The Danish Pesticide Leaching Assessment Programme

Monitoring results May 1999–June 2019

Annette E. Rosenbom, Sachin Karan, Nora Badawi, Lasse Gudmundsson, Carl H. Hansen, Carsten B. Nielsen, Finn Plauborg and Preben Olsen

Geological Survey of Denmark and Greenland Danish Ministry of Climate, Energy and Utilities

Department of Agroecology Aarhus University

Department of Bioscience Aarhus University

Editor: Annette E. Rosenbom *Front page photo by Henning Carlo Thomsen:* Mechanical treated potato field *Cover:* Henrik Klinge Pedersen *Layout and graphic production*: Authors *Printed for a hard copy version:* Januar 2021 *Price:* DKK 200

ISSN (print): 2446-4228 ISSN (online): 2446-4236 ISBN (print): 978-87-7871-531-9 ISBN (online): 978-87-7871-532-6

Available from: Geological Survey of Denmark and Greenland Øster Voldgade 10, DK-1350 Copenhagen K, Denmark Phone: +45 3814 2000 E-mail: geus@geus.dk Homepage: www.geus.dk

The report is also available as a pdf file at www.pesticidvarsling.dk

© De Nationale Geologiske Undersøgelser for Danmark og Grønland, 2021

Table of contents

	REFACE		
	JMMARY		
1		DUCTION	
		ECTIVE	
•		UCTURE OF THE PLAP	
2		IDE LEACHING AT TYLSTRUP	
		FERIALS AND METHODS	
	2.1.1	Field description and monitoring design	
	2.1.2	Agricultural management.	
	2.1.3 2.2 Res	Model setup and calibration	
	2.2 KES 2.2.1	ULTS AND DISCUSSION Soil water dynamics and water balances	
	2.2.1 2.2.2		
	2.2.2 2.2.3	Bromide leaching Pesticide leaching	
3		IDE LEACHING AT JYNDEVAD	
3		FERIALS AND METHODS	
	3.1.1	SoutherField description and monitoring design	
	3.1.2		
	3.1.2	Agricultural management Model setup and calibration	
		ULTS AND DISCUSSION	
	3.2.1 KES	Soil water dynamics and water balances	
	3.2.1		
	3.2.2 3.2.3	Bromide leaching	
4		Pesticide leaching IDE LEACHING AT SILSTRUP	
4			
	4.1 MA 4.1.1	FERIALS AND METHODS	
		Field description and monitoring design	
	4.1.2	Agricultural management.	
	4.1.3	Model setup and calibration	
		ULTS AND DISCUSSION	
	4.2.1	Soil water dynamics and water balances	
	4.2.2	Bromide leaching	
_	<i>4.2.3</i>	Pesticide leaching	
5		IDE LEACHING AT ESTRUP	
		FERIALS AND METHODS	
	5.1.1	Field description and monitoring design	
	5.1.2	Agricultural management	
	5.1.3	Model setup and calibration	
		ULTS AND DISCUSSION	
		Soil water dynamics and water balances	
	5.2.2	Bromide leaching	
	5.2.3	Pesticide leaching	
6		IDE LEACHING AT FAARDRUP	
		FERIALS AND METHODS	
	6.1.1	Field description and monitoring design	
	6.1.2	Agricultural management	
	6.1.3	Model setup and calibration	
		ULTS AND DISCUSSION	
	6.2.1	Soil water dynamics and water balance	
	6.2.2	Bromide leaching	
	6.2.3	Pesticide leaching	
7		IDE LEACHING AT LUND	
	7.1 MA	TERIALS AND METHODS	
	7.1.1	Field description and monitoring design	
	7.1.2	Agricultural management	
	7.2 Res	ULTS AND DISCUSSION	
	7.2.1	Soil water dynamics and water balance	
	7.2.2	Bromide leaching	. 93

	7.2.	3 Pesticide leaching	95
8	PES	STICIDE ANALYSIS QUALITY ASSURANCE	103
	8.1	MATERIALS AND METHODS	103
	8.1.	l Internal QA	103
		2 External QA	
	8.2	RESULTS AND DISCUSSION	104
		l Internal QA	
	8.2.2	2 External QA	108
	8.3		
9	SUN	AMARY OF MONITORING RESULTS	111
10		FERENCES	
		IXES	
		DIX 1	
		CAL ABSTRACTS NOMENCLATURE FOR THE PESTICIDES ENCOMPASSED BY THE PLAP	
		2	
		IDE MONITORING PROGRAMME – SAMPLING PROCEDURE	
		DIX 3	
		JLTURAL MANAGEMENT	
		DIX 4	
		LY PRECIPITATION DATA FOR THE PLAP FIELDS	
		DIX 5	
		IDE DETECTIONS IN SAMPLES FROM DRAINS, SUCTION CUPS AND GROUNDWATER SCREENS	
		DIX 6	
		ATORY INTERNAL CONTROL CARDS AND EXTERNAL CONTROL SAMPLE RESULTS	
		DIX 7	
		IDES ANALYSED AT FIVE PLAP FIELDS IN THE PERIOD UP TO $2009/2010/2011$	
		DIX 8	
		ORIZONTAL WELLS	
		DIX 9	
	GRUUN	DWATER AGE FROM RECHARGE MODELLING AND TRITIUM-HELIUM ANALYSIS	

Preface

In 1998, the Danish Parliament initiated the Danish Pesticide Leaching Assessment Programme (PLAP), which is an intensive monitoring programme aimed at evaluating the leaching risk of pesticides under field conditions. The Danish Government funded the first phase of the programme from 1998 to 2001. The programme has now been prolonged three times, initially with funding from the Ministry of the Environment and the Ministry of Food, Agriculture and Fisheries for the period 2002 to 2009, and then from the Danish Environmental Protection Agency (EPA) for the period 2010 to 2018. Additionally, funding for establishing a new test field (with a basal till overlaying chalk) designated to be included in the monitoring programme for 2016-2018 was provided in the Danish National Budget for the fiscal year of 2015. The establishment of the new test field was, however, delayed and not initiated until the autumn of 2016. Therefore, this report is the second to present data from this field. In April 2017, PLAP received funding until 2021 via the Pesticide Strategy 2017-2021 set by the Danish Government.

The work was conducted by the Geological Survey of Denmark and Greenland (GEUS), the Department of Agroecology (AGRO) at Aarhus University and the Department of Bioscience (BIOS) at Aarhus University, under the direction of a management group comprising Annette E. Rosenbom (GEUS), Preben Olsen (AGRO), Nora Badawi (GEUS), Sachin Karan (GEUS), Carsten B. Nielsen (BIOS), Steen Marcher (Danish EPA) and Signe Bonde Rasmussen (Danish EPA).

Maria Sommer Holtze (Danish EPA) chairs the steering group, and the members are Steen Marcher (Danish EPA), Jørgen E. Olsen (AGRO), Preben Olsen (AGRO), Christian Kjær (BIOS), Claus Kjøller (GEUS), Sachin Karan (GEUS) and the project leader Annette E. Rosenbom (GEUS).

This report presents the results for the period May 1999–June 2019. Results including part of the period May 1999–June 2018 have been reported previously (Kjær *et al.*, 2002, Kjær *et al.*, 2003, Kjær *et al.*, 2004, Kjær *et al.*, 2005c, Kjær *et al.*, 2006, Kjær *et al.*, 2007, Kjær *et al.*, 2008, Kjær *et al.*, 2009, Rosenbom *et al.*, 2010b, Kjær *et al.*, 2011, Brüsch *et al.*, 2013a, Brüsch *et al.*, 2013b, Brüsch *et al.*, 2015, Brüsch *et al.*, 2016, Rosenbom *et al.*, 2017; Rosenbom *et al.*, 2019; Rosenbom *et al.*, 2020). The present report should therefore be regarded as a continuation of previous reports with the focus on the leaching risk of pesticides applied during the monitoring period 2017-2019.

The report was prepared jointly by Annette E. Rosenbom (GEUS), Sachin Karan (GEUS), Nora Badawi (GEUS), Lasse Gudmundsson (GEUS), Carl H. Hansen (GEUS), Preben Olsen (AGRO), Finn Plauborg (AGRO) and Carsten B. Nielsen (BIOS). While all authors contributed to the whole report, authors were responsible for separate aspects as follows:

- Pesticide and bromide leaching: Annette E. Rosenbom, Sachin Karan and Preben Olsen.
- Agricultural management: Preben Olsen.
- Soil water dynamics and water balances: Annette E. Rosenbom, Finn Plauborg, Sachin Karan and Carsten B. Nielsen.
- Pesticide analysis quality assurance: Nora Badawi.

Dansk sammendrag: Der er udarbejdet et dansk sammendrag for perioden maj 1999 til juni 2019 med ISBN (print) 978-87-7871-528-9 og ISBN (online) 978-87-7871-529-6.

Annette E. Rosenbom January 2021

Summary

In 1998, the Danish Parliament initiated the Pesticide Leaching Assessment Programme (PLAP), an intensive monitoring programme aimed at evaluating the leaching risk of pesticides and/or their degradation products (metabolites) under field conditions. The objective of the PLAP is to improve the scientific foundation for decision-making in the Danish regulation of pesticides. The specific aim is to analyse whether pesticides applied in accordance with current regulations will result in leaching of the pesticide and/or its degradation products to groundwater in unacceptable concentrations.

Compared to earlier PLAP-reports, this report presents the results of the monitoring period July 2017–June 2019 comprising 8105 single analyses conducted on water samples collected at the six PLAP-fields: two sandy fields (Tylstrup and Jyndevad) and four clayey till fields (Silstrup, Estrup, Faardrup and Lund), where Lund is newly established in 2017. In this period, PLAP evaluated the leaching risk of 7 pesticides and 25 degradation products after applying the maximum allowed dose of 22 specific pesticides in connection with a specific crop except for a propiconazole application in 2016, where only half dose of the maximum allowed was applied. The 32 compounds include 13 that are under evaluation for the first time in PLAP (marked in red in Table 0.1).

Highlights for compounds included in the monitoring period July 2017–June 2019:

- The degradation product of many azole fungicides, 1,2,4-triazole, is being repeatedly detected in groundwater in concentrations above 0.1 μg L⁻¹ With indications of 1,2,4-triazole being a threat to the quality of groundwater, the Danish EPA enforced restrictions in 2014 on the use of certain fungicides being a source for 1,2,4-triazole in the terrestrial environment. Additionally, leaching of the degradation product 1,2,4-triazole was evaluated in PLAP in connection with the use of tebuconazole against fungi in cereals in 2014 on the two sandy fields Tylstrup and Jyndevad and the two clayey till fields Estrup and Faardrup. Given the many detections at especially Estrup and Jyndevad, an evaluation of 1,2,4-triazole leaching, as a result of the application of other parent fungicides was conducted. The following fungicides were applied at:
 - Tylstrup:
 - i) prothioconazole as a split application to winter wheat in May and June 2015.
 - Jyndevad:
 - i) epoxiconazole to winter wheat in May 2015
 - ii) prothioconazole to winter wheat in June 2015
 - iii) propiconazole in June 2016 (in half the maximum allowed dosage) to spring barley with under sown clover grass.
 - Faardrup:
 - i) prothioconazole to winter wheat in May 2015
 - ii) propiconazole (in half the maximum allowed dosage) to spring barley in June 2016.
 - iii) propiconazole to spring barley as a split application in June and July 2017 in the maximum allowed dosage.

• Estrup:

i) metconazole to spring barley in June 2019.

- Silstrup:
 - i) propiconazole to spring barley as a split application in June and July 2017 in the maximum allowed dosage.
 - ii) prothioconazole as a split application to winter barley in May and June 2018
- Lund:
 - i) prothioconazole as a split application to spring barley in June 2018.

The 2014-restrictions were not enforced on the use of prothioconazole, because prothioconazole only forms minor amounts of 1.2,4-triazole in soil according to the EFSA (2007) conclusion on the peer review of prothioconazole. Prothioconazole was tested in PLAP to confirm that 1,2,4-triazole was not formed in major amounts by degradation of prothioconazole. The evaluation revealed that 1,2,4-triazole was detected in samples from suction cups at both sandy fields, but also in drainage samples at the four clayey till fields. Except for Silstrup, 1,2,4triazole was also found in upstream wells. Hence only at Silstrup, was it possible to relate the detections in the groundwater to the sowing of seeds coated with tebuconazole and prothioconazole and the split application of propiconazole to the field. Measurements at the other fields may have been influenced by other sources as well e.g. past sprayings with various azole fungicides as well as sowing of seeds coated with azole fungicides. Since concentrations detected in samples from upstream wells generally were lower relative to detections in water collected from the variably-saturated zone as well as horizontal groundwater wells installed directly underneath the treated area of the field, it seems unlikely, that upstream 1,2,4-triazole sources could govern the detections in the groundwater collected downstream the fields. The results show that 1,2,4-triazole leach to the groundwater in concentrations exceeding 0.1 μ g L⁻¹ at Jyndevad (max. 0.15 μ g L⁻ ¹), Silstrup (max. 0.14 μ g L⁻¹), Estrup (max. 0.26 μ g L⁻¹) and Lund (max. 0.12 μ g L^{-1}) (Table 9.4). 72 groundwater samples out of a total number of 1660 of samples collected since 2014 from all the fields had a 1,2,4-triazole concentration exceeding 0.1 μ g L⁻¹ (Table 0.1), where it was detected in 874 samples. The causes for the many detections of 1,2,4-triazole is being evaluation in PLAP, and monitoring of 1,2,4-triazole is ongoing.

Repeated application of azoxystrobin causes a long-term increase in CyPM detections exceeding 0.1 μg L⁻¹ in the groundwater

CyPM is a degradation product of azoxystrobin used against fungi. In the period June 2004 – June 2014 azoxystrobin was applied five times at Silstrup and six times at Estrup. At both fields, groundwater samples collected following each application revealed a pulse of CyPM moving into the groundwater, increasing in both maximum concentration and duration after each application. Detections in water samples taken from a horizontal well installed in 2 m depth at both fields, which became operational in early 2012, underlines this pattern. CyPM has now been leaching for many years to groundwater at Silstrup and Estrup with exceedances of $0.1 \mu g L^{-1}$ in 12 and 5 groundwater samples collected within 2004-2016 and 2004-2017 at Silstrup and Estrup, respectively (Table 9.4; Silstrup – 100 samples with detection out of 756 collected 2004-2016; Estrup – 41 samples with detections out of 766 collected 2004-2017). In June 2017, azoxystrobin was

applied once at the new field Lund giving rise to detections of both azoxystrobin and CyPM in the drainage (1 m depth) – with CyPM detections above 0.1 μ g L⁻¹. Only CyPM was detected in the groundwater and in water from the upstream well with all detections being below 0.1 μ g L⁻¹. Given the lack of knowledge about i) the connectivity of the wells with the hydraulic active pathways in the till at Lund and ii) the water balance of the Lund field that is not estimated yet (data available from Marts 2018 and no MACRO modelling has yet been conducted) it is not possible to conduct a full evaluation of this leaching. Possible underlying relationships to the findings regarding repeated application of azoxystrobin will in the future undergo further evaluations in PLAP.

• Flupyrsulfuron-methyl and four of its degradation products have still not been detected in the groundwater

Flupyrsulfuron-methyl was applied to winter wheat at Jyndevad (October 2014 and March 2015) and Faardrup (November 2014 and April 2015). Following these applications, flupyrsulfuron-methyl and its three degradation products IN-JV460, IN-KC576 and IN-KY374 were included in the monitoring program. None of the compounds were detected in the groundwater in the period 2014-2016. IN-KY374 was detected in the variably saturated zone (suction cups) at Jyndevad in four samples, where three were above 0.1 μ g L⁻¹. The total number of samples at Jyndevad collected from suction cups was 30. To evaluate the leaching risk of two other degradation products of flupyrsulfuron-methyl, IN-KF311 and IN-JE127, the herbicide was sprayed against weeds in winter wheat at the sandy field Jyndevad on 16 October 2017 and 3 May 2018. Further, at the clayey till field Silstrup it was applied in winter barley on 18 October 2017, why monitoring continues but without IN-JE127. In the development of a method of analysis for IN-JE127, the compound was found to be unstable in aqueous solutions and thus disregarded from the PLAP monitoring program. None of the two new degradation products were detected during this monitoring period.

• A degradation product of cycloxydim leached through sand within few months but not through clayey till

Two degradation products BH 517-T2SO2 and E/Z BH 517-TSO of the herbicide **cycloxydim** were in connection with the application of the herbicide included in the monitoring programme May 2017 at the sandy field Jyndevad and September 2018 at the clayey till field Silstrup. The latter degradation product was detected in water collected from 1 m depth and groundwater at both fields. At both fields, concentrations exceeding 0.1 μ g L⁻¹ were detected in water samples from 1 m depth within the first two months of sampling. Following these detections, the concentration of E/Z BH 517-TSO declined at 1 m depth at the sandy field resulting in detections below 0.1 μ g L⁻¹ in two groundwater samples out of 179. Contrarily at the clayey till field, the compound was found in the groundwater up to eight months after the cycloxydim application – It was detected in 29 groundwater samples out 43 though without concentrations exceeding 0.1 μ g L⁻¹. The monitoring is continued for an additional year at the clayey till field and hopefully, this will reveal whether the initiation of the drainage period will cause additional detections of E/Z BH 517-TSO.

• Still no leaching of three degradation products of mesosulfuron-methyl through neither sand nor clayey till

The three degradation products of mesosulfuron-methyl, AE-F099095, AE-F160459 and AE-F147447 were included for the first time in the PLAPmonitoring on 9 May 2017 in spring barley at the sandy field Tylstrup, where the herbicide was applied against weeds. In April 2018, the pesticide was applied to the other sandy field in PLAP (Jyndevad) and to the two clayey till fields Silstrup and Estrup. Monitoring at Tylstrup was stopped December 2018, where the field was set on "stand-by" given a cut in funding. Until now, none of the compounds have been detected in the water samples collected from any of the four fields. Results after a full two-year monitoring period at the three other fields may reveal, whether the degradation products appear at 1 m depth and in groundwater in the longer term.

• **Propyzamide leach through clayey till in concentrations exceeding 0.1 \mug L⁻¹ Propyzamide was for the second time included in the PLAP-monitoring program at the clay till field Silstrup. This time it was sprayed on the winter rape 9 November 2018. Just five days after application, a concentration in the drainage of 5.1 \mug L⁻¹ was obtained followed by detections in drainage and groundwater also exceeding 0.1 \mug L⁻¹ within the first three months after application. The monitoring will be continued for more than an additional year, which may clarify whether the initiation of the drainage period will cause additional detections of propyzamide.**

Table 0.1 *(Same as Table 9.5)* 7 pesticides and 25 *degradation products* have been analysed in PLAP in the period July 2017-June 2019. 13 compounds not previously evaluated in PLAP are marked in red. The number of analysed water samples collected from the Variably-saturated Zone (VZ; drains and suction cups), Saturated Zone (SZ; groundwater screens both vertical and horizontal) and irrigated water (Irrigation) are presented together with results of sample analysis from VZ and SZ as number of detections (Det.) >0.1 µg L⁻¹ and maximum concentration (Max conc.). For irrigation water, the detected concentration is presented in brackets. (-) indicate no detections.

Pesticide	Analyte	Number of samples from:			Results of analysis						
						VZ			SZ		
		VZ	SZ Irrigation		Det.	>0.1	Max conc.	Det.	>0.1	Max conc.	
						[µg L ⁻¹]	[µg L ⁻¹]		[µg L ⁻¹]	$[\mu g L^{-l}]$	
Azoxystrobin	Azoxystrobin	27	212		3	0	0.08	1	0	0.01	
	СуРМ	25	212		19	3	0.43	11	0	0.06	
Bentazone	Bentazone	69	373		20	2	1.4	7	0	0.06	
	6-hydroxy-bentazone	64	279		0	0	-	0	0	-	
	8-hydroxy-bentazone	64	279		0	0	-	0	0	-	
	N-methyl-bentazone	64	279		1	0	0.02	0	0	-	
Cycloxydim	BH 517-T2SO2	44	222	1 (-)	0	0	-	0	0	-	
	E/Z BH 517-TSO	18	222	1 (-)	18	3	0.28	31	0	0.05	
Florasulam	TSA	91	358		0	0	-	0	0	-	
Flupyrsulfuron-methyl	IN-JE127 Unstable in water	72	240	2 (-)	0	0	-	0	0	-	
15 5	IN-KF311	73	259	2 (-)	0	0	-	0	0	-	
Fluroxypyr	Fluroxypyr-methoxypyridine	28	58		0	0	-	0	0	-	
515	Fluroxypyr-pyridinol	28	58		0	0	-	0	0	-	
Foramsulfuron	Foramsulfuron	55	80		0	0	-	1	0	0.02	
	AE-F092944	57	92		0	0	-	0	0	-	
	AE-F130619	55	80		0	0	-	0	0	-	
Glyphosate	Glyphosate	21	203		21	8	8.60	2	0	0.02	
ajpiosate	AMPA	33	203		26	5	1.30	3	0	0.02	
Haluxifen-methyl	X-729	2	32		0	0	-	0	0	_	
i initialiti i initia ji	X-757	81	243		0	0	-	0	0	-	
Mesosulfuron-methyl	AE-F099095	113	380	9(-)	0	0	-	0	0	-	
interest and an interior	AE-F147447	72	242	8(-)	0	0	-	0	0	-	
	AE-F160459	113	380	9(-)	0	0	-	0	0	-	
Mesotrione	Mesotrione	55	80		1	0	0.01	0	0	-	
	AMBA	55	80		0	0	-	0	0	-	
	MNBA	55	80		0	0	-	0	0	-	
Metconazole	Metconazole	1	14		0	0	-	0	0	-	
Propyzamide	Propyzamide	22	57		14	6	5.1	17	4	0.22	
Tebuconazole 2014 Epoxiconazole 2015 Prothioconazole 2015 Propiconazole 2016 Propiconazole 2017 Prothioconazole 2018	1,2,4-triazole	227	719	8 (-)	197	59	0.38	434	23	0.23	
Thiencarbazone-methyl	AE1394083	16	69		0	0	-	0	0	-	
Thiophanat-methyl	Carbendazim	40	109	6(-)	3	0	0.02	0	0	-	
Triasulfuron [*]	Triazinamin	52	73		0	0	-	0	0	-	
Sub total	32 (7 Pesticides; 25 Degradation products)	1792	6267	46	323	86		507	27		
Percent		22%	77%	0.6%	18%	5%		8%	0.4%		
Total			81								

* This information can include triazinamin/IN-A4098 degradated from iodosulfuron-methyl-Na.

Throughout the monitoring period 1999-2019, 130 pesticides and/or degradation products (51 pesticides and 79 degradation products) were analysed in the PLAP. Four new compounds have been added for an evaluation in the hydrological year 2018-2019. For some pesticides, only degradation products are monitored in PLAP. Hence, the leaching, as a result of the application(s) of 60 pesticides have been evaluated here among:

- 17, where only the pesticide was analysed (including epoxiconazole and propiconazole, although their degradation product 1,2,4-triazole is detected, it is only included as an outcome of tebuconazole in Tables 9.2 and 9.4)
- 34, where the pesticide was analysed together with one or more of its degradation products
- nine (cycloxydim, fludioxonil, haluxifen-methyl, mancozeb, metsulfuronmethyl, thiencarbazone-methyl, thiophanate-methyl, thifensulfuron-methyl and tribenuron-methyl), where it was only the degradation products of the pesticide, which were analysed

Of the 60 pesticides (51 included in monitoring + nine where only degradation products thereof are monitored), 17 resulted in detections of the pesticide or its degradation product(s) in groundwater samples with concentrations exceeding 0.1 μ g L⁻¹. 16 of these 17 pesticides (except for fludioxonil) resulted in detections of the pesticide and/or its degradation product(s) in samples from 1 m depth (from drains or suction cups) exceeding 0.1 µg L⁻¹. Four of the 17 pesticides resulted in detections in the groundwater during long time periods indicating a potential long-term leaching risk through sandy soils (metalaxyl-M, metribuzin, rimsulfuron and tebuconazole), whereas the others plus tebuconazole revealed a leaching risk through fractured clayey tills (azoxystrobin, bentazone, bifenox, diflufenican, ethofumesate, fluazifop-P-butyl, glyphosate, mesotrione, metamitron, propyzamide, pyridate and terbuthylazine). With the degradation product 1,2,4-triazol of tebuconazole being a degradation product of many azole fungicides, the leaching risk in regard to tebuconazole at both sandy soils and fractured clayey tills might be the results of degradation of other azole fungicides applied by spraying or used as seed dressing throughout the past at both the PLAP-fields and upstream fields of the PLAP-fields. Such situation with many sources potentially contributing to the leaching of a compound (here 1,2,4-triazole) have not been evaluated in PLAP before and is now exposed to further evaluation in PLAP, the Danish National Groundwater Monitoring Programme (GRUMO) and the Danish Waterworks quality control of the drinking water. Further, the research project TRIAFUNG will provide knowledge on the persistence of azoles in the plough layer of the PLAP-fields. The following 17 pesticides did not result in any detection of the pesticide and/or its degradation product being tested in water samples collected from the variably-saturated zone (via drains and suction cups) or saturated zone (via groundwater well screens situated at 1.5-4.5 m depth): Aclonifen, boscalid, chlormequat, cyazofamid, florasulam, haluxifen-methyl, iodosulfuron-methyl-Na, linuron, metconazole, thiacloprid, thiamethoxam, thiencarbazone-methyl, thifensulfuronmethyl, thiophanat-methyl, triasulfuron and tribenuron-methyl).

