Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 109
  • Categories  

    Exploration companies are obliged to report their activities to the Ministry of Minerals and Resources (MMR). Now reports are delivered in digital format, but were previously delivered in paper, to the Geological Survey of Denmark and Greenland (GEUS). They are scanned and released reports are available under Reports. Digital restoration The data that the reports hold is thus available, but stored as images in scanned pdf?s. The geochemical data of 4 reports (Allen & Harris, 1980; Coppard et al., 1992; Harris et al., 1992 and Pearson & Joudrie, 1995) have been digitized. I.e. the reports have be optically characterised and the sample locations georeferenced. The matching of the sample locations and geochemically referenced samples does not always match. Meaning that a sample that has coordinate may not have geochemical results, and a sample with geochemical measurements might not have coordinate. The reporting of the analytical facilities and precision is sparse. Detection limits, analytical uncertainty and reliability are generally not reported. Analytical methods and analysed grain fractions of sediment samples also not reported. When all these issues have been listed, it should be noted that errors may occur. From the digital restoration of scanned paper to optically characterisation of the scanned text and numbers errors may be introduced. The user is cautioned to these issues. Upload to data base To make the data available on the web, upload to GEUS sample data base is required. To fit into the sample data base, some adjustments had to be made. Sample names modified, collector created etc., resulting in modified sample names, relative to the ones used in the reports. The reports from which the samples occur in are not mentioned in the data base. Hence the four reports and links to them are listed below:

  • Categories  

    The dataset contains outlines of archived historical unpublished geological maps and sections of Greenland mostly created by GGU and GEUS but also some other institutes from 1916 onwards at various scales.

  • Categories  

    A series of Aster band ratios highlighting mineral distributions. Band ratio color composite images to distinguish variability of lithology in the area. Preprocessing of the Aster scenes encompasses atmospheric, radiometric and topographic corrections before masking non-outcrop pixels and generating the final mosaic. The calibrated radiance data is converted to apparent surface reflectance using a radiative transfer program, Atmospheric and Topographic Correction (ATCOR-3), in rugged terrain mode. The ATCOR rugged terrain mode utilizes a surface elevation model to adjust illumination levels. Calibration and adjusting the apparent surface reflectance values from the ATCOR-3 processing was not feasible due to lack of ground-based reflectance measurements.

  • Categories  

    The dataset contains outlines of geological maps of Greenland printed and published by GGU and GEUS since 1957 at various scales. The dataset contains links to the GEUS Dataverse where each map has been assigned a DOI and can be downloaded in a resolution of 400dpi TIFF-images or pdf.

  • Categories  

    Each map displays a grid image of the variation in element concentration, a colour scale giving class intervals for the grid colours, histograms showing the frequency distributions of sample values and grid cell values, respectively, and statistical parameters for measured concentrations in samples and for the grid cell values. All element concentrations below the lower limit of detection for the analytical method have been set to zero for simplicity, and in accordance with their registration in the GEUS database. Major element oxide concentrations have been recalculated as volatile-free concentrations to compensate for the effect of variable contents of organic matter and carbonate.

  • Categories  

    The regional-scale gamma spectrometry data are associated with two collaboration projects involving the Geological Survey of Greenland (GGU) and the Danish Atomic Energy Commission’s Research Establishment. The projects' objectives were to outline areas with an elevated uranium potential in two regions of Greenland: The airborne radiometric surveys in southern and central West Greenland in 1975/76 and the SYDURAN project in South Greenland in 1979-1982. To acquire the data, four-channel gamma ray spectrometers were mounted upon an aircraft (1975/76 surveys) and a helicopter (SYDURAN project). The vehicles flew along shoreline and valley contour lines at low average terrain clearances of 100 and 50 m respectively. The data were recorded without GPS systems, and so positioning was estimated when known landmarks were passed. This means that the dataset is sparse and inhomogeneous, and the spatial accuracy remains low. The gamma-spectrometer had been calibrated at a pad facility at Risø, which enabled the conversion of recorded counts per second into simulated concentrations of radioactive components in the surface of the overflown terrain. Large parts of the data (surveys from 1975/76) were originally stored on magnetic tapes and data were transferred to datafiles in 2003 to make them digital accessible. Most data were retrieved and are now available as ASCII files.

  • Categories  

    This view presents data selected from the geochemical mapping of North Greenland that are relevant for an evaluation of the potential for zinc mineralisation: CaO, K2O, Ba, Cu, Sr, Zn. The data represent the most reliable analytical values from 2469 stream sediment and 204 soil samples collected and analysed over a period from 1978 to 1999 plus a large number of reanalyses in 2011. The compiled data have been quality controlled and calibrated to eliminate bias between methods and time of analysis as described in Thrane et al., 2011. In the present dataset, all values below lower detection limit are indicated by the digit 0. Sampling The regional geochemical surveys undertaken in North Greenland follows the procedure for stream sediment sampling given in Steenfelt, 1999. Thrane et al., 2011 give more information on sampling campaigns in the area. The sample consists of 500 g sediment collected into paper bags from stream bed and banks, alternatively soil from areas devoid of streams. The sampling density is not consistent throughout the covered area and varies from regular with 1 sample per 30 to 50 km2 to scarce and irregular in other areas. Analyses were made on screened < 0.1 mm or <0.075 mm grain size fractions.

