collected in this campaign and sieving of 1.0 mm material on site and a pre-concentrate by panning of the fine fraction. In Copenhagen minerals with > 2.8 g/cm3 density was produced by heavy liquid separation. The rest The remaining 406 samples (analyses batch numbers: 10, 15, 21, 35, 36, 41, 55, 165, 166, 193, 194, 374, 375, 376, 1014, 1015, 1016, 1017, 1029, 1030, 1051, 1052, 1077 and 1078) have been analysed in addition to the laboratories mentioned above, at Risø National Laboratory in Denmark. As reports have not been available for writing up these analyses, the description is limited to the analyses. Chances are, however, that sampling procedures are similar to the descriptions above. The analyses below detection limits of the remaining 406 unique samples have not been consistent, but are presented as "0" or as negative values and elements that have not been measured as "0" or empty cells.

  • Categories  

    The dataset contains outlines of geological maps of Greenland printed and published by GGU and GEUS since 1957 at various scales. The dataset contains links to the GEUS Dataverse where each map has been assigned a DOI and can be downloaded in a resolution of 400dpi TIFF-images or pdf.

  • Categories  

    Dataset containing a summary of geological information for known mineral occurrences on Greenland. The information includes the location, size, mineral commodities, mineralisation type, exploration history and a geological description of the deposit. The data has been collected and compiled from fieldwork investigations conducted by geological surveys, academic researchers and mineral exploration companies.

  • Categories  

    The Greenland Geochronology database compiles published U-Pb geochronology from a wide range of literature sources and normalizes and recasts the data into consistent ratios and uncertainty levels; specifically all errors are given at the 1 sigma level. Importantly, this normalization provides coherence across the dataset. Additionally, ratios are verified against ages and have, if necessary, been corrected to ensure an internally consistent dataset. Systematic collation and assessment of geochronological data can be best achieved by means of a database which holds information within a structured and consistent framework which permits querying to extract relevant data and minimises difficulty in cross comparison of age information where different standards have been used.

  • Categories  

    Each map displays a grid image of the variation in element concentration, a colour scale giving class intervals for the grid colours, histograms showing the frequency distributions of sample values and grid cell values, respectively, and statistical parameters for measured concentrations in samples and for the grid cell values. All element concentrations below the lower limit of detection for the analytical method have been set to zero for simplicity, and in accordance with their registration in the GEUS database. Major element oxide concentrations have been recalculated as volatile-free concentrations to compensate for the effect of variable contents of organic matter and carbonate.

  • Categories  

    The Raw stream sediment samples dataset is data as they have been delivered from the laboratories, i.e. values below detection limit often spelled as negative but zero may also apply. The data are not controlled by a geologist. In addition, they may not have been reported.

  • Categories  

    This view presents data from stream sediment geochemical mapping of West and South Greenland (Steenfelt, 2001a). Stream sediment samples were collected from 1979 to 1998 with as even coverage as possible from low-order streams and with a sampling density between 1 sample per 5 km2 and 1 sample per 50 km2, mostly around 1 sample per 30 km2. With few exceptions, the 0.1 mm grain size fractions of 500-g samples were analysed for major and trace elements by two or three methods. After careful quality control and elimination of bias between analytical values determined by different methods or at different times (calibration), the most reliable analytical data were selected as the final consistent dataset, containing data from 7122 samples analysed for up to 43 elements (see Steenfelt 1999, 2001b for details on data selection and calibration). Major element oxides and volatiles are determined by X-Ray Fluorescence Spectrometry (XRF) and loss on ignition, respectively. Loss on ignition mostly reflects the amount of organic material in stream sediment samples. As the aim is to show the regional variation in the chemistry of the minerogenic component of the stream sediment, volatiles are not included in the major element composition which is recalculated as volatile-free oxides. Instead, volatiles are listed in a separate column for documentation. Locally, high loss on ignition may be caused by high contents of carbonate in the stream sediment of streams draining rare occurrences of marble or carbonatites. For detailed or more accurate studies, the CO2 concentrations of the stream sediment samples should be measured, or the amount of carbonate minerals estimated by microscopy. Trace element data are from methods determining total concentrations (XRF, Instrumental Neutron Activation, Delayed Neutron Counting). The quality of the trace element data varies (see Steenfelt 1999, 2001b) In the present dataset, all values below lower detection limit are indicated by the digit 0. Sample location Before 1993, sample sites were originally marked on topographic maps at the scale 1:100,000 and their positions were later digitised and later again corrected, when a new topographic reference was introduced around year 2000. From 1993 onwards, GPS was used to determine sample positions.

  • Categories  

    Ujarassiorit is a mineral hunt competition open to residents of Greenland. Participants can submit rock samples from Greenland to the Ministry of Minerals Ressources (MMR) for evaluation and may be selected for a prize.