The results of the PLAP-monitoring in the period May 1999–June 2019 have contributed to the regulatory work in different manners, some of which are summarized in the following examples:

- Clayey till soils are more vulnerable to leaching compared to sandy soils Both the number of detections at 1 m depth (water from suction cups and drainage) and in groundwater reveal that more pesticides and/or their degradation products leach through the clayey till, than through the sandy soils, which makes them generally more vulnerable to leaching. Long-term leaching of degradation products is detected at the sandy fields, whereas both pesticides and their degradation products are found to leach more dynamically/momentarily through the clayey till fields, due to the presence of bio pores and fractures. The aim of including the new clayey till field overlaying chalk (Lund) in PLAP is to contribute to an improved understanding of the vulnerability of clayey tills, and hereby improve the early warning in relation to leaching through such fields.
- Long-term leaching of the degradation product CGA 108906 led to further assessment in the Danish National Groundwater Monitoring Programme (GRUMO) and the Danish Waterworks quality control of the groundwater for drinking water purpose (Vandværkernes boringskontrol)

CGA 108906 is a degradation product of metalaxyl-M used against fungus (late blight) in potatoes in 2010 on the two sandy PLAP-fields. At one of the fields (Jyndevad), CGA 108906 was detected in groundwater samples 6 $\frac{1}{2}$ years after the spraying in July 2010, highest concentration being 0.34 µg L⁻¹ (Table 0.1). Metalaxyl-M and its two degradation products CGA 62826 and CGA 108906 were included in PLAP as the EU-evaluation of metalaxyl-M from 2002 presented results, revealing pronounced leaching of the two degradation products. At the national approval of metalaxyl-M in Denmark in 2007, the Danish EPA was aware of the degradation products and asked for test in potatoes in PLAP as soon as possible, according to the planned crop rotation. After the first years of detections in PLAP, metalaxyl-M was banned in Denmark in December 2013. Recently, it was included in both the revised analysis program of the Danish National Groundwater Monitoring and in the Danish Waterworks quality control of groundwater used for drinking water purposes. Further, results from PLAP were sent to EFSA in connection with the re-evaluation of metalaxyl-M in EU.

 Snowmelt and heavy rain events can cause sudden detections of glyphosate sometimes exceeding 0.1 µg L⁻¹ in the groundwater

As was the case in the beginning of 2013, snowmelt at Estrup seems to be the cause for one detection of glyphosate exceeding 0.1 μ g L⁻¹ (0.13 μ g L⁻¹) in the groundwater in March 2016, i.e. more than two years after application. In addition, heavy rain events in August-September 2015 triggered a detection in the groundwater of 0.09 μ g L⁻¹. Even though such events trigger detections of high concentrations in the groundwater, and glyphosate and its degradation product AMPA have been detected in relatively high concentrations through the variably-saturated zone, the two compounds do not seem to pose a constant threat to the quality of the groundwater.

• A degradation product of metribuzin leached in concentrations exceeding 0.1 μ g L⁻¹ in up to five years after application

PLAP results indicate that the pesticide metribuzin applied to potatoes is retarded in the plough layer and then, very slowly, released and degraded into diketometribuzin. Diketo-metribuzin leaches for a long period of time to the groundwater and is detected in concentrations exceeding 0.1 μ g L⁻¹ for up to five years after application. This type of long-term leaching is not possible to capture with the current description of the sorption, incorporated into the leaching models. However, the conservative Danish approach to modelling assures that compounds with a high leaching risk are banned. New guidance on how to more accurately, describe sorption this type of is now available on https://esdac.jrc.ec.europa.eu/public path/projects data/focus/dk/docs/finalrepor tFOCDegKinetics.pdf.

$\circ~$ A degradation product of rimsulfuron leached in concentrations up to 0.11 $\,\mu g~L^{-1}$ six years after application

Like metribuzin, rimsulfuron being applied in April 2002 to potatoes at the two sandy fields Tylstrup and Jyndevad seems to be retarded in the plough layer and degraded to PPU, which is very persistent. Only at Jyndevad, this compound leaches to the groundwater and more than once. Approximately three years after the application, PPU is detected and leach in concentration up to 0.11 μ g L⁻¹ six year after the application. An additional application with rimsulfuron in April 2010 at both sandy fields resulted in PPU being detected in the groundwater from both fields and with exceedances of 0.1 μ g L⁻¹ at Jyndevad two years after the application. Due to this long-term leaching combined with new EFSA-documentation on the persistence of PPU, the Danish EPA did not issue a renewed approval for the use of rimsulfuron in Denmark by 2012, why monitoring was stopped by the end of 2012.

• Pesticide degradates like TFMP, often more water soluble than the pesticide, have a relatively high leaching potential especially associated with heavy precipitation events shortly after application

After four applications of fluazifop-P-butyl, where the dose for the two latter was reduced by regulation, the weather within the first week following the application was imperative for the number of detections of TFMP. In the assessment of risk of leaching using regulatory models, it is therefore important to make use of updated and relevant climate data. Related to this topic, Denmark is working on improving the EU procedures. As of today, data from the period 1960-1990 is applied as standard climatic conditions in the EU, including Denmark (https://esdac.jrc.ec.europa.eu/public_path/projects_data/focus/gw/NewDocs/foc usGWReportOct2014.pdf).

• The very toxic degradation product nitrofen can be formed in soil after application of bifenox

Detections of nitrofen in water from drainage resulted in the Danish EPA announcing bifenox to be banned in Denmark. The manufacturer immediately removed bifenox from the Danish market before a ban was issued in Denmark.

• The degradation potential in the plough layer is crucial for the leaching risk of pesticides and their degradation products An example of this is MCPA, which does not leach to the groundwater, because of significant microbiological degradation in the plough layer. Only once, MCPA was found in a groundwater sample, collected shortly after a significant rain event.

Results covering the period May 1999–June 2018 have been reported previously (Kjær *et al.*, 2002; Kjær *et al.*, 2003; Kjær *et al.*, 2004; Kjær *et al.*, 2005c; Kjær *et al.*, 2007; Kjær *et al.*, 2008; Kjær *et al.*, 2009; Rosenbom *et al.*, 2010b; Kjær *et al.*, 2011; Brüsch *et al.*, 2013a; Brüsch *et al.*, 2013b; Brüsch *et al.*, 2014; Brüsch *et al.*, 2015; Brüsch *et al.*, 2016; Rosenbom *et al.*, 2017; Rosenbom *et al.*, 2019; Rosenbom *et al.*, 2019; Rosenbom *et al.*, 2017; Rosenbom *et al.*, 2019; Rosenbom *et al.*, 2017; Rosenbom *et al.*, 2019; Rosenbom *et al.*, 2019; Rosenbom *et al.*, 2017; Rosenbom *et al.*, 2019; Rosenbom *et al.*, 2019; Rosenbom *et al.*, 2010; Null therefore be viewed as a continuation of previous reports with the focus on the leaching risk of pesticides being included in the monitoring during July 2017-June 2019. All reports and links to associated peer-reviewed articles are available at http://pesticidvarsling.dk/om_os_uk/uk-forside.html.

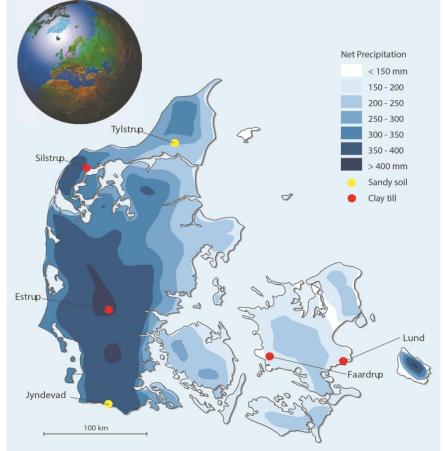
1 Introduction

In Denmark, untreated groundwater is used as drinking water. As Denmark is intensively cultivated, there is a public concern about pesticides and their degradation products being increasingly detected in groundwater during the past decades. Since 1989, this concern has initiated monitoring programmes reporting on the quality of the Danish groundwater (the Danish National Groundwater Monitoring Programme; GRUMO; Thorling *et al.*, 2019 and the effect of agricultural practices (Pesticide Leaching Assessment Programme, PLAP). The reported results have and are still continuously addressed in the regulation of pesticides.

The detection of pesticides in groundwater over the past three decades has demonstrated the need for further enhancement of the scientific foundation for the existing approval procedure for pesticides and to improve the present risk assessment tools. A main issue in this respect is that the EU assessment, and hence also the Danish assessment of the risk of pesticide leaching to groundwater, is largely based on data from modelling, laboratory or lysimeter studies. However, these types of data may not adequately describe the leaching that may occur under actual field conditions. Although models are widely used within the registration process, their validation requires further work, not least because of the limited availability of field data (Boesten, 2000). Moreover, laboratory and lysimeter studies do not include the spatial variability of the soil parameters (hydraulic, chemical, physical and microbiological soil properties) affecting pesticide transformation and leaching. This is of importance for silty and clayey till soils, where preferential transport may have a major impact on pesticide leaching. In fact, various field studies suggest that considerable preferential transport of several pesticides occurs to a depth of 1 m under conditions comparable to those present in Denmark (Kördel, 1997; Jacobsen and Kjær, 2007; Rosenbom et al., 2015; Jarvis, 2020).

The inclusion of field studies i.e. test plots exceeding 1 ha, in risk assessment of pesticide leaching to groundwater is considered an important improvement to the risk assessment procedures. For example, the US Environmental Protection Agency (US-EPA) has since 1987 included field-scale studies in its risk assessments. Pesticides that may potentially leach to the groundwater are required to be included in field studies as part of the registration procedure. The US-EPA has therefore conducted field studies on more than 50 pesticides (US Environmental Protection Agency, 1998). A similar concept has also been adopted within the European Union (EU), where Directive 91/414/EEC, Annexe VI (Council Directive 97/57/EC of 22 September 1997) enables field leaching study results to be included in the risk assessments.

1.1 Objective


In 1998, the Danish Government initiated the Pesticide Leaching Assessment Programme (PLAP), an intensive monitoring programme with the purpose of evaluating the leaching risk of pesticides under field conditions. The PLAP is intended to serve as an early warning system providing decision-makers with advance warning if otherwise approved pesticides leach in unacceptable concentrations. The programme focuses on pesticides

used in arable farming and PLAP monitors leaching at six agricultural test fields representative of Danish conditions. Except for one, all the fields have been included in the monitoring since 1999. To increase the representability a new clayey till field was included in PLAP in July 2017, though resulting in sandy field (Tylstrup) being set on "stand-by" at the end of 2019.

The objective of the PLAP is to improve the scientific foundation for decision-making in the Danish registration and approval procedures for pesticides, enabling field studies to be included in risk assessment of selected pesticides. The specific aim is to evaluate whether a number of pesticides applied in accordance with current regulations and in maximum permitted dosages, under real, Danish field conditions can result in leaching of the pesticides and/or their degradation products to the groundwater in concentrations exceeding the maximum allowed concentration of 0.1 μ g L⁻¹ for groundwater and drinking water.

1.2 Structure of the PLAP

The pesticides included in the PLAP were selected by the Danish EPA based on expert judgement. At present, 51 pesticides and 79 degradation products have been included in the PLAP. All the compounds analysed since 1999 are listed in Appendix 1.

Figure 1.1. Annual net precipitation across Denmark (https://www2.mst.dk/Udgiv/publikationer/1992/87-503-9581-5/pdf/87-503-9581-5.pdf in Danish) and the geographical location of the six PLAP fields: **Tylstrup** (sandy), **Jyndevad** (sandy), **Silstrup** (clayey till), **Estrup** (clayey till) and **Faardrup** (clayey till) included in the monitoring programme of 1999-2019 and the new PLAP field **Lund** (clayey till) included in PLAP July 2017. The span in net precipitation observed in Denmark is well represented by the PLAP-fields.

Soil type and climatic conditions are considered to be some of the most important parameters controlling pesticide leaching. Today, the PLAP encompass six fields that are representative of the dominant soil types and the climatic conditions in Denmark (Figure 1.1). Given budget reductions from 2019, the sandy Tylstrup field is put on "standby" meaning that no water samples are collected for analysis from this field. The groundwater table is relatively shallow at all the fields, enabling rapid detection of pesticide leaching to groundwater (Table 1.1). Cultivation of the PLAP fields is done in accordance with conventional agricultural practice in the local area. The pesticides are applied at maximum permitted doses as specified in the regulations. Thus, any pesticides or degradation products appearing in the groundwater downstream of the fields can with a few exceptions be related to the current approval conditions and use of the given pesticide.

Results and data in the present report stem from the five fields that were selected and established during 1999 and from one field selected in the summer of 2016 and established throughout the autumn of 2016 and the spring of 2017. Monitoring was initiated at Tylstrup, Jyndevad and Faardrup in 1999, at Silstrup and Estrup in 2000 and at Lund in July 2017 (Table 1.1).

	Tylstrup	Jyndevad	Silstrup	Estrup	Faardrup	Lund
Location	Brønderslev	Tinglev	Thisted	Askov	Slagelse	Lund
Precipitation ¹ (mm y ⁻¹)	668	858	866	862	558	
Pot. evapotransp. ¹⁾ (mm y ⁻¹)	552	555	564	543	585	
Width (m) x Length (m)	70 x 166	135 x 180	91 x 185	105 x 120	150 x 160	100 x 300
Area (ha)	1.2	2.4	1.7	1.3	2.3	2.8
Tile drain Depths to tile drain (m)	No May 1000	No	Yes 1.1	Yes 1.1	Yes 1.2	Yes 1.1
Monitoring initiated	May 1999	Sep 1999	Apr 2000	Apr 2000	Sep 1999	July 2017
Geological characteristics						
– Deposited by	Saltwater	Meltwater	Glacier	Glacier /meltwater	Glacier	Glacier
– Sediment type	Fine Sand	Coarse sand	Clayey till	Clayey till	Clayey till	Clayey till
– DGU symbol	YS	TS	ML	ML	ML	ML
Depth to the calcareous matrix (m)Depth to the reduced matrix (m)	6 >12	5–9 10–12	1.3 5	$1-4^{2}$ >5 ²	1.5 4.2	1.5 3.8
- Max. fracture depth ³⁾ (m)	_	_	4	>6.5	8	>6
 Fracture intensity 3–4 m depth (fractures m⁻¹) 	_	_	<1	11	4	<1
– Ks in C horizon (m s ⁻¹)	2.0.10-5	$1.3 \cdot 10^{-4}$	3.4.10-6	$8.0 \cdot 10^{-8}$	7.2.10-6	$5.8 \cdot 10^{-6}$
Topsoil characteristics						
- DK classification	JB2	JB1	JB7	JB5/6	JB5/6	JB5/6
– Classification	Loamy Sand	Sand	Sandy clay loam / sandy loam	•	Sandy loam	Sandy loam
– Clay content (%)	6	5	18–26	10-20	14-15	10-25
– Silt content (%)	13	4	27	20–27	25	30-35
– Sand content (%)	78	88	8	50-65	57	30-50
– pH	4-4.5	5.6-6.2	6.7–7	6.5–7.8	6.4–6.6	7.4-9.1
– TOC (%)	2.0	1.8	2.2	1.7–7.3	1.4	0-1.3

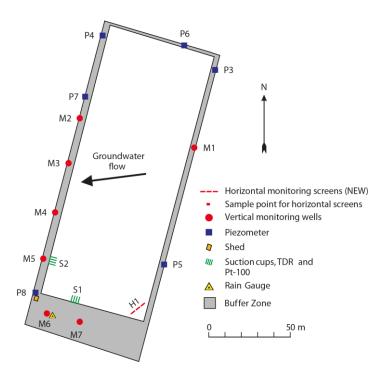
Table 1.1. Characteristics of the six PLAP fields included in the PLAP-monitoring for the period 1999-2019 (modified from Lindhardt *et al.*, 2001).

¹⁾ Yearly normal based on a time series for the period 1961–90. The data refer to precipitation measured 1.5 m above ground surface. ²⁾ Large variation within the field. ³⁾ Maximum fracture depth refers to the maximum fracture depth found in excavations and wells.

Field characterization and monitoring design are described in detail in Lindhardt *et al.* (2001) for the five fields Tylstrup, Jyndevad, Silstrup, Estrup and Faardrup and in Haarder *et al.* (in prep) for Lund. The current report presents the results of the monitoring period May 1999–June 2019, but the main focus of the report is on the leaching risk of pesticides applied during July 2017 –June 2019. Detailed description of the earlier monitoring periods from May 1999 to June 20178 are available in previous publications http://pesticidvarsling.dk. Within the PLAP, the leaching risk of pesticides is evaluated on the basis of a minimum of two years monitoring data.

For some pesticides, the present report must be considered preliminary, as they have not been monitored for a sufficient period of time, i.e., the minimum of two years. Additionally, it should be noted that due to limitations set by the applied plotting programme, analytical data for some compounds will only be presented for selected well screens in Chapter 2.2.3, 3.2.3, 4.2.3, 5.2.3, 6.2.3 and 7.2.3.

Hydrological modelling of the variably saturated zone for the PLAP fields Tylstrup, Jyndevad, Silstrup, Estrup and Faardrup supports the monitoring data. The MACRO model (version 5.2, Larsbo *et al.*, 2005), was used to describe the soil water dynamics at each field during the entire monitoring period from May 1999–June 2019. The five field models have been calibrated for the monitoring period May 1999–June 2004 and validated for the monitoring period July 2004–June 2019. Such modelling has not yet been conducted for the PLAP-field Lund.


Scientifically valid methods of analysis are essential to ensure the integrity of the PLAP. The field monitoring work is therefore supported by intensive quality assurance entailing continuous evaluation of the analyses employed. The quality assurance methodology and results are presented in Chapter 8.

2 Pesticide leaching at Tylstrup

2.1 Materials and methods

2.1.1 Field description and monitoring design

Tylstrup is located in Northern Jutland (Figure 1.1). The test field covers a cultivated area of 1.2 ha (70 m x 166 m) and is practically flat, with windbreaks bordering the eastern and western sides. Based on two soil profiles dug in the buffer zone around the test field the soil was classified as a Humic Psammentic Dystrudept (Soil Survey Staff, 1999). The topsoil is characterised as loamy sand with 6% clay and 2.0% total organic carbon (Table 1.1). The aquifer material consists of an approx. 20 m thick layer of marine sand sediment deposited in the Yoldia Sea. The Southern part is rather homogeneous, consisting entirely of fine-grained sand, whereas the Northern part is more heterogeneous due to the intrusion of several silt- and clay-lenses (Lindhardt *et al.*, 2001). The overall direction of groundwater flow is towards the west (Figure 2.1). During the monitoring period the groundwater table was approx. 2.6–4.8 m b.g.s. (Figure 2.2). In September 2011, the monitoring system at Tylstrup was extended with three horizontal screens (H1) 4.5 m b.g.s. in the South-Eastern corner of the field (Figure 2.1). A brief description of the drilling and design of H1 is given in Appendix 8.

Figure 2.1. Overview of the **Tylstrup** field. The innermost white area delineates the cultivated land, while the grey area delineates the surrounding buffer zone. The positions of the various installations are indicated, as is the direction of groundwater flow (arrow). Pesticide monitoring is conducted monthly and half-yearly from suction cups and selected vertical and horizontal monitoring screens as described in Appendix 2, Table A2.1.

2.1.2 Agricultural management

As of 1 January 2019, monitoring at the field was suspended. However, the field is still operated by the PLAP program and if needed, monitoring can be resumed in due course.

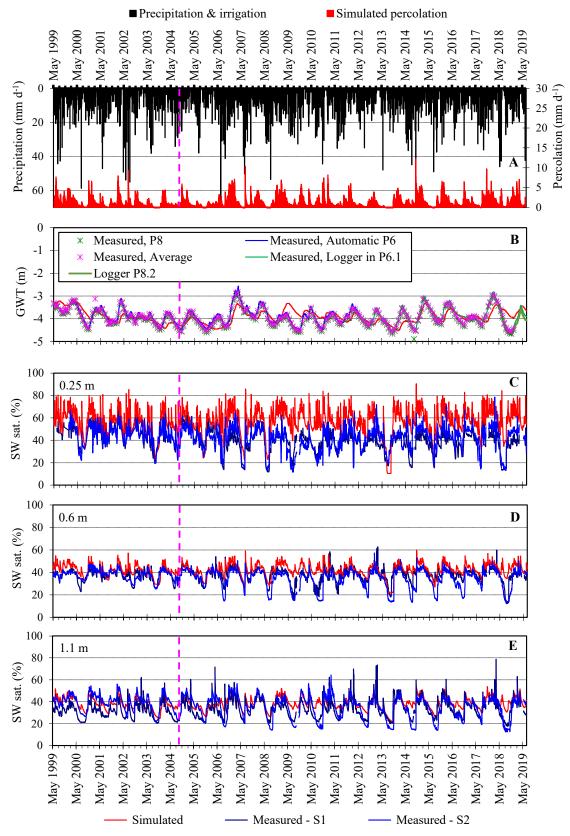
Management practice until the suspension can be found in Appendix 3 (Table A3.1). For information about management practice during previous monitoring periods, see the monitoring reports available on http://pesticidvarsling.dk/monitor_uk/index.html.

2.1.3 Model setup and calibration

The numerical model MACRO (version 5.2 Larsbo *et al.*, 2005) was applied to the Tylstrup field with a model domain covering the soil profile to a depth of 5 m b.g.s., always including the groundwater table. The model was used to simulate water and bromide transport in the variably-saturated zone during the full monitoring period May 1999–June 2018 and to establish an annual water balance.

Compared to the setup in Rosenbom *et al.* (2020), a year of climate and crop data was added to the MACRO setup for the Tylstrup field. The setup calibrated for the monitoring period May 1999-June 2004 was subsequently evaluated on its ability to predict water balance monitoring results for the monitoring period July 2004-June 2019. Daily time series of the groundwater table measured in piezometers located in the buffer zone, soil water content measured at three different depths (25, 60 and 110 cm b.g.s.) from the two profiles S1 and S2 (Figure 2.1), and the bromide concentration measured in the suction cups located 1 and 2 m b.g.s. were all used in the calibration and validation process. Data acquisition, model setup, and results related to simulated bromide transport are described in Barlebo *et al.* (2007).

2.2 Results and discussion


2.2.1 Soil water dynamics and water balances

The model simulation of the recent hydraulic year (July 2018-June 2019) are generally consistent with the observed data indicating a good model description of the overall soil water dynamics in the variably saturated zone (Figure 2.2).

The simulated dynamics of the groundwater table were generally well captured for the recent hydraulic year (Figure 2.2B). Note that, as of January 2019, monitoring of Tylstrup is on standby (Rosenbom *et al.*, 2020) meaning that water balance data will be gathered as long as the monitoring system functions – no sampling is conducted. There is a slight lag in the peaks and lows of the simulated groundwater table compared to measured levels. However, a similar lag was seen in some previous years. For instance, around May 2014, a lag in groundwater table is simulated, whereas in the following year around May 2015, the simulated and observed groundwater table were well aligned. The low groundwater table at the end of summer of 2017 was well captured by the model, while the increase in water table prior to the summer 2018 and subsequent decrease was underestimated compared to the measured water table. For this period, precipitation seems to contribute more to the groundwater recharge and hence the groundwater table in the model than measured, which could indicate the MACRO-model have difficulties

in describing the percolation during the hottest year measured in Denmark (DMI, 2019). This coincide well with precipitation during the summer of 2018 was among the lowest measured at Tylstrup (Appendix 4). Still, in the beginning of 2019, the model seems to capture the dynamics and measured levels again.