  • Categories  

    The Geological Survey of Denmark and Greenland has previously conducted sampling campaigns of heavy mineral concentrate in Greenland. The sampling methods are described according to their sampling years below. Unfortunately, not all the samples have reported as the campaigns in have not been undertaken on regional scale and therefore fallen under smaller projects or sampled under projects that have had other objects, and not all elements were considered relevant in the reports, translating to that metadata concerning the analyses are missing. All together there are geochemical analyses of 725 heavy mineral concentrate samples. The samples that are mentioned in reports below, are 319 in number, and do not comprise all heavy minerals samples collected the specified years. Samples collected in un-mentioned campaigns do occur in the full list. Use of data that is not mentioned here, needs caution and the quality should be weighed against other data. Years 1982-1986 A regional sampling campaign was conducted between 1982 and 1986, these samples are described in Appel 1989. These samples comprise the analysis batch numbers 10, 36 and 55. Numbers 10, 36 are analysed at Activation Laboratories and 55 analysed at Bondar-Clegg and Co. Ltd., both in Canada. In this campaign 210 samples were collected and are all sampled in the area around Nuuk. Sampling procedure: In the field: The coastal areas were accessed by boat while inland areas were accessed by helicopter. Four litres of coarse gravel and sand were collected and sieved through a 6 mesh of brass. The fines (c. 10 %) was panned and inspected in ultraviolet light and the scheelite grains counted. In the laboratory: The samples were dried and separated by bromoform, the heavy material was weighed and the scheelite grains counted again. A small splitter separated c. 0.5 gram of each sample for analysis of W, Mo, Pb, Cu, Cr, Co, V, Mn, Zr, Ni and Fe. During the years the sampling programme as well as the analysis methods changed. In 1983 the four litres were added up to five. In 1985 the material increased to 5-6 litres (or 10 kg). In 1986 a plastic sieve with 1 mm holes used and filled three times (5-8 kg) for each sample, the volume of fines was measured. C. 10 gram of each sample was analysed by Bondar-Clegg for (Sc, Cr, Fe, Co, Ni, As, Se, Rb, Mo, Ag, Cd, Sb, CS, BA, La, Eu, Tb, Yb, Hf, Ta, W, Ir, Au, Th and U) analyses. The reader should note that the analyses below detection limit is given as "0" (zero) and not analysed as "-1" for the samples collected in this campaign (year 1982-1986, i.e. batch numbers 10, 35 and 55). Year 1991 In 1991, 106 streams were sampled for heavy mineral concentrate, in the southern part of the Nuuk area, between 62°30?N and 64°N. Sample procedure was as follows: 5-10 litres of detrital material, < 5 cm, were collected, from 2-5 sub-localities in the stream bed. Wet sieving split the sample in less-than and bigger-than 0.5 mm, and the coarser fraction inspected for economic minerals. The fine fraction was heavy minerals concentrate was produced using a rotary panning device "goldhound" (see Erfurt et al., 1992 for reference). The heavy mineral concentrate was shipped to Denmark and dried and further spilt for analytical purposes. Activation Laboratories, Canada, analysed the samples for 35 elements including gold, with INAA and ICP-ES. Analyses batches are numbered 10 and 36. Unique samples number 103 for these two batches. In additional batch 41, has analysed Pb, Cu, Ni and Zn. Year 2004 The analyses batch no. 193 and 194 have been described in GEUS report 2004/42, and were sampled in 2003 in the Qaanaaq region in North-West Greenland. Six samples were collected in this campaign and sieving of 1.0 mm material on site and a pre-concentrate by panning of the fine fraction. In Copenhagen minerals with > 2.8 g/cm3 density was produced by heavy liquid separation. The rest The remaining 406 samples (analyses batch numbers: 10, 15, 21, 35, 36, 41, 55, 165, 166, 193, 194, 374, 375, 376, 1014, 1015, 1016, 1017, 1029, 1030, 1051, 1052, 1077 and 1078) have been analysed in addition to the laboratories mentioned above, at Risø National Laboratory in Denmark. As reports have not been available for writing up these analyses, the description is limited to the analyses. Chances are, however, that sampling procedures are similar to the descriptions above. The analyses below detection limits of the remaining 406 unique samples have not been consistent, but are presented as "0" or as negative values and elements that have not been measured as "0" or empty cells.

  • Categories  

    Zircon age data as gathered from literature and GEUS samples

  • Categories  

    The digital terrain model of Greenland is constructed on the basis of GEUS's topographic data set from the official geological maps of Greenland in scale ratios 1:100 000 and 1:500 000. The data base is primarily supported by contour lines, coastlines and support points. The terrain model is assembled as a mosaic in sub-areas based on the map sheet frames from the geological map of Greenland in 1:500 000. The terrain model is made in the coordinate system WGS 1984 Complex UTM Zone 24N with the dimensions in a 100 x 100 m grid. Based on the digital terrain model, a shadow map of the terrain has been constructed.