Overall, the trends in soil water saturation were simulated successfully with a decrease in overestimation with depth (Figure 2.2C-E). The simulated water saturation was generally slightly overestimated at 0.25 m depth, whereas at 0.6 and 1.1 m depth, the water saturation was well captured. At the latter depths, the water saturation was slightly overestimated prior to the summer 2018. This was consistent with the overall trends from previous years, where the model was overestimating the water saturation during summers. During the summer of 2018 and to the period around mid-August and mid October 2018, the water saturation remains low in 0.25 m, 0.60 m and 1.1 m depth. Generally during the summer of 2018, there is an offset in simulated saturation showing higher saturation. The simulated saturation of summer 2018 in 0.25 m depth show increased saturation in the beginning of the summer, where the measured saturation decreases. During the end of the summer 2018, the measured saturation increases, and the simulated saturation captures the pattern (Figure 2.2C). Generally, the simulated saturation of summer 2018 follows the measured pattern in saturation in 0.6 m and 1.1 m depth, eventhough the simulated increase at the end of the summer 2018 occurs around a month earlier compared to the measured saturation (Figure 2.2D-E). After the summer of 2018, the measured pattern in saturation is captured by the model, where the observed trends had been captured with a slight offset, generally less than 10%.

Figure 2.2. Soil water dynamics at **Tylstrup**: Measured precipitation, irrigation, and simulated percolation 1 m b.g.s. (A), simulated *(red line)* and measured groundwater table GWT (B), and simulated and measured soil water saturation (SW sat.) at three different soil depths (C, D and E). The measured data in B derive from piezometers located in the buffer zone. The measured data in C, D and E derive from TDR probes installed at S1 and S2 (Figure 2.1). The broken vertical line indicates the beginning of the validation period (July 2004-June 2019).

The resulting annual water balance is shown for each hydraulic year of the monitoring period in Table 2.1. The recent hydraulic year July 2018-June 2019 had an annual average precipitation, whereas the actual evapotranspiration was the highest estimated (669 mm yr^{-1}) since the monitoring began at the field. With this high actual evapotranspiration estimated, the groundwater recharge of the current hydrological year was to date, the second lowest estimated (Table 2.1).

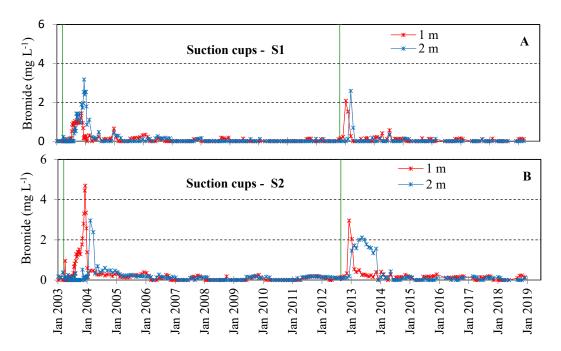
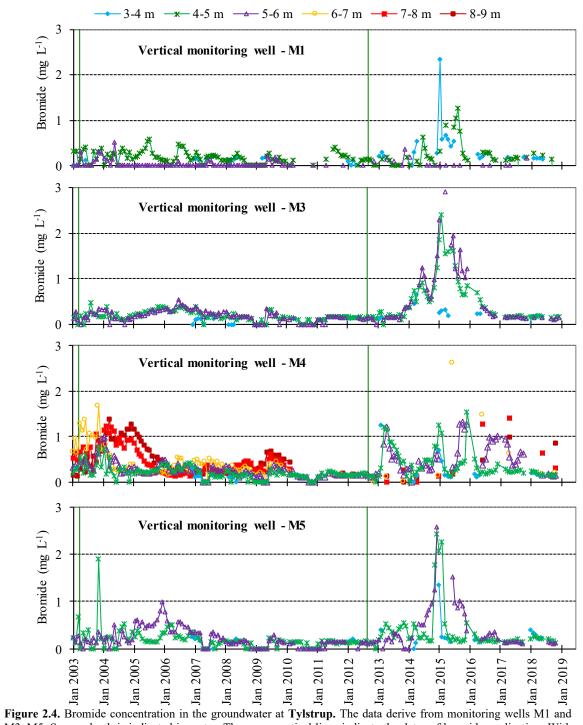

Period	Normal precipitation ²⁾	Precipitation	Irrigation	Actual evapotranspiration	Groundwater recharge
	<u> </u>	2(0	0	<u>1</u>	<u> </u>
01.05.99–30.06.99 ¹⁾	120	269	0	112	156
01.07.99-30.06.00	773	1073	33	498	608
01.07.00-30.06.01	773	914	75	487	502
01.07.01-30.06.02	773	906	80	570	416
01.07.02-30.06.03	773	918	23	502	439
01.07.03-30.06.04	773	758	0	472	287
01.07.04-30.06.05	773	854	57	477	434
01.07.05-30.06.06	773	725	67	488	304
01.07.06-30.06.07	773	1147	59	591	615
01.07.07-30.06.08	773	913	126	572	467
01.07.08-30.06.09	773	1269	26	600	695
01.07.09-30.06.10	773	867	27	424	470
01.07.10-30.06.11	773	950	57	506	501
01.07.11-30.06.12	773	923	24	501	446
01.07.12-30.06.13	773	803	0	528	275
01.07.13-30.06.14	773	852	48	440	460
01.07.14-30.06.15	773	1064	78	562	581
01.07.15-30.06.16	773	1096	53	514	635
01.07.16-30.06.17	773	860	0	483	377
01.07.17-30.06.18	773	1296	110	654	752
01.07.18-30.06.19	773	939	0	669	270

Table 2.1. Annual water balance for **Tylstrup** (mm yr⁻¹). Precipitation is corrected to soil surface according to the method of Allerup and Madsen (1979).


¹⁾ Accumulated for a two-month period. ²⁾ Normal values based on time series for 1961–1990.

2.2.2 Bromide leaching

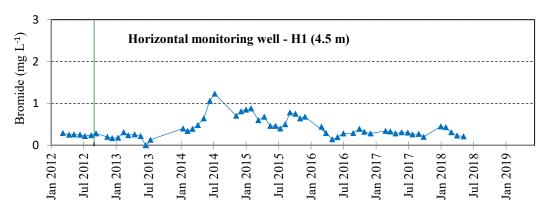
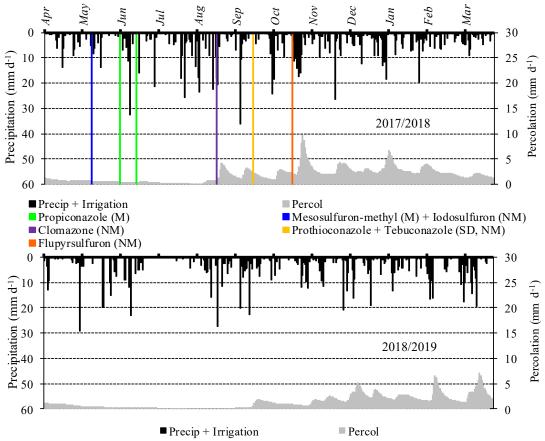

Bromide has been applied three times (1999, 2003 and 2012) at Tylstrup. The bromide concentrations measured until April 2003 relate to the bromide applied in May 1999, as described further in Kjær *et al.* (2003). Leaching of the bromide applied in March 2003 (Figure 2.3, Figure 2.4 and Figure 2.5) is evaluated in Barlebo *et al.* (2007). Bromide applied late August 2012 show an expected time delay from the suction cups 1 m b.g.s. to 2 m b.g.s. (Figure 2.3) and in the monitoring wells M3, M4, M5 (Figure 2.4) and H1 (Figure 2.5). Bromide is detected at monitoring well M4 within the first year after application, whereas the bulk tracer arrives at M1, M3 and M5 after more than 2 years. With Tylstrup being on "standby", water sampling from installations was stopped at the end of 2018. As shown in Figure 2.2B, there is a drop in the groundwater table below 4.5 m depth, why no sampling from the horizontal well H1 has been collected in this period (Figure 2.5).

Figure 2.3. Measured bromide concentration in the variably saturated zone at **Tylstrup**. The measured data derive from suction cups installed 1 m b.g.s. and 2 m b.g.s. at locations S1 (A) and S2 (B) indicated in Figure 2.1. The green vertical lines indicate the dates of bromide applications. With Tylstrup being on "standby", water sampling from installations was stopped at the end of 2018.

Figure 2.4. Bromide concentration in the groundwater at **Tylstrup.** The data derive from monitoring wells M1 and M3–M5. Screen depth is indicated in meter. The green vertical lines indicate the dates of bromide application. With Tylstrup being on "standby", water sampling from installations was stopped at the end of 2018.


Figure 2.5. Bromide concentration in the groundwater at **Tylstrup.** Data derives from the horizontal monitoring well H1. The green vertical line indicates the date of bromide application. With Tylstrup being on "standby", water sampling from installations was stopped at the end of 2018. Given a drop in the groundwater table below 4.5 m depth from summer 2018 (Figure 2.2), no sampling from the horizontal well H1 has been collected.

2.2.3 Pesticide leaching

Monitoring at Tylstrup began in May 1999 and encompasses the pesticides and degradation products until 2009/2010 as shown in Appendix 7. Pesticide applications from 2010/2011 until the latest growing seasons are listed in Table 2.2 and are shown together with precipitation and simulated percolation from 2017/2018 and 2018/2019 in Figure 2.6.

It should be noted that precipitation in Table 2.2 is corrected to soil surface according to Allerup and Madsen (1979), whereas percolation (1 m depth) refers to accumulated percolation as simulated with the MACRO model. Due to economic constraints, there has been no monitoring of pesticide leaching at the field since 1 January 2019, and application of pesticides onwards will only be done if needed from a management perspective. Moreover due to the very few datapoints, pesticides applied later than April 2019 are not evaluated in this report and not included in Figure 2.6, although presented and included in Table 2.2.

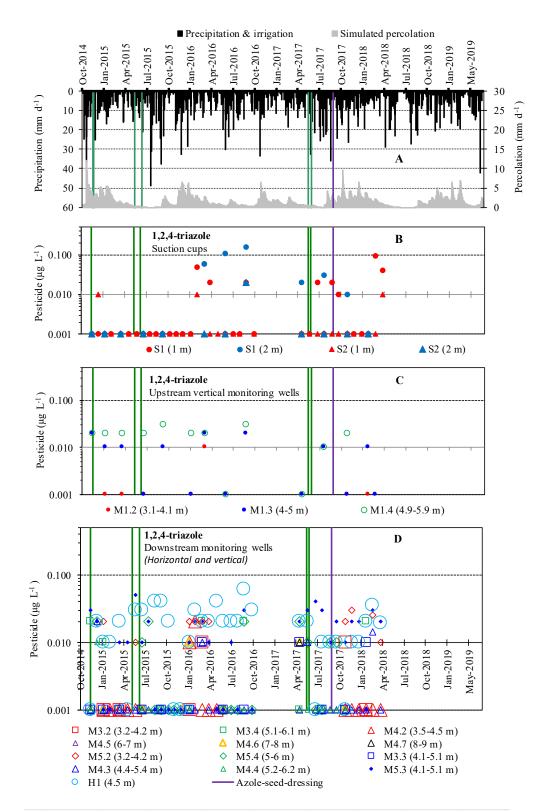
This Chapter primarily evaluates the leaching of pesticides and/or degradation products included in the monitoring from 2017 and onwards at Tylstrup – these compounds are in the following text given in bold. The leaching risk of pesticides applied before 2017 has been evaluated in previous monitoring reports (see http://pesticidvarsling.dk/monitor uk/index.html.

Figure 2.6. Application of pesticides at **Tylstrup** in 2017/2018 (upper) and 2018/2019 (lower) - Substances being monitored in the program are marked (M) and not monitored (NM). Substances applied as seed dressing are marked SD. Measured precipitation including artificial irrigation are given on the primary axis and simulated percolation 1 m b.g.s. on the secondary axis.

Bentazone was applied in May 2016 (Data not shown). None of the three degradation products 6-hydroxy-bentazone, 8-hydroxy-bentazone and N-methyl-bentazone were detected in any of total 180 groundwater samples or 65 samples from the variably saturated zone. The quality of the 8-hydroxy-bentazone analyses are however subject to uncertainty as described in Chapter 8. Bentazone was only detected thrice (max 0.02 μ g L⁻¹) in January 2018 in water samples from suction cups situated at 1 m depth at S2.

The substance **mesosulfuron-methyl** was applied together with iodosulfuron in spring barley 9 May 2017. Whereas the latter was not monitored, two degradation products of mesosulfuron-methyl, **AE-F099095** and **AE-F160459**, were included in the monitoring (Data not shown). Neither of them were, however, detected in any of a total 180 groundwater samples and 65 samples from the suction cups in the variably-saturated zone. Monitoring was stopped by the end of 2018 given Tylstrup being set on "standby".

Table 2.2. Pesticides analysed at Tylstrup. For each pesticide (P) and degradation product (M) the application date (appl. date) as well as end of monitoring period (End mon.) is listed. Precipitation and percolation are accumulated within the first year (Y 1st Precip, Y 1st Percol) and first month (M 1st Precip, M 1st Percol) after the first application. C_{mean} is average leachate concentration [µg L⁻¹] at 1 m b.g.s. the first year after application - ? is indicating additional sources. See Appendix 2 for calculation method and Appendix 7 (Table A7.1) for previous applications of pesticides.


Crop – Year of	Applied	Analysed	Appl.	End	Y 1 st	Y 1 st	M 1 st	M 1 st	Cmean
harvest	Product	Pesticide	date	mon.	precip.	percol.	precip.	percol.	
Potatoes 2010	Fenix	Aclonifen(P)	May 10	Jun 12	958	491	62	12	< 0.01
	Titus WSB	PPU(M)	May 10	Dec 12	958	491	62	12	0.01- 0.02**
		PPU- desamino(M)	May 10	Dec 12	958	491	62	12	< 0.01
	Ranman	Cyazofamid(P)	Jun 10	Jun 12	981	499	128	17	< 0.01
	Ridomil Gold MZ Pepite	Metalaxyl-M(P)	Jul 10	Mar 15	934	514	127	43	< 0.01
	1	CGA 108906(M)	Jul 10	Mar 15	934	514	127	43	0.03- 0.12 ^{**}
		CGA 62826(M)	Jul 10	Mar 15	934	514	127	43	<0.01
Spring barley 2011	Bell	Boscalid(P)	Jun 11	Dec 12	959	467	106	20	0.02** <0.01
Spring barley 2012		Bifenox(P)	May 12	Dec 12	803	338	100	23	< 0.02
		Bifenox acid(M)	May 12	Dec12	803	338	100	23	< 0.05
		Nitrofen(M)	May 12	Dec12	803	338	100	23	< 0.01
	Mustang forte	Aminopyralid(P)	May 12	Apr 15	852	335	121	22	< 0.02
Winter rye 2013	Boxer	Prosulfocarb(P)	Oct 12	Mar 15	507	285	79	49	< 0.01
Potatoes 2014	Maxim 100 FS Fludioxonil(P)	CGA 339833(M)	Apr 14	Mar 16	1178	699	86	17	< 0.03
		CGA 192155(M)	Apr 14	Mar 16	1178	699	86	17	< 0.01
	Dithane NT Mancozeb(P)	EBIS(M)	Jun 14	Mar 15	1134	654	93	34	< 0.02
Winter wheat 2015		1,2,4-triazole(M)	Nov 14	Jun 18*	1045	467	105	80	?
	Proline EC 250 Prothioconazole (P)	1,2,4-triazole(M)	May 15	Jun 18*	1060	504	76	9	?
Spring barley 2016		Bentazone(P)	May 16	Apr 18	935	464	132	23	< 0.01
	Demazone(r)	6-hydroxy- bentazone(M)	May 16	Apr 18	935	464	132	23	< 0.01
		8-hydroxy- bentazone(M)	May 16	Apr 18	935	464	132	23	< 0.01
		N-methyl- bentazone(M)	May 16	Apr 18	935	464	132	23	< 0.01
Spring barley 2017		AE F099095	May 17	Dec 18	1221	673	110	16	< 0.01
SD: Redigo Pro 170 FS (Prothioconazol + tebuconazol)	Mesosulfuron- methyl- Na(P)	AE F160459	May 17	Dec 18	1221	673	110	16	< 0.01
Winter barley 2018		1,2,4-triazole(M)	Jun 17	Dec 18	1337	682	171	26	?
SD: Redigo Pro 170 FS (Prothioconazol +									

(Prothioconazol + tebuconazol)

Systematic chemical nomenclature for the analysed pesticides is given in Appendix 1. SD = Seed dressing.

*Monitoring continues the following year. **If difference between S1 and S2. *** Application both 1st June and 14th June.

Tebuconazole was sprayed on the field 14 November 2014 whereas prothioconazole was sprayed both 14 May and 12 June 2015 - a split application. Only 1,2,4-triazole, a common degradation product of several azole substances, was included in the monitoring program. Prior studies of tebuconazole at Tylstrup had shown only a few detections of 1,2,4-triazole in the groundwater zone. Prothioconazole was included in PLAP to confirm that this pesticide only degrades to 1,2,4-triazole in minor amounts in soil, as stated in the EFSA conclusion. In addition to spraying of tebuconazole and prothioconazole, azole containing compounds may have been applied in the form of seed dressings on the winter wheat sown September 2014, as well as on the spring barley sown April 2016. The amounts and substances applied with these two sowings were not recorded, however. When in March 2017, spring barley was sown, the field received Redigo Pro 170 FS containing 1.65 g a.i. ha⁻¹ of tebuconazole as well as 12.68 g a.i. ha⁻¹ of prothioconazole in seed dressing. The same amount of these active ingredients was added to the field, when sowing a winter barley in September 2017. With Tylstrup being set on "standby" by the end of 2018, monitoring of 1,2,4-triazole was stopped May 2018, which is visualised in Figure 2.7, but is ongoing on the other five PLAP-fields. For a detailed description of the 1,2,4-triazole at Tylstrup see Rosenbom et al. (2020, 2019, 2017, 2016).

Figure 2.7. 1,2,4-triazole detections at **Tylstrup**. Precipitation, irrigation, and simulated percolation 1 m b.g.s. (A) together with measured concentration of 1,2,4-triazole detections in the variably-saturated zone (B; water collected from suction cups at S1 and S2 in 1 and 2 m depth) and saturated zone (C-D; Water collected from upstream and downstream horizontal (H) and vertical screens (M)). The green vertical lines indicate the date of pesticide application being tebuconazole, twice prothioconazole and twice propiconazole. The first pesticide was tebuconazole and the two following were prothioconazole. The purple vertical lines indicate the application of winter barley seeds coated with tebuconazole and prothioconazole. Seed dressing prior 2017 have not been registered. With Tylstrup being set on "standby" by the end of 2018, monitoring of 1,2,4-triazole was stopped May 2018. Note that concentrations specified as $0.001 \ \mu g \ L^{-1}$ represent non-detects.

3 Pesticide leaching at Jyndevad

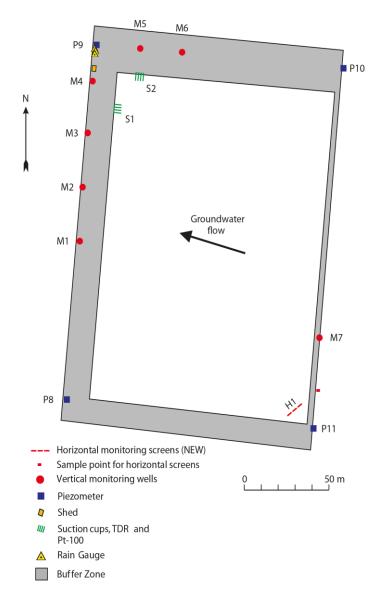
3.1 Materials and methods

3.1.1 SoutherField description and monitoring design

Jyndevad is in Southern Jutland (Figure 1.1). The field covers a cultivated area of 2.4 ha (135 x 180 m) and is practically flat. A windbreak borders the eastern side of the field. The area has a shallow groundwater table ranging from 1 to 3 m b.g.s. (Figure 3.2B). The overall direction of groundwater flow is towards the Northwest (Figure 3.1). The soil can be classified as Arenic Eutrudept and Humic Psammentic Dystrudept (Soil Survey Staff, 1999) with coarse sand as the dominant texture class and topsoil containing 5% clay and 1.8% total organic carbon (Table 1.1). The geological description points to a rather homogeneous aquifer of meltwater sand, with local occurrences of thin clay and silt beds.

In September 2011, the monitoring system was extended with three horizontal screens (H1) 2.5 m b.g.s. in the South-Eastern corner of the field (Figure 3.1). A brief description of the drilling and design of H1 is given in Appendix 8.

3.1.2 Agricultural management


Management practice during the 2017-19 growing seasons is briefly summarized below and detailed in Appendix 3 (Table A3.2). For information about management practice during the previous monitoring periods, see the monitoring reports available on http://pesticidvarsling.dk/publ_result/index.html.

After ploughing 8 September 2017, the field was sown with winter wheat 21 September (cv. Sheriff, coated with Redigo Pro 170 FS containing prothioconazol and tebuconazol). The winter wheat emerged on 3 October. On 16 October Lexus 50WG containing the herbicide flupyrsulfuron-methyl was used and its degradation products IN-KF311 and IN-JE127 included in the monitoring.

On 20 April 2018, a product containing both iodosulfuron-methyl-Na and mesosulfuronmethyl was sprayed, and the degradation products of the latter AE F099095, AE F160459 and AE F147447 were included in the monitoring. A second application of flupyrsulfuron-methyl was made 3 May 2018. On 8 May 2018, MCPA was sprayed to the field, though not included in the monitoring program. The fungicide thiophanatmethyl was sprayed 6 June 2018 and carbendazim, a degradation product thereof, was included in the monitoring. As the growing season of 2018 was extremely dry the field had to be irrigated a total of 8 times: 13 May, 20 May, 27 May, 2 June, 6 June, 10 June, 26 June, and 4 July - each time applying 30 mm. At the harvest 26 July, 82.4 hkg ha⁻¹ (85% DM) of grain as well as 44.8 hkg ha⁻¹ (100% DM) of straw was taken of the field.

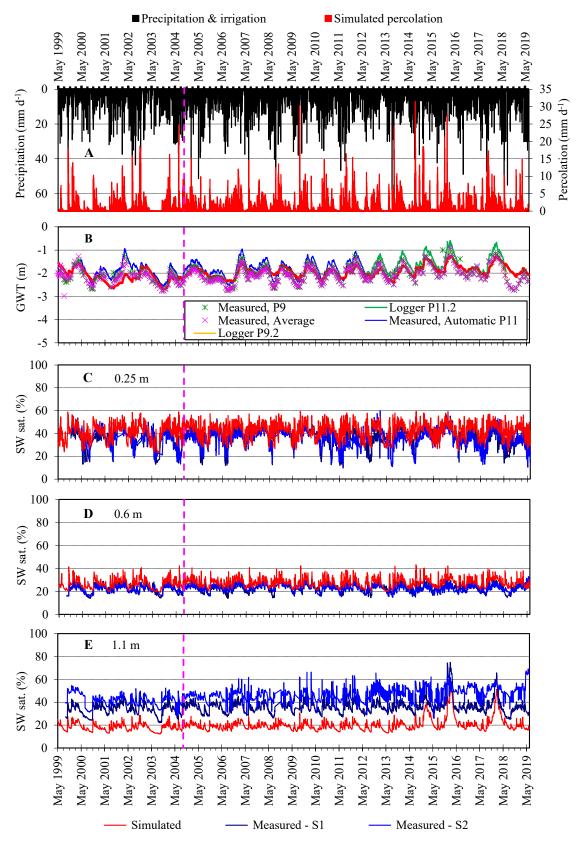
The 22 August 2018 the field was sprayed with glyphosate, which was not included in the monitoring. On 10 October 2018, the field was ploughed and hereafter sown with winter rye (cv. Bono with fludioxonil as a seed dressing). The rye emerged 5 November 2018.

A split application of proquinazid was made 25 April and 9 May 2019. Two of its degradation products, IN-MM671 and IN-MM991, were included in the monitoring program. On 8 May 2019, the growth regulator ethephone was used together with the herbicide MCPA - neither of the two were monitored. Another dry growing season necessitated irrigation seven times: 11 April, 22 April, 5 May, 24 May, 8 June, 26 June and 4 July - each time using 30 mm. Harvest of the winter rye was done 11 August 2019 yielding 68.3 hkg ha⁻¹ of grain (85 % dry matter) and 44.8 hkg ha⁻¹ of straw (100% dry matter).

Figure 3.1. Overview of the **Jyndevad** field. The innermost white area indicates the cultivated field, while the grey area indicates the surrounding buffer zone. The positions of the various installations are indicated, as is the direction of groundwater flow (by an arrow). Pesticide monitoring is conducted monthly and half-yearly from selected horizontal and vertical monitoring screens and suctions cups as described in Table A2.1 in Appendix 2.

3.1.3 Model setup and calibration

The numerical model MACRO (version 5.2, Larsbo *et al.*, 2005) was applied to the Jyndevad field covering the soil profile to a depth of five meters, always including the groundwater table. The model was used to simulate water flow and bromide transport in the variably-saturated zone during the entire monitoring period July 1999–June 2019 and to establish an annual water balance.


Compared to the setup in Rosenbom *et al.* (2020), a year of climate and crop data was added to the MACRO setup for the Jyndevad field. The setup calibrated for the monitoring period May 1999-June 2004 was subsequently evaluated on its ability to predict water balance monitoring results for the monitoring period July 2004-June 2019. For this purpose, the following time series were used: groundwater table measured in the piezometers located in the buffer zone, soil water content measured at three different depths (25, 60 and 110 cm b.g.s.) from the two profiles S1 and S2 (Figure 3.2), and the bromide concentration measured in the suction cups located 1 and 2 m b.g.s. (Figure 3.3). See Figure 3.1 for location of individual sample points. Data acquisition, model setup as well as results related to simulated bromide transport are described in Barlebo *et al.* (2007).

3.2 Results and discussion

3.2.1 Soil water dynamics and water balances

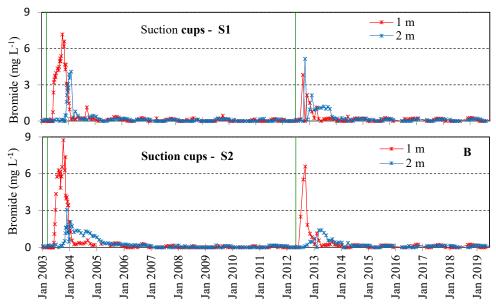
The model simulations were generally consistent with the observed data indicating a good model description of the overall soil water dynamics in the variably saturated zone at Jyndevad (Figure 3.2). Generally, the dynamics of the simulated groundwater table were well described with MACRO 5.2 (Figure 3.2B). As was the case in the Tylstrup simulation of the groundwater table, the model does not capture the low groundwater table in the second half of 2018. For this period, precipitation seems to contribute more to the groundwater recharge and hence the groundwater table in the model than measured, which could indicate the MACRO-model have difficulties in describing the percolation during the hottest year measured in Denmark (DMI, 2019). Also, the model does seem to capture the dynamics and the levels measured in 2019.

The trends in the measured soil water saturation were in general captured by the model. In all three measured depths, there is an overall offset in the simulated water saturation showing an overestimation within approximately 10% for the TDRs in 0.25 and 0.6 m b.g.s., respectively. Except for the TDR in 1.1 m, the saturation is too high compared to the measured values. This is a consequence of the high percolation in the second half of 2018 leading to increased groundwater table and saturation. For the TDR in 1.1 m depth, the pattern is consistent with trends from the previous years where the simulation shows a general underestimation of the calculated water saturation (Figure 3.2E).

Figure 3.2. Soil water dynamics at **Jyndevad**: Measured precipitation, irrigation, and simulated percolation 1 m b.g.s. (A), simulated *(red line)* and measured groundwater table, GWT (B), and simulated and measured soil water saturation (SW sat.) at three different soil depths (C, D and E). The measured data in B derive from piezometers located in the buffer zone. The measured data in C, D and E derive from TDR probes installed at S1 and S2 (Figure 3.1). The broken vertical line indicates the beginning of the validation period (July 2004-June 2019).

The resulting water balance for Jyndevad for all the monitoring periods is shown in Table 3.1. Compared to the previous hydraulic year where higher measured precipitation was obtained, the precipitation in the current hydraulic year, 2018-2019, of 805 mm is the lowest ever measured. Actual evapotranspiration in the current hydraulic year is higher than average and consequently, the irrigation is also high. In fact, the need to irrigate is the highest observed since 1999 and is consistent with the year 2018 being the hottest year measured (DMI).

method of Allerup an	Normal			Actual	Groundwater
	precipitation ¹⁾	Precipitation	Irrigation	evapotranspiration	recharge ²⁾
01.07.99-30.06.00	995	1073	29	500	602
01.07.00-30.06.01	995	810	0	461	349
01.07.01-30.06.02	995	1204	81	545	740
01.07.02-30.06.03	995	991	51	415	627
01.07.03-30.06.04	995	937	27	432	531
01.07.04-30.06.05	995	1218	87	578	727
01.07.05-30.06.06	995	857	117	490	484
01.07.06-30.06.07	995	1304	114	571	847
01.07.07-30.06.08	995	1023	196	613	605
01.07.08-30.06.09	995	1078	84	551	610
01.07.09-30.06.10	995	1059	80	530	610
01.07.10-30.06.11	995	1070	92	554	607
01.07.11-30.06.12	995	1159	30	490	699
01.07.12-30.06.13	995	991	60	478	572
01.07.13-30.06.14	995	1104	75	485	693
01.07.14-30.06.15	995	1267	102	569	800
01.07.15-30.06.16	995	1365	105	581	888
01.07.16-30.06.17	995	1031	60	531	559
01.07.17-30.06.18	995	1230	210	570	870
01.07.18-30.06.19	995	805	240	569	477


Table 3.1. Annual water balance for **Jyndevad** (mm yr⁻¹). Precipitation is corrected to the soil surface according to the method of Allerup and Madsen (1979).

¹⁾ Normal values based on time series for 1961-1990.


²⁾ Groundwater recharge is calculated as precipitation + irrigation - actual evapotranspiration.

3.2.2 Bromide leaching

Bromide has now been applied three times at Jyndevad. The bromide concentrations measured until April 2003 relate to the bromide applied in autumn 1999, as described further in Kjær *et al.* (2003). Leaching of the bromide applied in March 2003 (Figure 3.3, Figure 3.4 and Figure 3.5) is evaluated in Barlebo *et al.* (2007). The bromide applied in May 2012 showed the same response time in the variably saturated zone as in April 2003 (Figure 3.3), but in the downstream wells M1, M2 and M4 the response time was quicker (Figure 3.4). In the upstream wells M5 and M7 no bromide response was observed (Figure 3.1 and 3.4). The bromide concentration in the horizontal well decreased from 1.98 mg L^{-1} in October 2012 to below 0.1 mg L^{-1} in June 2019 (Figure 3.5).

Figure 3.3. Bromide concentration in the variably saturated zone at **Jyndevad**. The measured data derive from suction cups installed 1 m b.g.s. (A) and 2 m b.g.s. (B) at locations S1 and S2 (Figure 3.1). The green vertical lines indicate the dates of bromide applications.

Figure 3.4. Bromide concentration in the groundwater at **Jyndevad**. The data derive from monitoring wells M1, M2, M4, M5 and M7. Screen depth is in m b.g.s. The green vertical lines indicate the dates of bromide applications.

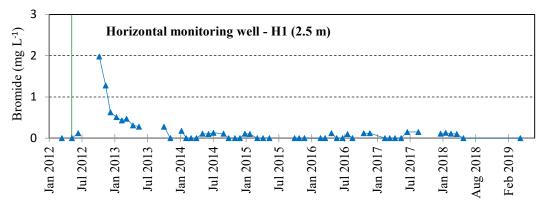
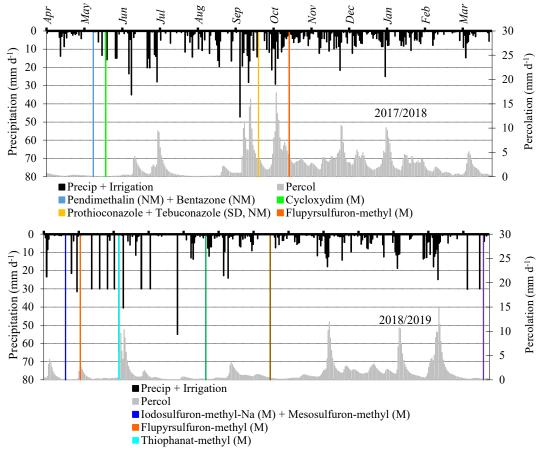



Figure 3.5. Bromide concentration in the groundwater at Jyndevad. The data derive from the horizontal monitoring well H1. The green vertical line indicates the date of bromide application.

3.2.3 Pesticide leaching

Monitoring at Jyndevad began in September 1999 and encompasses the pesticides and degradation products, as indicated in Appendix 7. Pesticide applications since 2011 are listed in Table 3.2 and the recent two years are shown together with precipitation and simulated percolation from 2017/2018 and 2018/2019 in Figure 3.6. It is noted that precipitation is corrected to the soil surface according to Allerup and Madsen (1979), whereas percolation (1 m b.g.s.) refers to accumulated percolation simulated with the MACRO model (Table 3.1). Moreover due to the very few datapoints, pesticides applied later than April 2019 are not evaluated and not included in Figure 3.6, although presented in Table 3.2.

Figure 3.6. Application of pesticides at Jyndevad in 2017/2018 (upper) and 2018/2019 (lower) - Substances being monitored in the program are marked (M) and not monitored (NM). Substances applied as seed dressing are marked SD. Measured precipitation including artificial irrigation are given on the primary axis and simulated percolation 1 m b.g.s. on the secondary axis.

This Chapter primarily evaluates the leaching of pesticides and/or degradation products included in the monitoring from 2017 and onwards at Jyndevad - these compounds are in the following text given in bold. The leaching risk of pesticides applied before 2017 been evaluated previous monitoring reports has in (see http://pesticidvarsling.dk/monitor uk/index). As all seeds sown in the PLAP are purchased from a commercial agro business supplier, seeds had with very high certainty been coated with some sort of seed dressing (SD), which most likely have contained one or more pesticides being included for testing in PLAP. Such information was, however, not registered in PLAP until 2017. Seed dressings used until 2017 and onwards are listed in Table 3.2.

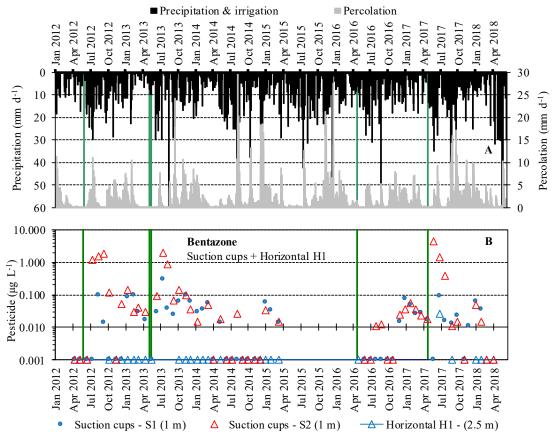
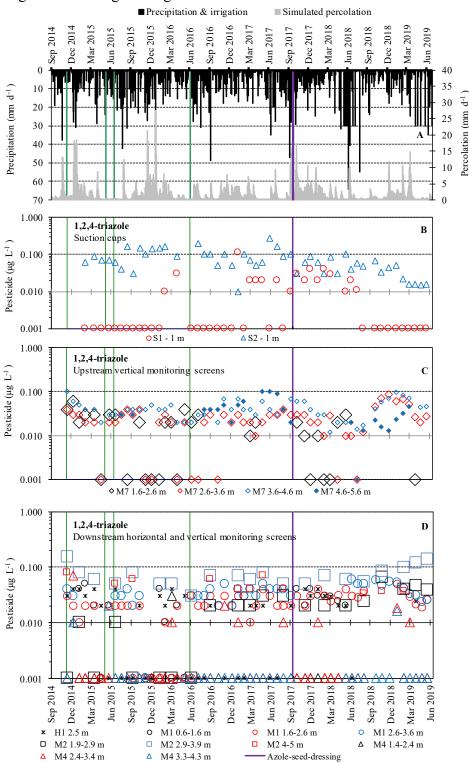

In Table 3.2 weighted average concentrations 1 m b.g.s. (C_{mean}) is calculated from both S1 and S2. When these values are reported as a range it indicates that C_{mean} in S1 and S2 differs, where one of the C_{mean} is exceeding 0.1 µg L⁻¹ and the other not. During the monitoring period 2011-2012 it was not possible to extract enough water from S2 to perform all pesticide analyses. For some of the compounds (metalaxyl-M, PPU and PPU-desamino) there was not enough data to calculate weighted leachate concentration, why the reported 2010 values in Table A5.2 refer to suction cup S1 only. For the same reason, concentration of CGA 62826 and CGA 108906 in S2 were not measured in S2 during the first months after applications.

Table 3.2. Pesticides analysed at Jyndevad. For each compound it is listed whether it is a pesticide (P) or degradation product (M), as well as the application date (Appl. date) and end of monitoring period (End. mon.). Precipitation (precip. in mm) and percolation (percol. in mm) are accumulated within the first year (Y 1st Precip, Y 1st Percol) and first month (M 1st Precip, M 1st Percol) after the first application. C_{mean} is average leachate concentration [µg L⁻¹] at 1 m b.g.s. the first year after application - ? is indicating additional sources. See Appendix 2 for calculation method and Appendix 7 (Table A7.2) for previous applications of pesticides.

Crop – Year of harves	t Applied Product	Analysed pesticide	Appl. date	End mon.	Y 1 st precip.		M 1 st precip.	M 1 st percol.	C _{mean}
Maize 2012	Callisto	Mesotrione(P)	Jun 12	Mar 15	993	512	109	11	< 0.01
	Callisto	AMBA(M)	Jun 12	Mar 15	993	512	109	11	< 0.01
	Callisto	MNBA(M)	Jun 12	Mar 15	993	512	109	11	< 0.01
	Fighter 480	Bentazone(P)	May 12	Mar 15	994	513	114	2	0.04-
Peas 2013	Fighter 480	Bentazone(P) ¹⁾	May 13	Mar 15	1175	703	84	0.2	0.22** 0.02- 0.16**
Potatoes 2014	Comand CS	Clomazone(P)	Apr 14	Mar 15	1393	855	87	18	<0.16 <0.01
		FMC 65317(M)	Apr 14	Mar 15	1393	855	87	18	< 0.02
	Maxim 100 FS	CGA 339833(M)	Apr 14	Apr 16	1404	856	83	10	< 0.03
	Fludioxonil (P)	CGA 192155(M)	Apr 14	Apr 16	1404	856	83	10	< 0.01
	Dithane NT Mancozeb (P)	EBIS(M)	Jun 14	Mar 15	1407	844	138	37	< 0.02
Winter wheat 2015		Flupyrsulfuron- methyl (P)	Oct 14 +Mar 15	Oct 16	1221	670	45	76	< 0.01
		IN-KC576(M)	Oct 14 +Mar 15	Oct 16	1221	670	45	76	< 0.01
		IN-KY374(M)	Oct 14 +Mar 15	Oct 16	1221	670	45	76	< 0.01
		IN-JV460(M)	Oct 14 +Mar 15	Oct 16	1221	670	45	76	< 0.01
	Orius 200 EW Tebuconazole (P)	1,2,4-triazole(M)	Nov 14	Jun 19*	1253	645	86	35	?
	Opus Epoxiconazole(P)	1,2,4-triazole(M)	May 15	Jun 19*	1323	754	81	10	?
	Proline EC 250 Prothioconazole(P)	1,2,4-triazole(M)	Jun 15	Jun19*	1435	789	103	10	?
Spring barley 2016		Bentazone(P)	May 16	Apr 18	1174	633	85	6	0.01
		6-hydroxy- bentazone(M)	May 16	Apr 18	1174	633	85	6	< 0.01
		8-hydroxy- bentazone(M)	May 16	Apr 18	1174	633	85	6	< 0.01
		N-methyl- bentazone(M)	May 16	Apr 18	1174	633	85	6	< 0.01
	Bumper 25 EC Propiconazole(P) ²	1,2,4-triazol(M)	Jun 16	Jun 18	1171	631	247	112	?
Pea 2017	Fighter 480	Bentazone(P)	May 17	Apr 18	1386	849	148	6	0.35
		6-hydroxy- bentazone(M)	May 17	Apr 18	1386	849	148	6	< 0.01
		8-hydroxy- bentazone(M)	May 17	Apr 18	1386	849	148	6	< 0.01
		N-methyl- bentazone(M)	May 17	Apr 18	1386	849	148	6	< 0.01
	Focus Ultra Cycloxydim (P)	BH 517-T2SO2(M)	May 17	Jun 19*	1430	866	132	27	< 0.01
	Cycloxyum (1)	E/Z BH 517-TSO(M)May 17	Jun 19*	1430	866	132	27	0.07
Winter wheat 2018	Lexus 50WG	IN-KF311(M)	Oct 17	Jun 19*	1194	650	100	90	< 0.01
D: Redigo Pro 170 FS	Flupyrsulfuron-methyl (P)		Oct 17	Jun 19*	1194	650	100	90	< 0.01
Prothioconazol +	Hussar Plus OD	AE F099095 (M)	Apr 18	Jun 19*	1139	548	90	18	< 0.01
ebuconazol)	Mesosulfuron-methyl (P)	AE F160459 (M)	Apr 18	Jun 19*	1139	548	90	18	< 0.01
	5 (-)	AE F147447 (M)	Apr 18	Jun 19*	1139	548	90	18	< 0.01
	Topsin WG	Carbendazim (M)	Jun 18	Jun 19*	1089	543	196	82	< 0.01
	Thiophanat-methyl (P)								


Systematic chemical nomenclature for the analysed pesticides is given in Appendix 1. SD = Seed dressing. *Monitoring continues the following year. **If difference between S1 and S2. ¹⁾ Bentazone applied on 7 May and 16 May 2013.²⁾ Propiconazole only applied in half of the maximum allowed dose.^{a)} The degradation product IN-J127 was discontinued due to instability in aqueous solution (Chapter 8).

Bentazone was applied at Jyndevad seven times between 2004 and 2017, of which the five most recent are shown in Figure 3.7. In 850 groundwater samples taken from vertical monitoring wells between 4 May 2004 and 17 April 2018, bentazone was once detected in a concentration of 0.013 μ g L⁻¹ on 15 January 2018. From the horizontal wells a total of 52 samples were collected between 11 April 2012 and 17 April 2018. Two samples contained 0.01 μ g L⁻¹ bentazone on 14 February 2013 and 0.026 μ g L⁻¹ on 12 July 2017. Within the period 2004-2018 a total of 230 samples were collected from the variablysaturated zone, by means of suctions cups located in a depth of 1 meter at location S1 and S2 (Figure 3.1). Of these samples, 92 contained bentazone in concentrations less than 0.1 μ g L⁻¹ whereas 17 exceeded 0.1 μ g L⁻¹. In a total of 121 samples, the water did not contain detectable amounts of bentazone. A maximum concentration of 4.5 µg L⁻¹ was found 7 June 2017 at S2 just one month after spraying, though no bentazone was detected at S1 (Figure 3.7). Three months later concentrations at S2 had declined to $0.39 \,\mu g \, L^{-1}$ and after additional 6 months, bentazone was no longer detected. On 13 February, a final sample was collected at S1, where the bentazone content was 0.035 μ g L⁻¹. In summary, application of bentazone always caused elevated concentrations in the variably-saturated zone (suction cups) in particular at S2, where the time elapsed between application of bentazone and detection in suction cups was shortest. Three degradation products of bentazone, N-methyl bentazone, 8 hydroxy-bentazone and 6 hydroxy-bentazone were included in the monitoring programme following the application of bentazone in May 2016. However, none of these had been detected when the monitoring ended 17 April 2018.

Figure 3.7. Precipitation, irrigation, and simulated percolation 1 m b.g.s. (A) together with measured concentrations of **bentazone** in water samples collected from horizontal well H1 at 2.5 m depth and suction cups at 1 m depth at S1 and S2 (B) in **Jyndevad**. The green vertical lines indicate the dates of bentazone application. Note that concentrations specified as 0.001 μ g L⁻¹ represent non-detects.

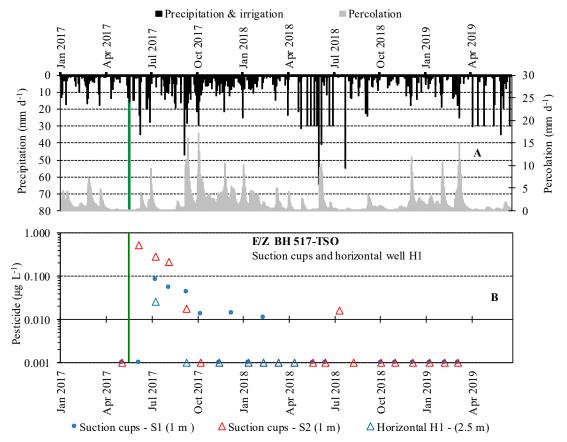

Various azoles with the common degradation product 1,2,4-triazole was sprayed to the field at a total of 13 occasions between May 2000 and June 2016 (see Table 3.2 and Appendix 3 in previous reports). A total of 386, 272 and 414 samples were tested for propiconazole (September 1999-2001), tebuconazole (October 2007 - Marts 2010), epoxiconazole (April 2006 - December 2009), resulting in a single detection of tebuconazole (0.014 μ g L⁻¹) and epoxiconazole (0.011 μ g L⁻¹). The most recent sprayings where on winter wheat using tebuconazole 11 November 2014, epoxiconazole 8 May 2015 and prothioconazole 17 June 2015, respectively. Further, propiconazole was sprayed on spring barley 2 June 2016. The degradation product 1,2,4-triazole was monitored from 13 November 2014 until 3 June 2019. As background samples were not taken prior to the application of tebuconazole 11 November 2014, it is not possible to evaluate for certain, whether the following detections in Figure 3.8 relate to this specific application or applications done in the past including seed dressings. It is, however, unlikely that the precipitation (<2 mm) between the 11 and 13 November could cause the overall highest concentration of 1,2,4-triazole (0.15 μ g L⁻¹, detected 13 November 2014) in groundwater at a depth of 2.9 to 3.9 m b.g.s in monitoring well M2, located downstream to the field. In the same period, no water could be collected from the suction cups in 1 m depth (Figure 3.8D). Additionally, on 13 November 2014, water collected from the upstream screen M7 in 3.6-4.6 m depth contained 0.1 μ g L⁻¹ 1,2,4-triazole (Figure 3.8C). Following these two initial detections, detections of 1,2,4-triazole in groundwater sampled downstream of the field were less than 0.1 µg L⁻¹. However, on 13 February 2019, concentrations reached 0.1 µg L⁻¹ in M2.3 (Figure 3.8D) and increased in the following months reaching 0.12 μ g L⁻¹ on 10 April 2019 and 0.14 μ g L⁻¹ on 3 June 2019. A similar increase was not found in water from the upstream well M7. On the contrary, here concentrations were decreasing (Figure 3.8C). Within the period 13 November 2014 to 3 June 2019, the total number of water samples collected from the vertical wells was 465 of which three samples (1%) exceeded 0.1 μ g L⁻¹. Detections below 0.1 μ g L⁻¹ were apparent in 293 of the 465 samples, leaving 169 without any detectable amount of 1,2,4triazole. I.e. 63 % of samples from vertical wells contained 1,2,4-triazole. Of 49 water samples collected from the horizontal well, 30 (61%) contained 1,2,4-triazole. None of these, however, were above 0.1 µg L⁻¹. Of 99 water samples collected from the variablysaturated zone, 66 (67%) contained 1,2,4-triazole with nine (9%) having concentrations exceeding 0.1 μ g L⁻¹. The highest concentration was 0.27 μ g L⁻¹ in a water sample collected five days after spraying with propiconazole 7 June 2016. Further, from the entire monitoring period of 1,2,4-triazole, the compound is detected in all S2 samples except one from 9 June 2016. The concentrations in the variably saturated zone at S2 and the saturated zone did not vary much throughout the years. In the variably saturated zone, however, concentrations seemed to stabilize around 0.016 µg L⁻¹ within the first five months of 2019. The detections following the application of epoxiconazole and prothioconazole in May and June 2015, respectively, did however reveal an increase in concentration of 1,2,4-triazole in water from S1 and groundwater, indicating degradation of the applied azoles and leaching of 1,2,4-triazole through the variably-saturated zone to groundwater. Although no detections were obtained in water from S1 until February 2016, there seemed to be a pattern of increased detections hereafter (Figure 3.8B). Whether the concentration level was due to those four applications alone or in combination with other sources, including the nine previous azol applications since 2000 as well as sowing of seeds coated with azoles, cannot be established from this monitoring. However, there is a clear pattern of increasing number of detections throughout the monitoring period, although most detections in groundwater were below 0.1 μ g L⁻¹. More detailed studies into the fate of azoles in soils in situ are needed to evaluate, whether azoles are accumulated in the plough layer and slowly degraded into 1,2,4-triazole causing long-term leaching to the groundwater.

Figure 3.8. 1,2,4-triazole detections at **Jyndevad.** Precipitation, irrigation, and simulated percolation 1 m b.g.s. (A) together with measured concentration of 1,2,4-triazole detections in the variably-saturated zone (B; water collected from suction cups at S1 and S2 in 1 and 2 m depth) and saturated zone (C-D; Water collected from upstream and downstream horizontal (H) and vertical screens (M)). No detection of 1,2,4-triazole in a water sample is given the value 0.001 μ g L⁻¹ in plot B-D. The green vertical lines indicate the date of pesticide application: tebuconazole on 11 November 2014, epoxiconazole on 8 May 2015, prothioconazole on 17 June 2015, and propiconazole on 16 June 2016. The purple vertical lines indicate the application of winter wheat seeds coated with tebuconazole and prothioconazole. Seed dressing prior 2017 have not been registered.

Flupyrsulfuron-methyl was applied to a crop of winter wheat in October 2014 and March 2015, and again to a crop of winter wheat in October 2017 and May 2018. The compound itself and the three degradation products, **IN-KC576**, **IN-JV460** and **IN-KY374**, were monitored in 259 water samples following the two first applications. Only the degradation product IN-KY374 was detected. However, not in the groundwater, but four times in the variably-saturated zone from suction cups (both from S1 and S2) five to eight months after the March 2015 application, where the highest concentration was 0.45 μ g L⁻¹. In connection with the October 2017 application, two other degradation products, **IN-KF311** and **IN-JE127**, were included in the monitoring programme replacing the former four compounds. None of these two new degradation products were detected during this monitoring period – here the latter was unstable in water.

The herbicide **cycloxydim** was applied on the 19 May 2017 to pea and its two degradation products, **BH 517-T2SO2** and **E/Z BH 517-TSO**, were included in the monitoring programme. In a total of 239 water samples, only the E/Z BH 517-TSO was found. Six water samples collected from the suction cups at S1 contained the degradation product in concentrations ranging from 0.011-0.0851 μ g L⁻¹. At S2 there were five detections three of which were above 0.1 μ g L⁻¹, and the highest being 0.53 μ g L⁻¹ on 7 June 2017 (Figure 3.9). In all the 11 samples of groundwater from H1 taken between June 2017 and June 2018, two contained E/Z BH 517-TSO, and highest concentrations being 0.03 g L⁻¹. When the monitoring was ended 13 March 2019, there were no detections for eight consecutive months.

Figure 3.9. Precipitation, irrigation, and simulated percolation 1 m depth (A) together with measured concentrations of **E/Z BH 517-TSO** in water samples collected from horizontal well H1 and suction cups at 1 m depth at S1 and S2 (B) in **Jyndevad**. No detection of E/Z BH 517-TSO in a water sample is given the value 0.001 μ g L⁻¹ in plot B The green vertical line indicates the date of the cycloxydim application.

The herbicide **Mesosulfuron-methyl-Na** was applied to winter wheat 20 April 2018, and three of its degradation products, **AE-F099095**, **AE-F160459** and **AE-F147447**, were included in the monitoring programme. As of now neither of them have been detected. Monitoring is continued for an additional year.

Thiophanat-methyl, a fungicide, was applied to winter wheat 6 June 2018 and its degradation product, **carbendazim**, included in the monitoring programme. There were no detections of carbendazim within the first year of monitoring. Monitoring is continued for an additional year.

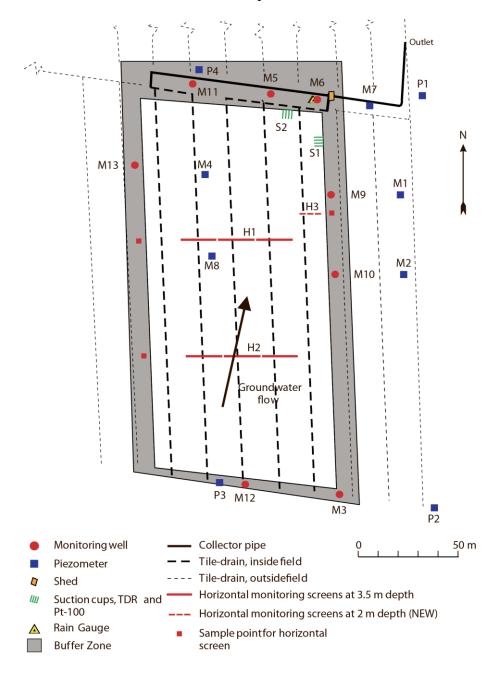
4 Pesticide leaching at Silstrup

4.1 Materials and methods

4.1.1 Field description and monitoring design

The test field at Silstrup is located South of the city Thisted in North-Western Jutland (Figure 1.1). The cultivated area is 1.7 ha (91 x 185 m) and slopes gently $(1-2^{\circ})$ to the North (Figure 4.1). Based on two profiles excavated in the buffer zone bordering the field, the soil was classified as Alfic Argiudoll and Typic Hapludoll (Soil Survey Staff, 1999). The clay content in the topsoil was 18% and 26%, and the organic carbon content was 3.4% and 2.8%, respectively (Table 1.1). The geological description showed a rather homogeneous clayey till rich in chalk and chert, containing 20–35% clay, 20–40% silt and 20–40% sand. In some intervals the till was sandier, containing only 12–14% clay. Moreover, thin lenses of silt and sand were detected in some of the wells. The gravel content was approx. 5% but could be as high as 20%.

In September 2011, the monitoring system was extended with three horizontal screens (H3) 2 m b.g.s. in the North-Eastern corner of the field (Figure 4.1). One of the screens is located just below a drain line (a lateral) 1.1 m b.g.s and two screens between the laterals. A brief description of the drilling and design of H3 is given in Appendix 8.


4.1.2 Agricultural management

Management practice at Silstrup during the 2017-19 growing seasons is briefly summarized below and detailed in Appendix 3 (Table A3.3). For information about management practice during the past monitoring periods, see previous reports available on http://pesticidvarsling.dk/publ_result/index.html.

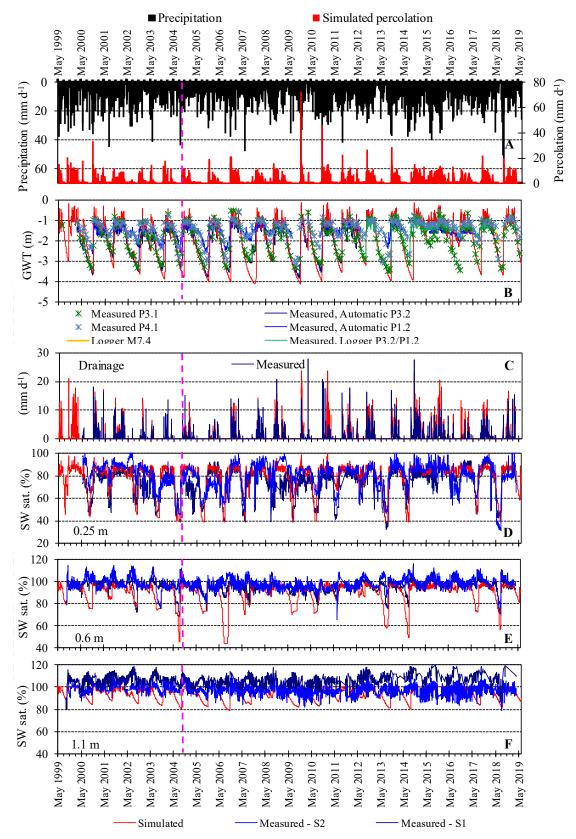
The field was ploughed 26 September 2017. The winter barley (cv. Cosmos coated with prothioconazole and tebuconazole) was sown 28 September and emerged 9 October. Flupyrsulfuron-methyl was sprayed against weeds on 18 October and its degradation products IN-KF311 and IN-JE127 were included in the monitoring program. Due to IN-JE127 being not stable in water monitoring was terminated in January 2019. Another degradation product of flupyrsulfuron-methyl, IN-J0290/AE-F092944, was monitored once on 30 April 2019. A herbicide containing iodosulfuron-methyl-Na and mesosulfuron-methyl was used 19 April 2018 and the degradation products of the latter, AE F099095, AE F160459 and AE F147447, were included in the monitoring. A split application of the fungicide prothioconazole was conducted on 23 May 2018 and 1 June 2018, and its degradation product, 1,2,4-triazole, was included in the monitoring. At the harvest 20 July 2018, the winter barley yielded 71.9 hkg ha⁻¹ of grain (85 % dry matter). On 24 July, 10.3 hkg ha⁻¹ of straw (100 % dry matter) was removed from the field.

The 17 August 2018, a crop of winter rape (cv. Exclaim coated with thiram) was sown directly into the barley stubble. Cycloxydim was used against weeds on 17 September and its degradation products, BH 517-T2SO2 and E/Z BH 517-TSO, were included in the program.

Another spraying of weeds was done with propyzamide on 9 November after which propyzamide was included in the monitoring. Further, the herbicide propaquizifop was applied 9 April 2019 and its degradation products, CGA 287422, CGA 294972, CGA 290291 and PPA, were subsequently monitored. Harvest of the winter rape was done 14 August yielding 44.5 hkg ha⁻¹ of seeds (91 % dry matter). An unknown amount of straw was shredded at the harvest of the rape.

Figure 4.1. Overview of the **Silstrup** field. The innermost white area indicates the cultivated land, while the grey area indicates the surrounding buffer zone. The positions of the various installations are indicated, as is the direction of groundwater flow (by an arrow). Pesticide monitoring is conducted weekly from the drainage system (during periods of continuous drainage runoff) and monthly and half-yearly from selected vertical and horizontal monitoring screens as described in Table A2.1 in Appendix 2.

4.1.3 Model setup and calibration


Compared to the setup in Rosenborn et al. (2020), a year of climate and crop data was added to the MACRO setup for the Silstrup field. The setup calibrated for the monitoring period May 1999-June 2004 was subsequently evaluated on its ability to predict water balance monitoring results for the monitoring period July 2004-June 2019. For this purpose, the following time series were used: the observed groundwater table measured in the piezometers located in the buffer zone, soil water content measured at three depths (25, 60 and 110 cm b.g.s.) from the two profiles S1 and S2 (Figure 4.1), and the measured drainage. Data acquisition, model setup and results related to simulated bromide transport are described in Barlebo et al. (2007). Given impounding of water in the drainage water monitoring well, estimates for the measured drainage on 11 December 2006, 13-14 December 2006, 28 February 2007, 23 October 2011, 13 November 2011 and 11 December 2011 were based on expert judgement. Additionally, TDR-measurements at 25 cm b.g.s. in the period from 15 December 2009 to 20 March 2010 were discarded given freezing soils (soil temperatures at or below 0°C). The soil water content is measured with TDR based on Topp calibration (Topp et al., 1980), which underestimates the total soil water content at the soil water freezing point, as the permittivity of frozen water is much less than that of liquid water (Flerchinger et al., 2006).

4.2 Results and discussion

4.2.1 Soil water dynamics and water balances

The model simulations were consistent with the measured data, thus indicating a reasonable model description of the overall soil water dynamics in the variably saturated zone (Figure 4.2). Manually measured groundwater table at the P3.1 and P4.1 show similar dynamics throughout the years, although offsetted by approximately 0.35 m (Figure 4.2B). The offset seems to be more pronounced during dry seasons and it is noted that the wells, P3.1 and P4.1, are farthest apart at the Silstrup field. The dynamics of the measured groundwater table in P3.1 and P4.1 follow the automatic loggers, P3.2/P1.2 and M7.4. The simulated groundwater table captures the dynamics of the manually measurements at P3.1 and the automatic logger P3.2. In contrast to the sandy fields, Tylstrup and Jyndevad, the model of Silstrup is capturing the dynamics throughout 2018 and is thus not affected to the extreme summer of 2018. The drainage during the recent two hydrological years was well captured by the model (Figure 4.2C). The temporal dynamics in measured drainage is well captured by the model and only slightly overestimated in some instances.

As in the previous monitoring periods, the overall trends in soil water content were described reasonably well (Figure 4.2D, 4.2E and 4.2F), although the model describes the soil in 0.6 and 1.1 m depth as being drier during the summer period than actually measured by the upper TDR probes (Figure 4.2E and 4.2F). This could be caused by TDR measurements primarily representing the soil matrix conditions and not in the same extent as the model represents conditions of preferential transport pathways in the soil like worm burrows and fractures. In 1.1 m depth, the S1 TDR differs substantially compared to the S2 TDR. In addition, the simulated water saturation pattern in terms of increase and decrease is similar to the measured pattern in the TDRs above. This could indicate that the measurements from the S1 TDRs are more affected by being close to fully saturated soil conditions.

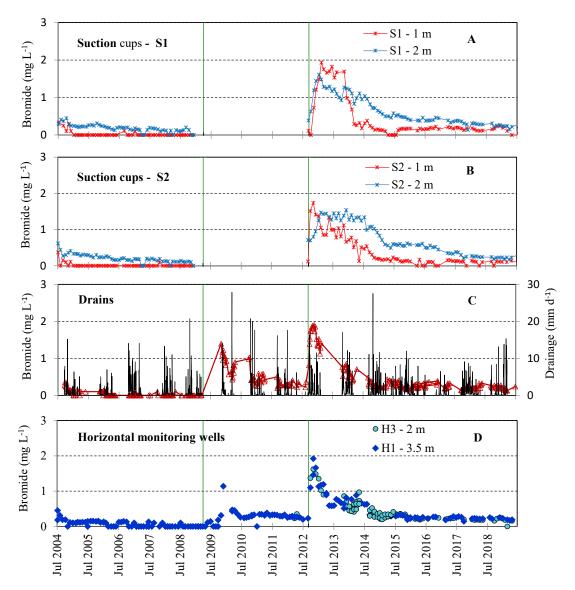
Figure 4.2. Soil water dynamics at **Silstrup**: Measured precipitation and simulated percolation 1 m b.g.s. (A), simulated *(red line)* and measured groundwater table, GWT (B), simulated *(red line)* and measured drainage (C), and simulated and measured soil water saturation (SW sat.) at three different soil depths (D, E and F). The measured data in B derive from piezometers located in the buffer zone. The measured data in D, E and F derive from TDR probes installed at S1 and S2 (Figure 4.1). The dotted vertical line indicates the beginning of the "validation" period (July 2004-June 2019).

	Normal	Precipitation	Actual	Measured	Simulated	Groundwater
	precipitation ²⁾		evapotranspiration	drainage	drainage	recharge ³⁾
01.07.99–30.06.001)	976	1175	457	_	443	275 ⁴⁾
01.07.00-30.06.01	976	909	413	217	232	279
01.07.01-30.06.02	976	1034	470	227	279	338
01.07.02-30.06.03	976	879	537	81	74	261
01.07.03-30.06.04	976	760	517	148	97	94
01.07.04-30.06.05	976	913	491	155	158	267
01.07.05-30.06.06	976	808	506	101	95	201
01.07.06-30.06.07	976	1150	539	361	307	249
01.07.07-30.06.08	976	877	434	200	184	242
01.07.08-30.06.09	976	985	527	161	260	296
01.07.09-30.06.10	976	835	402	203	225	230
01.07.10-30.06.11	976	1063	399	172	569	492
01.07.11-30.06.12	976	1103	432	230	321	444
01.07.12-30.06.13	976	1020	469	249	333	302
01.07.13-30.06.14	976	1067	558	275	335	234
01.07.14-30.06.15	976	1314	462	329	412	523
01.07.15-30.06.16	976	1200	352	293	517	551
01.07.16-30.06.17	976	869	415	95	228	359
01.07.17-30.06.18	976	985	471	233	293	281
01.07.18-30.06.19	976	1103	461	226	316	416

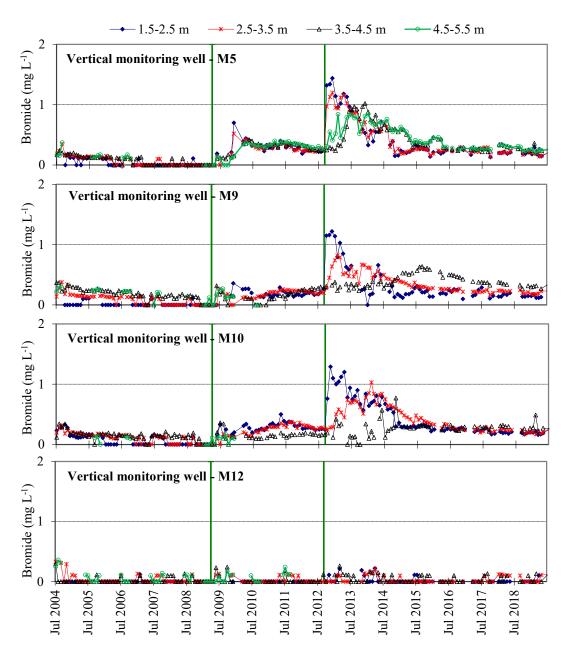
Table 4.1. Annual water balance for Silstrup (mm yr⁻¹). Precipitation is corrected to the soil surface according to the method of Allerup and Madsen (1979).

¹⁾ The monitoring started in April 2000.

²⁾ Normal values based on time series for 1961–1990 corrected to soil surface.


³⁾ Groundwater recharge calculated as precipitation - actual evapotranspiration - measured drainage.

⁴⁾ Drainage measurements were lacking - simulated drainage was used to calculate groundwater recharge.


The resulting water balance for Silstrup for the entire monitoring period is shown in Table 4.1. In the recent hydrological year the precipitation of 1103 mm yr⁻¹, measured drainage of 226 mm yr⁻¹, simulated drainage of 316 mm yr⁻¹ and recharge to the groundwater of 416 mm yr⁻¹ were higher than the average of all the years - 1002 mm yr⁻¹, 208 mm yr⁻¹, 279 mm yr⁻¹ and 317 mm yr⁻¹, respectively. Only the actual evapotranspiration of 461 mm yr⁻¹ was less than the average values of the previous years – 466 mm yr⁻¹ (Table 4.1). More precipitation was hence in average percolating through the clay till of Silstrup this hydrological year compared to the average of the previous 18-19 years and this mainly occurred in the fall 2018 since precipitation in spring 2019 compared to the other years generally was low (Appendix 4).

4.2.2 Bromide leaching

The bromide concentrations prior to April 2009, shown in Figure 4.3 and Figure 4.4, relate to the bromide applied in May 2000, as described in previous reports (Kjær *et al.* 2003 and Kjær *et al.* 2004) and further evaluated in Barlebo *et al.* (2007). In March 2009, bromide measurements in the suction cups and monitoring wells M6 and M11 were suspended until August 2012. Bromide concentrations obtained from both drainage and groundwater though reveal an increasing level of bromide in that periode including peaks indicating preferential transport of bromide In September 2012, 30.5 kg ha⁻¹ potassium bromide was for the third time applied to the field. Except for M12, water collected from all the selected installations shortly after the application showed increased bromide concentrations (Figure 4.3 and 4.4) indicating a direct and quick percolation of water from the soil surface of the PLAP-field to the groundwater underneath.

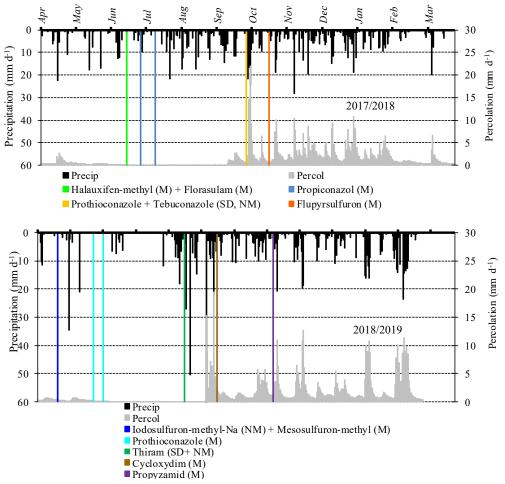

Figure 4.3. Bromide concentration at **Silstrup**. A and B refer to suction cups located at S1 and S2 (see Figure 4.1). The bromide concentration is also shown for drainage runoff (C) and the horizontal monitoring wells H1 and H3 (D). From January 2009 to September 2012, bromide measurements in the suction cups were suspended. The green vertical lines indicate the dates of bromide applications.

Figure 4.4. Bromide concentration at **Silstrup**. The data derive from the vertical monitoring wells (M5, M9, M10 and M12). In September 2008, monitoring wells M6 and M11 were suspended (Appendix 2). Screen depth is indicated in meter. The green vertical lines indicate the dates of bromide applications.

4.2.3 Pesticide leaching

Monitoring at Silstrup began in May 2000 and a list of the monitored pesticides and degradation products is given in Appendix 7. Pesticide application from 2012 to 2019 is summarized in Table 4.2 and shown together with precipitation and simulated percolation in Figure 4.5. It is noted that the precipitation in Table 4.2 is corrected to soil surface according to Allerup and Madsen (1979), whereas percolation (1 m depth) refers to accumulated percolation from 2017/2018 to 2018/2019 as simulated with the MACRO model. Moreover due to the very few datapoints, pesticides applied later than April 2019 are not evaluated and not included in Figure 4.5, although included in Table 4.2.

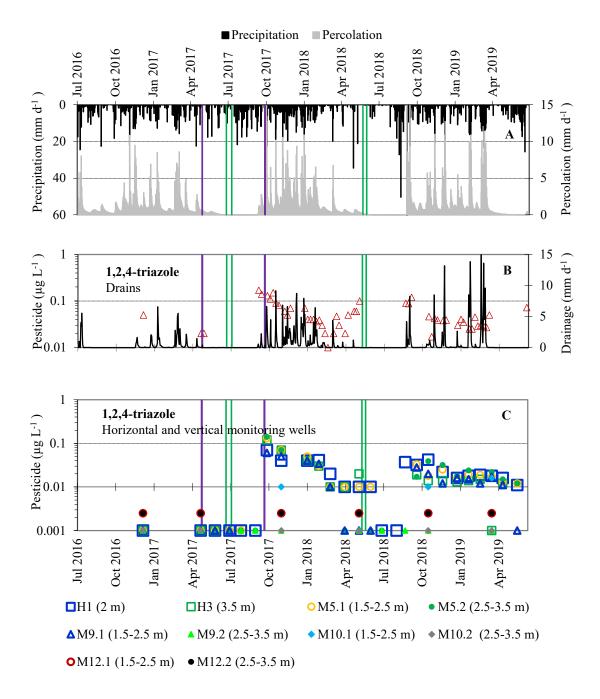
Figure 4.5. Application of pesticides at **Silstrup** in 2017/2018 (upper) and 2018/2019 (lower) - Substances monitored in the program are marked (M) and not monitored (NM). Substances applied as seed dressing are marked SD. Measured precipitation are given on the primary axis and simulated percolation 1 m b.g.s. on the secondary axis.

Table 4.2. Pesticides analysed at Silstrup. For each compound it is listed whether it is a pesticide (P) or degradation product (M), as well as the application date (Appl. date) and end of monitoring period (End. mon.). Precipitation (precip. in mm) and percolation (percol. in mm) are accumulated within the first year (Y 1st Precip, Y 1st Percol) and first month (M 1st Precip, M 1st Percol) after the first application. Cmean is average leachate concentration [µg L-1] at 1 m depth the first year after application - ? is indicating additional sources. See Appendix 2 for calculation method and Appendix 7 (Table A7.3) for previous applications of pesticides.

	st Applied	Analysed	Appl.	End	Y 1 st	Y 1 st	M 1 st	M 1 st	\mathbf{C}_{mean}
D 1.6 0010	Product	pesticide (D)	Date	mon.		Percol	÷		0.000
Red fescue 2012	DFF	Diflufenican(P)	Apr 12	Mar 15	1067	584	112	56	0.009
		AE-05422291(M)	Apr 12	Mar 15 Mar 15	1067 1067	584 584	112 112	56 56	<0.01 0.007
	Folicur	AE-B107137(M) Tebuconazole(P)	Apr 12 May 12	Dec 12	1007	584 532	48	30 11	0.007
	Fusilade Max	TFMP(M)	Apr 12	Mar 15	1024	581	127	64	0.003
	Glyfonova 450 Plus	Glyphosate(P)	Sep 12	Jun 15 [*]	836	514	207	121	0.15
	Grytonova 150 mas	AMPA(M)	Sep 12 Sep 12	Jun 15 [*]	836	514	207	121	0.067
Winter wheat 2013	DFF	Diflufenican	Nov 12	Mar 15	463	270	68	69	0.006
		AE-05422291(M)	Nov 12	Mar 15	463	270	68	69	< 0.01
		AE-B107137(M)	Nov 12	Mar 15	463	270	68	69	0.01
Spring barley 2013	Duotril 400 EC	Ioxynil(P)	May 13	Mar 15	804	543	222	188	< 0.01
	Duotril 400 EC	Bromoxynil (P)	May 13	Mar 15	804	543	222	188	< 0.01
	Amistar	CyPM(M)	Jun 13	Oct16	1059	534	15	0	0.132
	Glyfonova 450 Plus	Glyphosate(P)	Aug 13	Apr 16	1008	538	125	0	0.01
		AMPA(M)	Aug 13	Apr 16	1008	538	125	0	0.01
Winter wheat 2014	Oxitril CM	Ioxynil(P)	Oct 13	Mar 15	804	542	222	189	< 0.01
	Oxitril CM	Bromoxynil(P)	Oct 13	Mar 15	804	542	222	189	< 0.01
	DFF	Diflufenican(P)	Oct 13	Mar 15	804	542	222	189	0.01
		AE-05422291(M)	Oct 13	Mar 15	804	542	222	189	< 0.01
		AE-B107137(M)	Oct 13	Mar 15	804	542	222	189	< 0.01
	Amistar	Azoxystrobin(P)	Jun 14	Jun 16	1288	630	46	0	0.013
	Clufer ave 450 Dive	CyPM(M)	Jun 14	Jun 16	1288	630	46	0	0.13
	Glyfonova 450 Plus	Glyphosate(P)	Jul 14 Jul 14	Apr 16	1309 1309	691 691	187 187	0 0	<0.01 <0.01
		AMPA(M)		Apr 16					
Maize 2015	Callisto	Mesotrione (P)	May 15***	May 18	1219	783	117	52	0.05
		AMBA(M)	May 15***	May 18	1219	783	117	52	< 0.01
		MNBA(M)	May 15***	May 18	1219	783	117	52	< 0.01
	MaisTer	Foramsulfuron (P)	Jun 15****	May 18	1257	791	100	37	< 0.01
		AE-F130619(M)	Jun 15****	May 18	1257	791	100	37	< 0.01
M-: 2016	C-III-t-	AE-F092944(M)	Jun 15****	May 18	1257	791	100	37	< 0.01
Maize 2016	Callisto	Mesotrione (P)	Jun 16***** Jun 16*****	May 18 May 18	562 562	826 826	77 77	26 26	0.1
		AMBA(M) MNBA(M)	Jun 16 Jun 16 ^{*****}	May 18 May 18	562 562	826	77	26	<0.01 0.01
	MaisTer	Foramsulfuron (P)	Jun 16	May 18	514	820	82	121	0.01
	widis i ci	AE-F130619(M)	Jun 16	May 18	514	881	82	121	< 0.05
		AE-F092944(M)	Jun 16	May 18	514	881	82	121	< 0.01
	Iodosulfuron (P)	Triazinamine(M)	Jun 16	Mar 18	514	881	82	121	< 0.01
		(111)	0 ull 10		011	001	02		0.01
	Harmony SX Thifongulfuron mothyl (P)	Triozinomino(M)	Jun 16	Mag 19	560	076	77	26	<0.01
Souther barlow 2017	Thifensulfuron-methyl (P)	Triazinamine(M)	Jun 16	Mar 18	562	826	77	26	< 0.01
Spring barley 2017 SD: Redigo Pro 170 FS	Bumper 25 EC Propiconazole(P)	1,2,4-triazole (M)	Jun 17**	Jun 19*	520	980	112	0	?
(Prothioconazol +	Zypar	1,2,4-u lazole (WI)	Jun 17 Jun 17	Jun 19 Jun 19 [*]	520 520	980 996	30	0	< 0.01
tebuconazol)	Zypar Florasulam(P)	TSA (M)	Jun 17 Jun 17	Jun 19 Jun 19 [*]	520 520	996 996	30	0	< 0.01
	Halauxifen-methyl(P)	X-757 (M)	Juli 17	Juli 19	520	<i>99</i> 0	30	0	<0.01
Winter barley 2018	Lexus 50 WG	IN-KF311	Oct 17	Jun 19*	983	623	120	96	< 0.01
SD: Redigo Pro 170 FS	Flupyrsulfuron-methyl (P)		Oct 17	Jan 19	983	623	120	96	< 0.01
(Prothioconazol +	Hussar Plus OD	AE F099095	Apr 18	Jun 19 [*]	1009	541	67	11	< 0.01
tebuconazol)	Mesosulfuron-methyl (P)		Apr 18	Jun 19 [*]	1009	541	67	11	< 0.01
		AE F147447	Apr 18	Jun 19 [*]	1009	541	67	11	< 0.01
	Proline EC 250	1,2,4-triazole (M)	May 18	Jun 19*	990	530	29	1	?
	Prothioconazole (P)		<i>.</i> -						
Winter rape 2018	Focus Ultra	BH 517-T2SO2 (M)	Sept 18	Jun 19*	-	-	60	34	-
SD:Thiram	Cycloxydim (P)	E/Z BH 517-TSO (M)	Sept 18	Jun 19*	-	-	60	34	-
	Kerb 400 SC	Propyzamide (P)	Nov 18	Jun 19	-	-	124	93	-
	Agil 100EC	CGA 287422 (M)	Apr 19	Jun 19*	-	-	25	4	-
	Propaguizifop (P)	CGA 294972 (M)	Apr 19	Jun 19*	-	-	25	4	-
				× 10*			~ ~	4	
		CGA 290291 (M) PPA (M)	Apr 19 Apr 19	Jun 19* Jun 19*	-	-	25 25	4 4	-

Systematic chemical nomenclature for the analysed pesticides is given in Appendix 1. SD = Seed dressing.

*Monitoring continues the following year. ** Propiconazole was applied twice as Bumper 25 EC 27 June 2017 and 10 July 2017.


Propiconazoie was applied twice as Bumper 25 EC 27 and 2017 and 100 mg 2015.
 Mesotrione was applied twice as Callisto on 27 May 2015 and 9 June 2015.
 Foramsulfuron was applied twice as Callisto on 6 June 2016 and 22 June 2016.
 Mesotrione was applied twice as Callisto on 6 June 2016 and 22 June 2016.

^{a)} The degradation product IN-J127 was discontinued due to instability in aqueous solution (refer Chapter 8)

This Chapter primarily evaluates the leaching of pesticides and/or degradation products included in the monitoring from 2017 and onwards at Silstrup – these compounds are in the following text given in bold. The leaching risk of pesticides applied before 2017 has evaluated previous monitoring been in reports (see http://pesticidvarsling.dk/monitor uk/index.html. As all seeds sown in the PLAP are purchased from a commercial agro business supplyer, seeds had with very high certainty have been coated with some sort of seed dressing (SD), which most likely have contained one or more pesticides being included for testing in PLAP. Such information was, however, not registered in PLAP until 2017. Seed dressings used from 2017 and onwards are listed in Table 4.2.

The herbicides **Florasulam and halauxifen-methyl** were sprayed in combination to the field 15 June 2017. The degradation products **TSA** of florasulam and **X-757** of halauxifen-methyl were included in the monitoring programme. On 4 June 2019, the monitoring was ended without detections of TSA and X-757 in any of the 142 groundwater samples and 50 drainage samples.

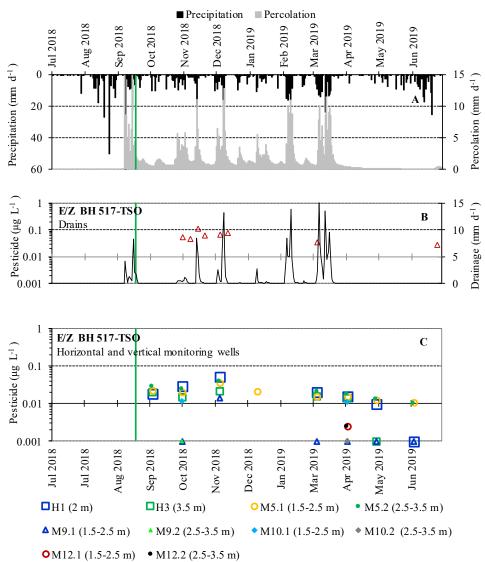
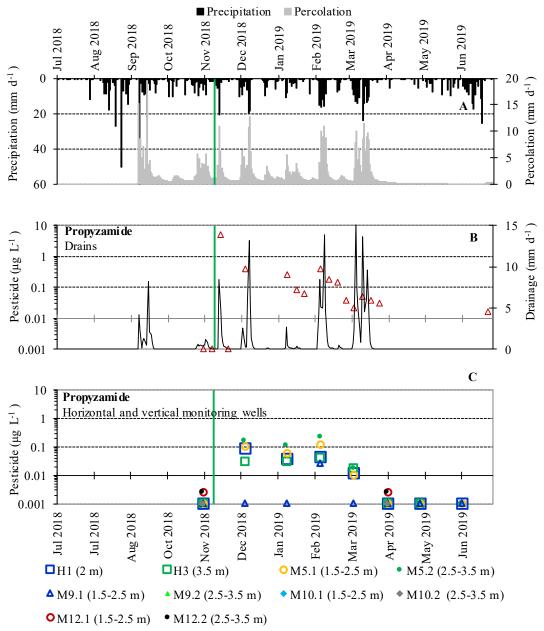

Propiconazole was sprayed on spring barley on 27 June and 10 July 2017, and the following year prothioconazole was sprayed on winter barley 23 May 2018 and 1 June 2018. Since PLAP was launched at Silstrup in 2000, and prior to the sprayings of 2017, four azole-sprayings had been conducted, where the most recent was tebuconazole in July 2013. Within the period 7 December 2016 and 31 May 2017, three drainage samples were collected and all contained **1,2,4-triazole** with the highest concentration being 0.05 μ g L⁻ ¹ on 7 December 2016 (Figure 4.8B). A detection of 0.02 µg L⁻¹ was obtained 3 May 2017 after sowing a spring barley on 29 April 2017 coated with tebuconazole and prothioconazole. Not until 13 September 2017 was it possible to collect drainage samples. When on 28 September 2017 winter barley, with a seed dressing containing tebuconazole and prothioconazole, was sown, there had already been 1,2,4-triazole detections in two drainage samples of 0.17 μ g L⁻¹ on 13 September and 0.14 μ g L⁻¹ on 20 September. The origin of these detections may be the seed dressing on the spring barley as well at the split application of propiconazole done on 27 June 2017 and 10 July 2017, or even past applications by sprays or seed dressings. During the same period, no detections were done in six samples from the horizontal wells and nine samples from the vertical wells. The sources of the three detections of 1,2,4-triazole in drainage between 7 December 2016 and 3 May 2017 are not known, but may relate to past azole applications in the field. E.g. the tebuconazole applications in 2012 and 2013 (Table A3.3) and/or the use of azolecoated seeds in the period before April 2017. From 7 December 2016 until 26 June 2019: i) 51 drainage samples were collected, all of them contained 1,2,4-triazole (100%); ii) 108 groundwater samples from the vertical filter sections were collected and 42 contained 1,2,4-triazole (39%), two of which had concentrations above 0.1 μ g L⁻¹ (5%); iii) 44 groundwater samples were collected from the horizontal wells and 32 contained 1.2.4triazole (73%), where one were exceeding 0.1 μ g L⁻¹ (0.12 μ g L⁻¹). Throughout the whole period of monitoring, there were no detections of 1,2,4-triazole in three groundwater samples from screens in the upstream well of M12.

Figure 4.8. 1,2,4-triazole detections at **Silstrup**: Precipitation and simulated percolation 1 m b.g.s. (A) together with the concentration of 1,2,4-triazole in the drainage runoff (B), and in water samples (C) collected from the groundwater monitoring screens (including horizontal screens). The green vertical lines indicate the dates of pesticide application: twice propiconazole and twice prothioconazole. 1,2,4-triazole was detected in all drainage samples, whereas this was not the case for the groundwater samples. Non-detections in groundwater samples collected from the upstream well M12 and the downstream wells are given as 0.0025 μ g L⁻¹ and 0.001 μ g L⁻¹, respectively. The purple vertical lines indicate the application of seeds coated with tebuconazole and prothioconazole. Seed coatings prior to 2017 have not been registered.


The herbicide **mesosulfuron-methyl** (together with iodosulfuron-methyl) was applied to winter barley 19 April 2018, where its degradation products **AE-F099095**, **AE-F160459** and **AE-F147447**, were included in the monitoring programme. None of them have been detected in the groundwater or drainage samples. Monitoring is continued for an additional year.

The herbicide **cycloxydim** was applied to winter rape 17 September 2018, where its degradation products, BH 517-T2SO2 and E/Z BH 517-TSO, were included in the monitoring programme. Unfortunately, contents of BH 517-T2SO2 and E/Z BH 517-TSO in drainage and groundwater were not determined before application (Figure 4.9). When the first samples of groundwater were collected, 16 days after the application of cycloxydim, the E/Z BH 517-TSO was found in samples from both horizontal wells as well as two uppermost screens of the vertical wells. Since E/Z BH 517-TSO was not detected in samples from the upstream well M12, this indicates that the detections relate to the cycloxydim application on the field. The BH 517-T2SO2 has until 26 June 2019 not been detected in neither nine drainage samples nor 44 groundwater samples. However, in these drainage- and groundwater samples, E/Z BH 517-TSO was detected in in eight out of nine drainage samples (89%) and 29 out of 43 groundwater samples (67%). The highest concentration detected was 0.11 μ g L⁻¹ in a drainage sample from 14 November 2018, whereas all detections in the 29 groundwater samples were below 0.1 μ g L⁻¹. Monitoring will continue for an additional year.

Figure 4.9. **E/Z BH 517-TSO** detections at **Silstrup**: Precipitation and simulated percolation 1 m b.g.s. (A) together with the concentration of E/Z BH 517-TSO in the drainage (B), and in water samples (C) collected from the groundwater monitoring screens (including horizontal screens). The green vertical lines indicate the date of pesticide application (cycloxydim). Non-detections in groundwater samples collected from the upstream well M12 and the downstream wells are given as $0.0025 \ \mu g \ L^{-1}$ and $0.001 \ \mu g \ L^{-1}$, respectively.

The herbicide **propyzamide** was included in the monitoring programme and sprayed on the winter rape 9 November 2018. Just five days later a concentration of 5.1 μ g L⁻¹ was detected in a drainage sample. On 21 November, no propyzamide was found in the drainage, whereas a concentration of 0.38 μ g L⁻¹ was detected 5 December. Thereafter, concentrations in drainage went erratically up and down, until reaching 0.016 μ g L⁻¹ in June 2019. In a total of 15 drainage samples collected after the application, all but one contained propyzamide (93%) with six samples being above 0.1 μ g L⁻¹ (40%). Following the single November application of propyzamide, the compound was detected in concentrations > 0.01 μ g L⁻¹ in 17 out of 39 groundwater samples (44%), whereof 4 exceeded 0.1 μ g L⁻¹ (10%). Monitoring will continue for an additional year.

Figure 4.10. Propyzamide detections at **Silstrup**: Precipitation and simulated percolation 1 m b.g.s. (A) together with the concentration of propyzamide in the drainage (B), and in water samples (C) collected from the groundwater monitoring screens (including horizontal screens). The green vertical lines indicate the date of propyzamide application. Non-detections in groundwater samples collected from the upstream well M12 and the downstream wells are given as $0.0025 \ \mu g \ L^{-1}$ and $0.001 \ \mu g \ L^{-1}$.

The herbicide **flupyrsulfuron-methyl** was applied to winter barley 18 October 2017 and its degradation products **IN-KF311** and **IN-JE127** were included in the monitoring programme. As described in Chapter 8, IN-J127 was found to be unstable in aqueous solutions, why all the monitoring of IN-J127 conducted within PLAP should be disregarded. The degradation product IN-KF311 was not detected in 42 drainage samples nor in 105 groundwater samples. Monitoring ended 26 June 2019 given flupyrsulfuron-methyl as active ingredient was banded by the European Union 13 September 2017 where after a ban was issued in Denmark December 2018

(https://mst.dk/service/nyheder/nyhedsarkiv/2017/sep/eu-forbud-mod-flupyrsulfuronmethyl/).

5 Pesticide leaching at Estrup

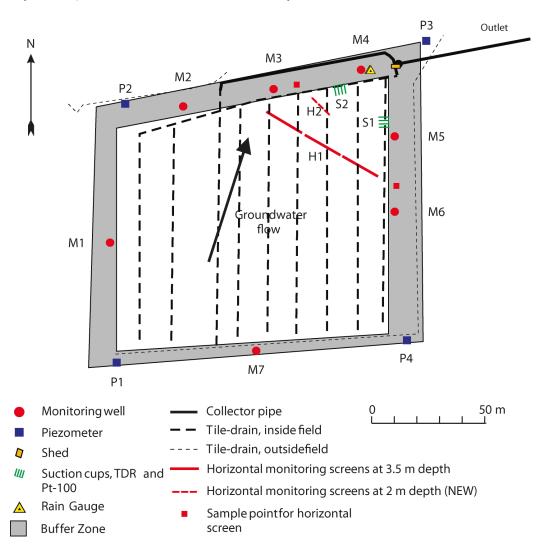
5.1 Materials and methods

5.1.1 Field description and monitoring design

Estrup is located in central Jutland (Figure 1.1) West of the Main Stationary Line on a hill-island, i.e. a glacial till preserved from the Weichselian Glaciation. Estrup has thus been exposed to weathering, erosion, leaching and other geomorphological processes for a much longer period than the other fields. The test field covers a cultivated area of 1.3 ha (105 x 120 m) and is nearly flat (Figure 5.1). The field is highly heterogeneous with considerable variation in both topsoil and aquifer characteristics (Lindhardt *et al.*, 2001), which is quite common for this geological formation. Based on three profiles excavated in the buffer zone bordering the field the soil was classified as Abrupt Argiudoll, Aqua Argiudoll and Fragiaquic Glossudalf (Soil Survey Staff, 1999). The topsoil is characterised as sandy loam with a clay content of 10-20%, and an organic carbon content of 1.7-7.3%. A C-horizon of low permeability also characterises the field. The saturated hydraulic conductivity in the C-horizon is 10^{-8} m s⁻¹, which is about two orders of magnitude lower than at the other clayey till fields (Table 1.1). The geological structure is complex comprising clayey till core with deposits of different age and composition (Lindhardt *et al.*, 2001).

In September 2011, the monitoring system was extended with three horizontal screens (H2) 2 m b.g.s. in the North-Eastern part of the field (Figure 5.1). With maps of tile drain systems always being uncertain, one of the screens should be located just below a tile drain 1.1 m b.g.s., whereas two should be located between two tile drains. A brief description of the drilling and design of H2 is given in Appendix 8.

5.1.2 Agricultural management


Management practice at Estrup during the 2017-19 growing seasons is briefly summarized below and detailed in Appendix 3 (Table A3.4). For information about management practice during the previous monitoring periods, see previous monitoring reports available on http://pesticidvarsling.dk/monitor_uk/index.html.

On 8 April 2017, peas (cv. Mascara – not coated with seed dressing) were sown in the maize stubble, using a combination of a rotary harrow and a seed drill. The peas emerged 14 April 2017. Weeds were sprayed on 15 April 2017 with a mixture of pendimethalin and bentazone, which were not monitored. On 7 August 2017, the peas were desiccated using glyphosate. At harvest 15 August 2017, the pea yield was 24.2 hkg ha⁻¹ of seeds (86% dry matter). Straw amounts, shredded at the field at the harvest, was 18.9 hkg ha⁻¹ (100% dry matter).

On 22 September 2017, the field was ploughed and a winter wheat (cv. Sheriff coated with prothioconazol and tebuconazol) sown. The winter wheat emerged 5 October. The herbicides flupyrsulfuron-methyl and halauxifen-methyl were applied 16 October, neither was included in the monitoring. The 20 April 2018 weeds were sprayed, this time using a product containing mesosulfuron-methyl and iodosulfuron-methyl-Na, which were not monitored. Only three degradation products of mesosulfuron-methyl (AE F099095, AE

F160459 and AE F147447) were included in the monitoring. Another spraying of weeds, using flupyrsulfuron (not monitored) was done 3 May.

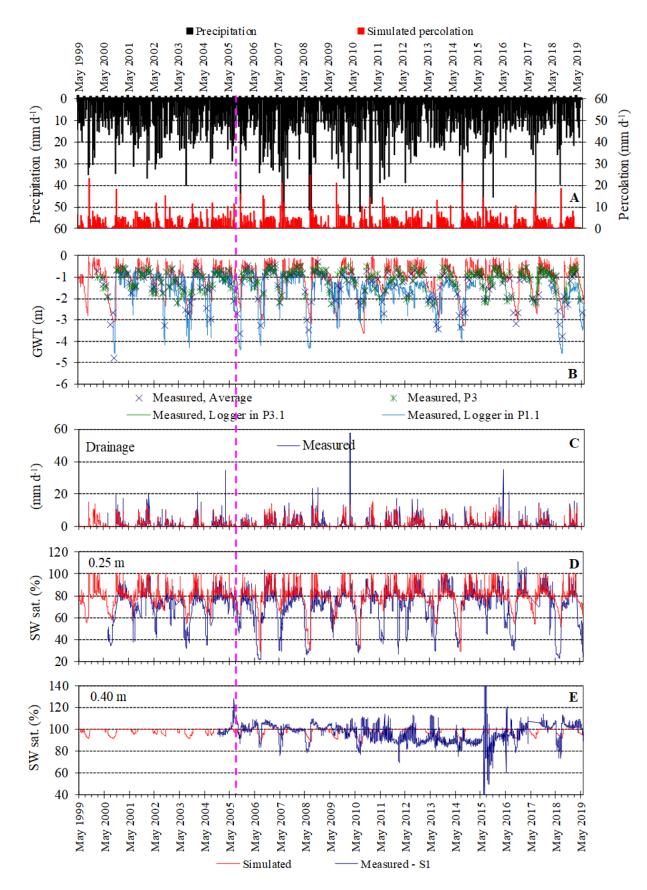
The fungicide thiophanat-methyl was applied 6 June 2018 and its degradation product, carbendazim, was included in the monitoring. The insecticide lambda-cyhalothrin was used 21 June without including any compounds in monitoring. At harvest grain yield of the winter wheat was 75.2 hkg ha⁻¹ (85 % dry matter). An amount of 23.3 hkg ha⁻¹ (100% dry matter) of straw was shredded at the day of harvest.

Figure 5.1. Overview of the **Estrup** field. The innermost white area indicates the cultivated area, while the grey area indicates the surrounding buffer zone. The positions of the various installations are indicated, as is the direction of groundwater flow. Pesticide monitoring is conducted weekly from the drainage system (during period of continuous drainage runoff) and monthly and half-yearly from selected vertical and horizontal monitoring screens as described in Table A2.1 in Appendix 2.

5.1.3 Model setup and calibration

The numerical model MACRO (version 5.2, Larsbo *et al.*, 2005) was applied to the Estrup field covering the soil profile to a depth of 5 m b.g.s., always including the groundwater table. The model is used to simulate the water flow in the variably saturated zone during the monitoring period from July 2000-June 2019 and to establish an annual water balance.

Compared to the setup in Rosenborn et al. (2020), a year of climate and crop data was added to the MACRO setup for the Estrup field. The setup calibrated for the monitoring period May 1999-June 2004 was subsequently evaluated on its ability to predict water balance monitoring results for the monitoring period July 2004-June 2019. For this purpose, the following time series have been used: the observed groundwater table measured in the piezometers located in the buffer zone (a new in situ logger allowing higher resolution has been installed instead of the diver), measured drainage, and soil water content measured at two depths (25 and 40 cm b.g.s.) from the soil profile S1 (Figure 5.1). The TDR probes installed at the other depths yielded unreliable data with saturations far exceeding 100% and unreliable soil water dynamics with increasing soil water content during the drier summer periods (data not shown). No explanation can presently be given for the unreliable data, and they have been excluded from the analysis. The data from the soil profile S2 have also been excluded due to a problem with water ponding above the TDR probes installed at S2, as mentioned in Kjær et al. (2003). Finally, TDR-measurements at 25 cm b.g.s. in February 2010 were discarded given freezing soils (soil temperatures at or below 0°C). The soil water content is measured with TDR based on Topp calibration (Topp et al., 1980), which will underestimate the total soil water content at the soil water freezing point as the permittivity of frozen water is much less than that of liquid water (Flerchinger et al., 2006). Because of the erratic TDR data, calibration data are limited at this field. Data acquisition, model setup as well as results related to simulated bromide transport are described in Barlebo et al. (2007).


5.2 Results and discussion

5.2.1 Soil water dynamics and water balances

The model simulations were generally consistent with the observed data indicating a good model description of the overall soil water dynamics in the variably-saturated zone (Figure 5.2). The model provided an acceptable simulation of the overall level of the groundwater table capturing the seasonal dynamics of high and low groundwater levels (Figure 5.2B). The simulated groundwater level during the summer of 2017, 2018 and 2019 was similar to that measured automatically with a data logger in P3.1, whereas the simulated levels of the summer of 2018 and early summer of 2019 was 1 m higher than logged automatically in P1.1 (Figure 5.2B). This difference between groundwater level in P1.1 and P3.1 is also observed in the manually measured groundwater level. Thus, since approximately 2010 there has been a tendency of the level being up to a meter lower in P1.1 than P3.1 during the summer. For the winter-spring 2018/2019 the manual and automatically measured groundwater table deviate by approximately half a meter. This difference will be investigated. Since the general pattern in simulated groundwater is comparable to previous years, it seems that the extreme summer of 2018 (DMI 2019) is not affecting the model performance as observed at the sandy fields.

The simulated pattern and level of drainage are comparable to the measured drainage and captures the dynamics of the measured drainage (Figure 5.2C). At instances, there is an offset up to around 5 mm d⁻¹ with no clear pattern of over- or underestimation. However, the general drainage dynamics are well captured by the model. Drainage was high during the whole monitoring period compared to that of the other two clayey till fields investigated in the PLAP. This is due to a significantly lower permeability of the C-horizon than of the overlying A and B horizons (see Kjær *et al.* 2005c for details).

The simulated water saturation captures the measured at 0.25 m b.g.s. and 0.40 m b.g.s. to some extent (Figure 5.2D-E). In 0.25 m depth, the simulated soil water saturation generally follows the measurements. During the summer of 2018 and early summer of 2019, the decrease in soil water saturation is not captured in magnitude, where simulated saturations are overestimated. Though, measured lows are not fully captured by the model the overall pattern of decline is captured. As noted in Rosenborn et al. (2020), TDR probes do not always have a sufficient contact to the surrounding soil, which could be the case at 0.25 m depth where the TDR are re-installed after ploughing. In 0.4 m depth, the simulated soil water saturation is 100% in the periods between summers (Figure 5.2E). The reason is that the simulated groundwater table is relatively high in these periods yielding high soil water saturation in 0.4 m depth. The measured data, however, at longer periods shows water saturations above 100% indicating that (i) fully saturated conditions are encountered and/or (ii) the TDR at 0.4 m depth is showing deviating measurements. The groundwater table is often above 0.4 m depth supporting the fully saturated condition that is simulated at 0.4 m depth. Still, the model is not able to capture the decline in water saturation following the decline in water table level during summer periods. At the same time, the TDR is not yielding measurements below 100% after saturated conditions indicating that the TDR measurements represent the matrix slowly adapting to dryer weather compared to the groundwater table being dominated by the rapid flowing water in the macropore systems of worm burrows being connected to fractures.

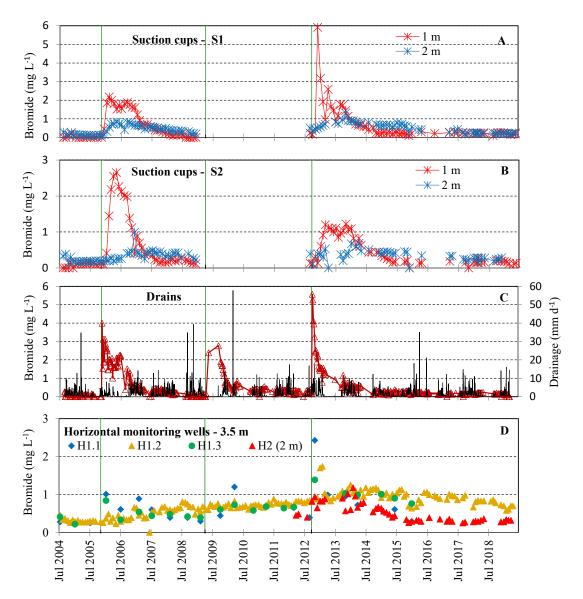
Figure 5.2. Soil water dynamics at **Estrup**: Measured precipitation and simulated percolation 1 m b.g.s. (A), simulated *(red line)* and measured groundwater table, GWT (B), simulated *(red line)* and measured drainage (C), and simulated and measured soil saturation (SW sat.) at two different soil depths (D and E). The measured data in B derive from piezometers located in the buffer zone. The measured data in D and E derive from TDR probes installed at S1 (Figure 5.1). The dotted vertical line indicates the beginning of the validation period (July 2004-June 2019).

The resulting water balance for Estrup for the entire monitoring period is shown in Table 5.1. The measured precipitation (918 mm yr⁻¹) and actual evapotranspiration (412 mm yr⁻¹) in the recent year were slightly below the average since monitoring started - 1082 mm yr⁻¹ and 461 mm yr⁻¹, respectively. Compared to the previous hydrological year, 2017/18, the actual evapotranspiration for 2018/2019 is only deviating by 1 mm yr⁻¹. Hence, with lower precipitation in 2018/2019 compared to 2017/2018, a lower degree of drainage was measured and a little higher degree of recharge to groundwater was estimated.

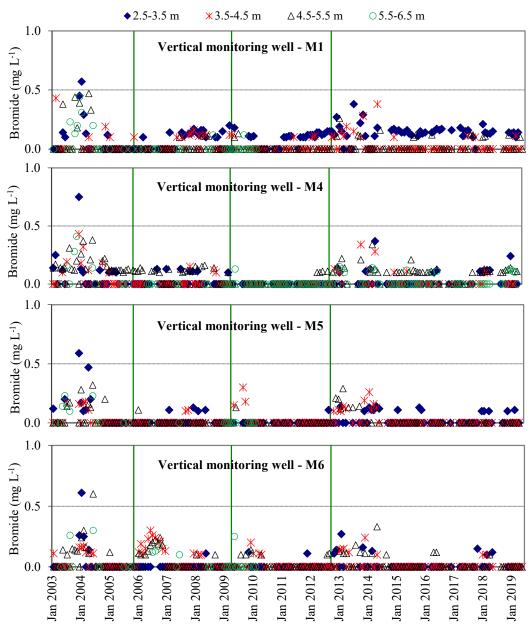
method of Allerup and	Wiausen (1979).					
	Normal		Actual	Measured	Simulated	Groundwater
	precipitation ²⁾	Precipitation	evapotranspiration	drainage	drainage	recharge ³⁾
01.07.99-30.06.001)	968	1173	466	_	553	154 ⁴⁾
01.07.00-30.06.01	968	887	420	356	340	111
01.07.01-30.06.02	968	1290	516	505	555	270
01.07.02-30.06.03	968	939	466	329	346	144
01.07.03-30.06.04	968	928	499	298	312	131
01.07.04-30.06.05	968	1087	476	525	468	86
01.07.05-30.06.06	968	897	441	258	341	199
01.07.06-30.06.07	968	1365	515	547	618	303
01.07.07-30.06.08	968	1045	478	521	556	46
01.07.08-30.06.09	968	1065	480	523	362	62
01.07.09-30.06.10	968	1190	533	499	523	158
01.07.10-30.06.11	968	1158	486	210	341	462
01.07.11-30.06.12	968	1222	404	479	577	339
01.07.12-30.06.13	968	1093	386	503	564	204
01.07.13-30.06.14	968	1015	513	404	449	97
01.07.14-30.06.15	968	1190	419	379	532	392
01.07.15-30.06.16	968	1230	390	491	624	350
01.07.16-30.06.17	968	840	522	274	266	44
01.07.17-30.06.18	968	1098	411	546	542	141
01-07.18-30.06.19	968	918	412	284	391	222

Table 5.1. Annual water balance for **Estrup** (mm yr⁻¹). Precipitation is corrected to the soil surface according to the method of Allerup and Madsen (1979).

¹⁾ Monitoring started in April 2000.


²⁾ Normal values based on time series for 1961–1990 corrected to the soil surface.

³⁾ Groundwater recharge is calculated as precipitation - actual evapotranspiration - measured drainage.


⁴⁾ Where drainage measurements are lacking, simulated drainage was used to calculate groundwater recharge.

5.2.2 Bromide leaching

Bromide has been applied four times at Estrup. The bromide concentrations measured up to October 2005 (Figure 5.3 and Figure 5.4) relate to the bromide applied in spring 2000, as described further in Kjær *et al.* (2003) and Barlebo *et al.* (2007). In March 2009, bromide measurements in the suction cups and monitoring wells M3 and M7 were suspended. Figure 5.3D show a very slow build-up of the bromide concentrations in the horizontal screens at 3.5 m depth though with a few peaks reflecting a slow transport through matrix due to the low hydraulic conductivity and a rapid through macropores.

Figure 5.3. Bromide concentration at **Estrup**. A and B refer to suction cups located at S1 and S2, respectively. The bromide concentration is also shown for drainage runoff (C) and the horizontal monitoring well H1 and H2 (D). From September 2008 to August 2012, bromide measurements in the suction cups were suspended. The green vertical lines indicate the dates of bromide application.

Figure 5.4. Bromide concentration at **Estrup**. The data derive from the vertical monitoring wells (M1, M4, M5 and M6). Screen depth is indicated in m b.g.s. In September 2008, monitoring wells M3 and M7 were suspended. The green vertical lines indicate the dates of the three most recent bromide applications.

5.2.3 Pesticide leaching

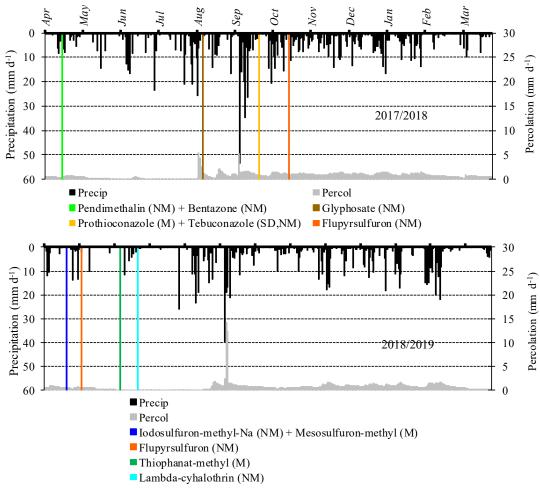
Monitoring at Estrup began in May 2000. Pesticides and degradation products monitored so far are in Table 5.2 (2012-2019) and Table A7.4 in Appendix 7 (2000-2011). Pesticide applications during the most recent growing seasons (2017-2019) are shown together with precipitation and simulated percolation in Figure 5.5. It should be noted that precipitation is corrected to the soil surface according to Allerup and Madsen (1979), whereas percolation (0.6 m b.g.s.) refers to accumulated percolation as simulated with the MACRO model (Section 5.2.1). Moreover, due to the very few datapoints, pesticides applied later than April 2019 are not evaluated and not included in Figure 5.5, although presented in Table 5.2.

This Chapter primarily evaluates the leaching of pesticides and/or degradation products included in the monitoring from 2017 and onwards at Estrup – these compounds are in the following text given in bold. The leaching risk of pesticides applied before 2017 has

been evaluated in previous monitoring reports (see http://pesticidvarsling.dk/monitor_uk/index.html). As all seeds sown in the PLAP are purchased from a commercial agro business supplyer, seeds might with very high certainty have been coated with some sort of seed dressing (SD), which most likely have contained one or more pesticides being included for testing in PLAP. Such information was, however, not registered in PLAP until 2017. Seed dressings used from 2017 and onwards are listed in Table 5.2.

Table 5.2 Pesticides analysed at **Estrup**. For each compound it is listed, whether it is a pesticide (P) or degradation product (M), as well as the application date (Appl. date) and end of monitoring period (End. mon.). Precipitation (precip. in mm) and percolation (percol. in mm) are accumulated within the first year (Y 1st Precip, Y 1st Percol) and first month (M 1st Precip, M 1st Percol) after the first application. C_{mean} is average leachate concentration [μ g L⁻¹] at 1 m depth the first year after application - ? is indicating additional sources. See Appendix 2 for calculation method and Appendix 7 (Table A7.4) for previous applications of pesticides.

Crop – Year of harvest	Applied product	Analysed Pesticide	Appl. date	End mon.	Y 1 st	Y 1 st percol	M 1 st	M 1 st	C_{mean}
Spring barley 2012	Amistar	Azoxystrobin(P)	Jun 12		1083	281	151	29	0.04
Spring Darley 2012	Allistal	CyPM(M)	Jun 12 Jun 12	-	1083	281	151	29	0.04
	Fox 480 SC	Bifenox(P)	May 12	-	1005	281	39	13	< 0.024
	10x 400 SC	Bifenox acid(M)	May 12		1090	281	39	13	0.011
		Nitrofen(M)	May 12		1090	281	39	13	< 0.02
	Mustan a fanta	· · ·	5		1090	281	59 50	13 14	< 0.02
Dag 2012	Mustang forte	Aminopyralid(P)	May 12						
Pea 2013	Fighter 480	Bentazone(P)**	May 13		1071	248	35	10	0.059
	Command CS	Clomazone(P) FMC-65317(M)	Apr 13 Apr 13	1	1094 1094	243 243	61 61	17 17	<0.01 <0.02
	Glyfonova 450 Plus	Glyphosate(P)	Aug 13	1	928	243	131	17	0.10
	Grytonova 450 i las	AMPA(M)	Aug 13	•	928	237	131	13	0.07
Winter wheat 2014	DFF	Diflufenican(P)	Nov 13	-	582	165	86	30	0.19
Winter Wilcat 2014	DII	AE-05422291(M)	Nov 13		582	165	86	30	< 0.01
		· · · ·	Nov 13		582 582	165	86	30	0.01
	E-1: EC 250	AE-B107137(M)							
	Folicur EC 250 Tebuconazole (P)	1,2,4-triazole(M)	May 14	Jun 18	1152	249	51	0.4	?
	Amistar	Azoxystrobin(P)	Jun 14	Apr 16	1176	257	49	0	0.02
		CyPM(M)	Jun 14	Apr 17	1176	257	49	0	0.38
	Glyfonova 450 Plus	Glyphosate(P)	Jul 14	May 16	1219	305	117	0	0.06
		AMPA(M)	Jul 14	May 16	1219	305	117	0	0.1
Maize 2015	Callisto***	Mesotrione(P)	May 15	May 18	1196	299	91	23	0.11
		AMBA(M)	May 15	May 18	1196	299	91	23	< 0.01
		MNBA(M)	May 15	May 18	1196	299	91	23	< 0.01
	MaisTer ^{****}	Foramsulfuron(P)	May 15	May 18	1196	299	91	23	< 0.01
		AE-F130619(M)	May 15	May 18	1196	299	91	23	< 0.01
		AE-F092944(M)	May 15	May 18	1196	299	91	23	< 0.01
Maize 2016	Callisto	Mesotrione(P)	Jun 16	May 18	870	209	148	19	< 0.01
		AMBA(M)	Jun 16	May 18	870	209	148	19	< 0.01
		MNBA(M)		May 18	870	209	148	19	< 0.01
	Harmony SX	Triazinamine(M)		May 18	870	209	148	19	< 0.01
	Thifensulfuron-methyl (P)		tun 10	11149 10	070	207	1.0		0.01
	MaisTer	Foramsulfuron(P)	Jun 16	May 18	936	204	201	28	< 0.01
		AE-F130619(M)	Jun 16	May 18	936	204	201	28	< 0.01
		AE-F092944(M)	Jun 16	May 18	936	204	201	28	< 0.01
Pea 2017									
Winter wheat 2018	Hussar Plus OD	AE-F099095 (M)	Apr 18	Jun 19*	876	231	45	13	< 0.01
SD: Redigo Pro 170 FS	Mesosulfuron-methyl (P)	AE-F160459 (M)	Apr 18	Jun 19*	876	231	45	13	< 0.01
Prothioconazol + ebuconazol)		AE-F147447 (M)	Apr 18	Marts 19	876	231	45	13	< 0.01
Spring barley 2019	Topsin WG Thiophanat-methyl (P) Pixxaro EC	Carbendazim (M)	Jun 18	Jun 19*	-	-	32	2	-
SD: Redigo Pro 170 FS Prothioconazol + ebuconazol)	Halauxifen-methyl (P)	X-729 (M)	May 19	Jun 19*	-	-	81	0	
ecuconazor)	Juventus 90	Metconazole (P)	May 19	Jun 19*	-	-	81	0	9
		1,2,4-triazol (M)	May 19		-	-	81	0	?

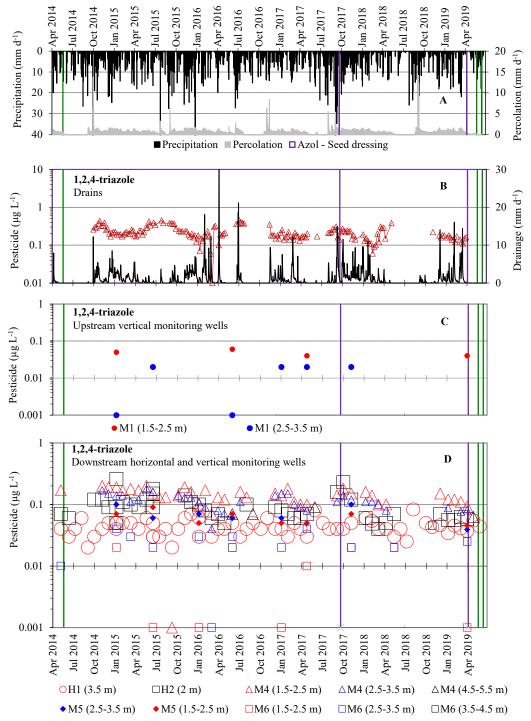

Systematic chemical nomenclature for the analysed pesticides is given in Appendix 1. SD = Seed dressing.

*Monitoring continues the following year.

**Bentazone applied on 16 May 2013, and Command CS, clomazone, on 25 April 2013.

*** Mesotrione was applied twice as Callisto on 27 May 2015 and 6 June 2015.

**** Foramsulfuron was applied twice as MaisTer on 6 June 2015 and 30 June 2015.


Figure 5.5. Application of pesticides at **Estrup** in 2017/2018 (upper) and 2018/2019 (lower) - Substances being monitored in the program are marked (M) and not monitored (NM). Substances applied as seed dressing are marked SD. Measured precipitation are given on the primary axis and simulated percolation 1 m b.g.s. on the secondary axis.

The herbicide **mesotrione** was used in maize in May and June 2015 and twice in June 2016. Mesotrione and two of its degradation products, AMBA and MNBA, were included in the monitoring (as was also the case at Silstrup). None of the three compounds were detected in the background samples collected before application. Mesotrione, AMBA and MNBA were detected in 40, 4 and 11 samples of a total of 93 drainage samples, respectively. A week after the first application in 2015, 3.3 μ g L⁻¹ of mesotrione was detected in the drainage. In groundwater sampled from the horizontal wells mesotrione was detected in three of the 67 samples and the highest concentration measured was 0.13 μg L⁻¹ on 17 June 2015. Two of 90 water samples from the vertical groundwater wells contained mesotrione and the highest concentration was 0.067 μ g L⁻¹ on 6 June 2015. AMBA was detected four times in drainage and the highest concentration was 0.039 µg L^{-1} on 24 February 2016. None of the 157 groundwater samples contained AMBA. MNBA was found in 11 of 93 drainage samples, two were above 0.1 µg L⁻¹, the highest being 0.46 µg L⁻¹ one week after application. MNBA was only detected once in the groundwater at a concentration of 0.017 µg L⁻¹. Monitoring is stopped 30 April 2018 (QA-information is to be found in Rosenbom et al., 2020).

The fungicide tebuconazole was sprayed on winter wheat on 20 May 2014, and the leaching of its degradation product **1,2,4-triazole** was monitored (Figure 5.7). Drainage did not start until 1 October 2014, where a concentration of 0.26 μ g L⁻¹ 1,2,4-triazole was detected (Figure 5.7B). It was not possible to obtain background samples from the

drainage before application as the tile drain system of the field ran dry until the beginning of April 2015 (Figure 5.7B). All 159 drainage samples collected from October 1, 2014 to April 4, 2019 contained 1,2,4-triazole in a concentration > 0.1 μ g L⁻¹, except seven samples which contained concentrations equal to or less than 0.1 μ g L⁻¹. This is equivalent to a find percent of 96% for drainage samples with concentrations exceeding 0.1 μ g L⁻¹. The highest concentration detected was 0.45 μ g L⁻¹ in a drainage sample collected July 29, 2015, and July 6, 2016. Figure 5.7D shows that 1,2,4-triazole was present in the groundwater before tebuconazole was applied, even in a concentration above 0.1 μ g L⁻¹ as detected in a groundwater sample collected from the uppermost screen of M4 (1.5-2.5 m depth). Likely sources for the presence of the 1,2,4-triazole may be sprayings with azol containing fungicides or the sowing of seeds dressed with azol compounds. For the deeper vertical well screens, a contribution from upstream fields cannot be ruled out. From the entire 1,2,4-triazole monitoring period from 2014 to present, there seem to be patterns of high 1,2,4-triazole concentrations in drainage (exceeding 0.1 μ g L⁻¹) generally coinciding with rainfall events. Whether the pattern in drainage sample concentration is seasonal needs further evaluation. Nevertheless, the concentration variation does seem to coincide with precipitation intensity (Figure 5.7A and B). In the topmost screen (1.5-2.5 m b.g.s.) of well M4, 8 of 40 groundwater samples contained concentrations equal to or less than 0.1 μ g L⁻¹. Of these 8 samples, one did not contain 1,2,4-triazole in a detectable concentration. The remaining 32 of the 40 samples, that is 80%, showed concentrations of 1,2,4-triazole above 0.1 µg L⁻¹ (Figure 5.7D). In the screen depth of 2.5-3.5 m b.g.s., 12 of 33 samples showed concentrations equal to or less than 0.1 μ g L⁻¹. The remaining 21 of 33 samples, that is 64%, showed concentrations of 1,2,4-triazole above 0.1 μ gL⁻¹ (Figure 5.7D). In the remaining two screen depths of well M4, no sample concentrations of 1,2,4-triazole above 0.1 μ g L⁻¹ were found, albeit 5 of 19 samples showed concentrations of 1,2,4-triazole > 0.01 μ g L⁻¹. Overall from the vertical wells, 146 samples have been collected and 26 did not contain 1,2,4-triazole whereas 53 contained concentrations of more than 0.1 µg L⁻¹. Thus, 1,2,4-triazole concentrations exceeding 0.1 μ g L⁻¹ were found in 36% of all groundwater samples in vertical wells at Estrup. In the horizontal wells, H1 and H2, 1,2,4-triazole detections where found in all 109 samples, whereof 11 (10%) had concentrations exceeding 0.1 μ g L⁻¹ (Figure 5.7D). Concurrently, there seems to be a pattern of varying concentration magnitude, as measured for the drainage samples. Previously in this report, it has been discussed that the continuous background concentrations in upstream wells and concentrations in groundwater wells before the most recent tebuconazole application 2014, indicated other previous sources of 1,2,4-triazole, such as earlier azol applications and sowing with seeds coated with azoles, and contribution from upstream sources like mentioned earlier. However, based on the clear patterns of higher concentrations above the background concentrations in drainage and wells and M1 not being an optimal upstream well (supported by it being affected by the bromide application at the field, Figure 5.4), a 1,2,4-triazole source outside the field seems to be minor. Instead, the pattern in drainage and groundwater samples suggest that the source is from the field itself. As for the potential previous sources from the field, it is noted that in M6 at 2.5-3.5 m depth, the 1,2,4-triazole concentrations after the tebuconazole application in 2014 have been consistently a factor of two higher than the concentration level before the application. This could indicate that the 1,2,4-triazole detections are from the most recent tebuconazole application rather than previous applications eventhough the bromide leaching shows a high degree of dispersion. Further, sowing of seeds dressed with tebuconazole and other azole fungicides is a likely contributing factor. Monitoring is ongoing with the addition of a split application on

spring barley with an azole, **metconazole**, not previously included in PLAP. Metconazole itself will also be included in the monitoring programme.

Figure 5.7. 1,2,4-triazole detections at **Estrup**: Precipitation and simulated percolation 1 m b.g.s. (A) together with measured concentration of 1,2,4-triazole detections in drainage and groundwater (C-D; Water collected from upstream and downstream horizontal (H) and vertical screens (M)). The green vertical lines represent tebuconazole application. The purple vertical lines represent seed dressing, which was not registered prior 2017. Note that concentrations specified as 0.001 μ g L⁻¹ represent non-detects.

The herbicide **thifensulfuron-methyl** was applied both in May 2015 and June 2016 (Table A3.4). However, its degradation product, IN-A4098 (triazinamine), was not monitored before June 2016, why the May 2015 application do not appear in Table 5.2. As the product Maister (containing iodosulfuron-methyl) was additionally applied in June

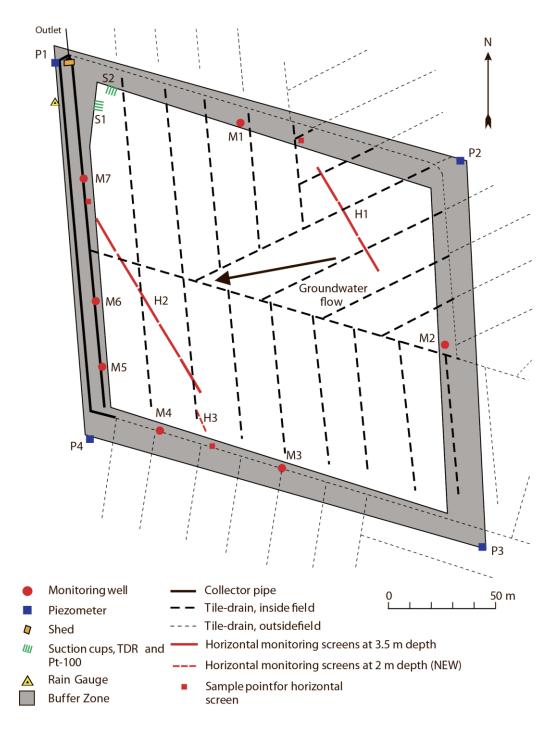
2015 and 2016 to the field, the active ingredient iodosulfuron also degrade into **IN-A4098**, and thus this application could contribute to the leaching thereof. None of 110 drainage samples and 346 groundwater samples contained IN-A4098. Monitoring ended April 2018.

Mesosulfuron-methyl-Na was, as at Jyndevad, applied to winter wheat 20 April 2018, and its three degradation products **AE-F099095**, **AE-F160459** and **AE-F147447** were included in the monitoring programme. As of now neither of them has been detected. Monitoring will be continued for an additional year.

Thiophanat-methyl was, as at the sandy field Jyndevad, applied to winter wheat 6 June 2018 and the degradation product **carbendazim** was included in the monitoring programme. Within the first year of monitoring, there has been no detection of carbendazim in groundwater samples and only three detections in drainage samples (max. conc. $0.015 \ \mu g \ L^{-1}$). Monitoring will be continued for an additional year.

The herbicide halauxifen-methyl and fluroxypyr were sprayed on the field 22 May 2019. The degradation product **X-729** of halauxifen-methyl was included in the monitoring program. The degradation product was not detected in drainage or groundwater. Monitoring has just been initiated, why monitoring will be continued for additionally two years.

6 Pesticide leaching at Faardrup


6.1 Materials and methods

6.1.1 Field description and monitoring design

Faardrup is located in Southern Zealand (Figure 1.1) and the test field covers a cultivated area of 2.3 ha (150 x 160 m, Figure 6.1). The terrain slopes gently $(1-3^{\circ})$ to the West. Based on three soil profiles excavated in the buffer zone bordering the field, the soil was classified as Haplic Vermudoll, Oxyaquic Hapludoll and Oxyaquic Argiudoll (Soil Survey Staff, 1999). The topsoil is characterised as sandy loam with 14–15% clay and 1.4% organic carbon. Within the upper 1.5 m numerous desiccation cracks coated with clay are present. The test field contains glacial deposits dominated by sandy till to a depth of about 1.5 m overlying a clayey till. The geological description shows that small channels or basins filled with melt water clay and sand occur both interbedded in the till and as a large structure crossing the test field (Lindhardt *et al.*, 2001). The calcareous matrix and the reduced matrix begin at 1.5 m and 4.2 m b.g.s., respectively.

The dominant direction of groundwater flow is towards the west in the upper part of the aquifer (Figure 6.1). During the monitoring period the groundwater table was located 1-2 and 2-3 m b.g.s. in the lower and upper parts of the area, respectively. During fieldwork within a 5 m deep test pit dug nearby the field, it was observed that most of the water entering the pit came from an intensely horizontally-fractured zone in the till at a depth of 1.8-2.5 m. The intensely fractured zone could very well be hydraulically connected to the sand fill in the deep channel, which might facilitate parts of the percolation. The bromide tracer study showed that the applied bromide reached the vertical monitoring well (M6) located in the sand-filled basin (Figure 6.4), however, not in higher concentrations as compared to concentrations detected in water from the other vertical monitoring wells. This indicates that the hydraulic contact with the surface in the "basin" does not differ from that in other parts of the test field, and that the basin is a small pond filled with sediments from local sources.

In September 2011, the monitoring system was extended with three horizontal screens (H3) 2 m b.g.s. in the south-western corner of the field (Figure 6.1). One of the screens should be located just below the drain 1.2 m b.g.s. A brief description of the drilling and design of H3 is given in Appendix 8.

Figure 6.1. Overview of the **Faardrup** field. The innermost white area indicates the cultivated land, while the grey area indicates the surrounding buffer zone. The positions of the various installations are indicated, as is the direction of groundwater flow (arrow). Pesticide monitoring is conducted weekly from the drainage system during periods of continuous drainage runoff, and monthly and half-yearly from selected vertical and horizontal monitoring screens as described in Appendix 2 (Table A2.1).

6.1.2 Agricultural management

Management practice at Faardrup during the 2017-19 growing seasons is briefly summarized below and detailed in Appendix 3 (Table A3.5). For information about management practice during the past monitoring periods, see previous monitoring reports available on http://pesticidvarsling.dk/monitor_uk/index.html.

Spring barley (cv. Quench coated with imazalil), sown 2 May 2017, emerged 10 May 2017. The spring barley was sprayed with the herbicides, iodosulfuron-methyl-Na and mesosulfuron-methyl, on 2 June 2017. Neither of the substances were monitored. On 19 June 2017, the fungicide propiconazole was sprayed together with the herbicides halauxifen-methyl and florasulam. The degradation product X-757 of halauxifen-methyl and TSA of florasulam were included in the monitoring. 1,2,4-triazole, a degradation product of propiconazole, was included in the monitoring in 2014.

When harvested on 22 August 2017 the spring barley yielded 60.8 hkg ha⁻¹ of grain (85% dry matter) and 28.9 hkg ha⁻¹ of straw (100% dry matter was taken from the field).

The field was sprayed with the herbicide glyphosate 20 October 2017 (not monitored) followed by ploughing 3 December 2017. On the 20 April 2018 sugar beets (cv. Smart Jannika coated with imidacloprid and hymexazol) was sown. The beets emerged 7 May 2018. The first spraying of weeds took place 29 May 2018 where five substances were used. Three of the five – phenmedipham, ethofumesate, and foramsulfuron-methyl – were not monitored. Of the two remaining, metamitron and thiencarbazone-methyl, metamitron itself and its degradation products desamino-metamitron and MTM-126-ATM were monitored. From thiencarbazone-methyl, the degradation product AE1394083 (BYH 18636-carboxylic acid) was monitored.

As weeds at the time of the first spraying had developed well beyond the stage of cotyledon, the treatment was less efficient than needed. Consequently, mechanical weeding was done on 8 June.

A second and a third spraying of weeds was carried out on 12 June and 27 June, using metamitron, phenmedipham and ethofumesate. At the spraying 27 June the substance lambda-cyhalothrin (not monitored) was used against aphids. Harvest of the sugar beets took place 28 September 2018 yielding 79.8 hkg ha⁻¹ of beets (100% dry matter) and 32.0 hkg ha⁻¹ of top (100 % dry matter).

On 8 April 2019, a spring barley (cv. IKWS Irina coated with prothioconazole and tebuconazole) was sown. On 15 April 2019, the barley emerged. A spraying of weeds with diflufenican was done 26 April 2019, though not monitored. Applications of proquinazid against fungi was done 3 June 2019 and 17 June 2019 and its degradation products IN-MM671 and IN-MM991 included in the monitoring.

Harvest of the spring barley was done 12 August 2019 were yields of grain was 82.0 hkg ha⁻¹ (85 % dry matter). The amount of straw, shredded and left in the field was 35.5 hkg ha⁻¹. Dry matter of the straw was, by mistake, not measured.

6.1.3 Model setup and calibration

The numerical model MACRO (version 5.2) was applied to the Faardrup field covering the soil profile to a depth of 5 m b.g.s., always including the groundwater table. The model was used to simulate the water flow in the variably saturated zone during the full monitoring period September 1999-June 2019 and to establish an annual water balance.

Compared to the setup in Rosenbom *et al.* (2020), a year of climate and crop data was added to the MACRO setup for the Faardrup field. The setup calibrated for the monitoring

period May 1999-June 2004 was subsequently evaluated on its ability to predict water balance monitoring results for the monitoring period July 2004-June 2019. For this purpose, the following time series were used: observed groundwater table measured in the piezometers located in the buffer zone, water content measured at three depths (25, 60 and 110 cm b.g.s.) from the two profiles S1 and S2 (Figure 6.1) and measured drainage. Data acquisition and model setup are described in Barlebo *et al.* (2007).

Due to electronic problems, precipitation measured at Flakkebjerg located three km East of Faardrup was used for the monitoring periods: July 1999-June 2002, July 2003-June 2004, January-February 2005, January-February 2006 and July 2006-June 2007. Precipitation measured locally at Faardrup was used for the rest of the monitoring period including the present reporting period.

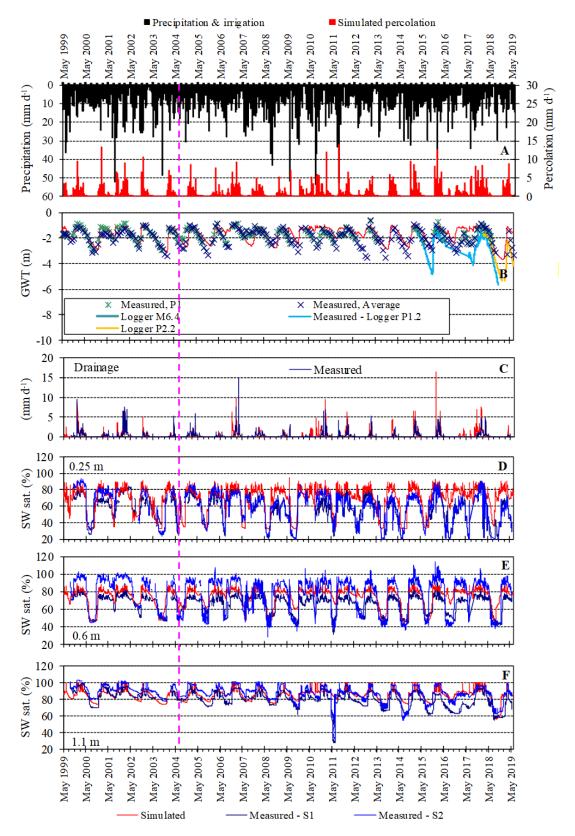
Table 6.1. Annual water balance for Faardrup (mm yr⁻¹). Precipitation is corrected to the soil surface according to the method of Allerup and Madsen (1979).

	Normal	Precipitation ²⁾	Actual	Measured	Simulated	Groundwater
	precipitation ¹⁾		Evapotranspiration	drainage	drainage	recharge ³⁾
01.07.99-30.06.00	626	715	572	192	152	-50
01.07.00-30.06.01	626	639	383	50	35	206
01.07.01-30.06.02	626	810	514	197	201	99
01.07.02-30.06.03	626	636	480	49	72	107
01.07.03-30.06.04	626	685	505	36	19	144
01.07.04-30.06.05	626	671	469	131	55	72
01.07.05-30.06.06	626	557	372	28	16	158
01.07.06-30.06.07	626	796	518	202	212	77
01.07.07-30.06.08	626	645	522	111	65	12
01.07.08-30.06.09	626	713	463	46	20	204
01.07.09-30.06.10	626	624	415	54	43	155
01.07.10-30.06.11	626	694	471	133	184	90
01.07.11-30.06.12	626	746	400	98	106	247
01.07.12-30.06.13	626	569	456	62	92	50
01.07.13-30.06.14	626	593	425	44	88	124
01.07.14-30.06.15	626	819	493	123	167	202
01.07.15-30.06.16	626	800	405	124	167	271
01.07.16-30.06.17	626	594	409	0	43	184
01.07.17-30.06.18	626	789	432	169	289	188
01.07.18-30.06.19	626	667	485	5	312	178

¹⁾ Normal values based on time series for 1961–1990.

²⁾ For July 1999-June 2002, July 2003-June 2004, in January and February of both 2005 and 2006, and July 2006-June 2007, measured at the DIAS Flakkebjerg meteorological station located 3 km from the field (see detailed text above).
³⁾ Groundwater recharge is calculated as precipitation - actual evapotranspiration - measured drainage.

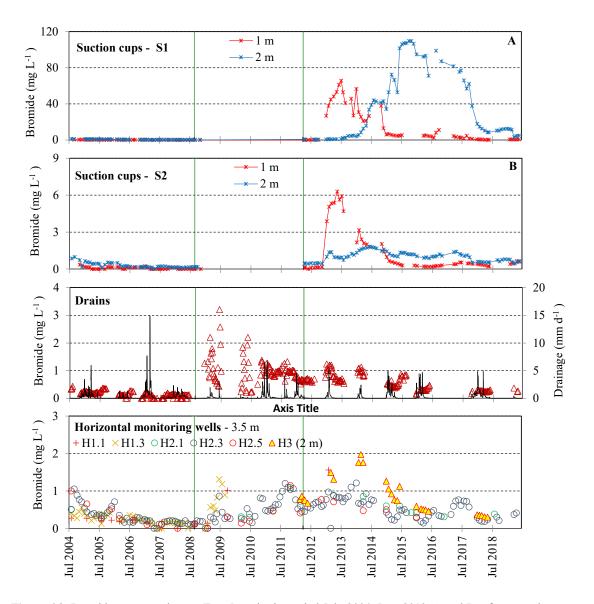
6.2 Results and discussion

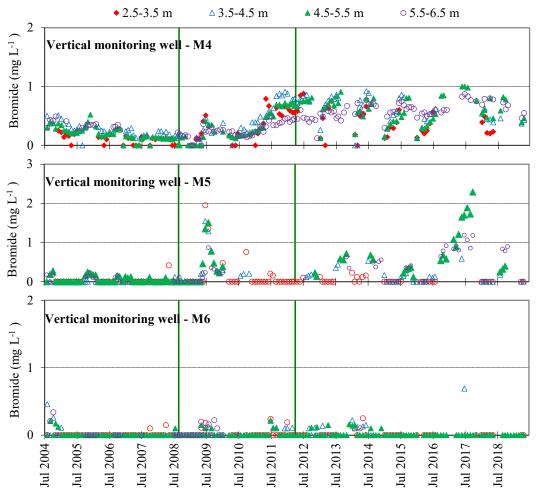

6.2.1 Soil water dynamics and water balance

The groundwater level and dynamics over the entire monitoring period is generally well captured by the model (Figure 6.2B). Within the recent hydrological year, the simulated groundwater table follows the changes in groundwater table, though the loggers, P1.2 and P2.2 are deviating from the remaining measurements. Whether this difference of lower measured groundwater levels by the loggers are due to the extreme hot summer of 2018 (DMI 2019) or measurement offset will be clarified in the forthcoming report.

Although, not clear from Figure 6.2C, simulated drainage is overestimated compared to measured drainage (Table 6.1). Generally, the model is capturing the main trends in seasonality throughout the entire monitoring period.

The simulated water saturation in all three horizons in the hydraulic year July 2018-June 2019 was generally well-described by the model (Figure 6.2D, 6.2E and 6.2F). As generally observed, the water saturation patterns are captured with an offset in all three depths (Figure 6.2D, 6.2E and 6.2F) during both summer and winter.


The resulting water balance of all monitoring periods is shown in Table 6.1. Compared to the mean of previous years, the recent hydrological year (July 2018-June 2019) was characterised by mean precipitation and recharge whereas drainage and actual evapotranspiration was low.


Figure 6.2. Soil water dynamics at **Faardrup**. Measured precipitation and simulated percolation 1 m b.g.s. (A), simulated *(red line)* and measured groundwater table, GWT (B), simulated *(red line)* and measured drainage (C), and simulated and measured soil water saturation (SW sat.) at three different soil depths (D, E and F). The measured data in B derive from piezometers located in the buffer zone. The measured data in D, E and F derive from TDR probes installed at S1 and S2 (Figure 6.1). The dotted vertical line indicates the beginning of the validation period (July 2004-June 2019).

6.2.2 Bromide leaching

The bromide concentration shown in Figure 6.3 and 6.4 relates to the bromide applied in May 2000, August 2008 and April 2012, where 30 kg ha⁻¹ potassium bromide was applied each time. In September 2008, bromide measurements in the suction cups and monitoring wells M2 and M7 were suspended. A drastic increase in bromide concentration in M4 and M5 was detected in May-June 2009 (Figure 6.4). To follow the leaching of bromide through the variably saturated zone into the drainage and groundwater in more detail, water from the suction cups were analysed for its concentration of bromide in connection with the application of bromide on 4 April 2012. The outcome revealed a factor ten in differences in concentrations measured in water from suction cups of S1 and S2, respectively, indicating a much higher bromide source term at S1 than S2. Common for S1 and S2 was a drastic increase in bromide concentration at 1 m depth in January 2013. which seems to be the result of snowmelt transporting bromide down to the level of the groundwater table situated at approximately the depth of the tile drains and suction cups at 1 m depth. Bromide leaching also seems to reach 2 m depth at both S1 and S2 at approximately the same initial concentrations in January 2013, wherefrom the bromide concentrations differ a lot. The high level in bromide concentration at 2 m depth in S1 was, however, also reached at the end of the hydrological year 2015/2016. This high concentration level of bromide at S1 is not comparable to the detections in water from the other installations at Faardrup (Figure 6.3 and 6.4) or the other PLAP-fields. Such difference can only delineate that water sampling with suction cups in low permeable fractured soil media like clayey till may give: (i) a very local and uncertain picture of the overall bromide leaching as well as (ii) an indication of the local variability in leaching of bromide. Supporting this is that the bromide concentration level in 2 m depth at S2 is approximately comparable to the one measured in the drainage (not present during the hydrological year 2016/2017) collected from 1 m depth, such that the concentration measured in water from 2 m depth at S2 could be caused by focused preferential bromide transport. This is supported with the bromide peaks in water samples collected from drainage and groundwater conciding with peaks in the drainage.

Figure 6.3. Bromide concentrations at **Faardrup** in the period July 2004–June 2019. A and B refer to suction cups located at S1 and S2. The bromide concentration is also shown for drainage runoff (C) and the horizontal monitoring wells. The horizontal wells H1 and H2 are situated 3.5 m b.g.s., and H3 in 2 m b.g.s. (D). From December 2008 to March 2012, bromide measurements in the suction cups were suspended. The green vertical lines indicate the dates of the two most recent bromide applications.

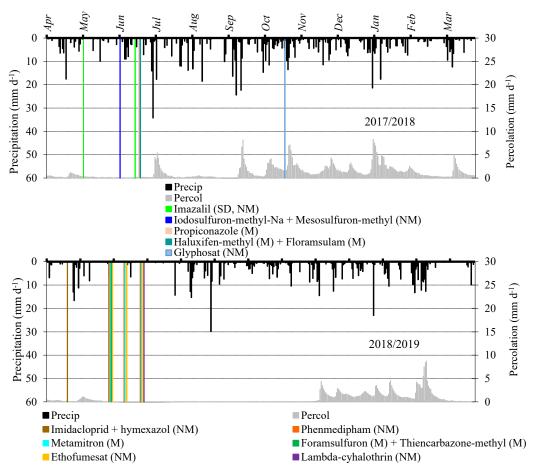


Figure 6.4. Bromide concentrations at **Faardrup** in the period July 2004–June 2018. The data derive from the vertical monitoring wells (M4, M5 and M6). Screen depth is indicated in m b.g.s. The green vertical lines indicate the dates of the two most recent bromide applications.

6.2.3 Pesticide leaching

Monitoring at Faardrup began in September 1999. Pesticides and/or their degradation products selected for monitoring are shown in Table 6.2 and Table A7.5 in Appendix 7. The application time of the pesticides included in the monitoring during the two most recent growing seasons is shown together with precipitation and simulated percolation in Figure 6.5. It should be noted that the precipitation is corrected to the soil surface according to Allerup and Madsen (1979), whereas percolation (1 m b.g.s.) refers to accumulated values as simulated with the MACRO model. Moreover due to the very few datapoints, pesticides applied later than April 2019 are not evaluated and not included in Figure 6.5, although presented in Table 6.2. As all seeds sown in the PLAP are purchased from a commercial agro business supplier, seeds might with very high certainty have been coated with some sort of seed dressing (SD), which most likely have contained one or more pesticides being included for testing in PLAP. Such information was, however, first registered in PLAP from 2017. Seed dressings used from 2017 and onwards are listed in Table 6.2.

This Chapter primarily evaluates the leaching of pesticides and/or degradation products included in the monitoring from 2017 and onwards at Faardrup – these compounds are in the following text given in bold. The leaching risk of pesticides applied before 2017 has

been evaluated in previous monitoring reports (see <u>http://pesticidvarsling.dk/monitor_uk/index.html</u>).

Figure 6.5. Application of pesticides at Faardrup in 2017/2018 (upper) and 2018/2019 (lower) - Substances being monitored in the program are marked (M) and not monitored (NM). Substances applied as seed dressing are marked SD. Measured precipitation are given on the primary axis and simulated percolation 1 m b.g.s. on the secondary axis.

Due to too high costs on analyses, the monitoring of the degradation product 1,2,4triazole, which originates from the azole fungicides e.g. tebuconazole and prothioconazole, had to be suspended on 9 September 2015 until May 2016. In addition to the economic constraints, new compounds where not added to the monitoring programme of Faardrup until May 2016.

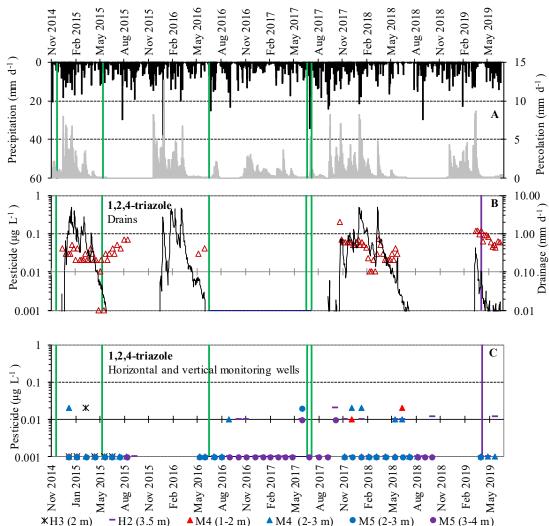
The herbicide **fluroxypyr** was applied in May 2016 and its two degradation products, fluroxypyr pyridinol and fluroxypyr methoxypyridine, were included in the monitoring program. As fluroxypyr was applied before (in April 2014 and May 2015) background concentrations of the two degradation products might have been affected by those applications. This, however, proved not to be the case, as samples of drainage and groundwater contained neither of the compounds. A total of 29 drainage samples and 146 groundwater samples were collected without detection of fluroxypyr pyridinol or fluroxypyr methoxypyridine. Monitoring was, hence, ended May 2018.

Two herbicides, halauxifen-methyl and florasulam, were applied together to the field on 19 June 2017. The degradation product **X-757** of haluxifen-methyl and **TSA** of florasulam were included in the monitoring program but not detected in any of the 34 drainage samples nor in 118 groundwater samples. Monitoring ended March 2019.

Table 6.2. Pesticides analysed at Faardrup. For each compound it is listed whether it is a pesticide (P) or degradation product (M), as well as the application date (Appl. date) and end of monitoring period (End. mon.). Precipitation (precip. in mm) and percolation (percol. in mm) are accumulated within the first year (Y 1st Precip, Y 1st Percol) and first month $(M 1^{st} Precip, M 1^{st} Percol)$ after the first application. C_{mean} refers to average leachate concentration $[\mu g L^{-1}]$ at 1 m depth the first year after application - ? is indicating additional sources. See Appendix 2 for calculation method and Appendix 8 (Table A8.5) for previous applications of pesticides.

$\frac{8 (Table A8.5) \text{ for }}{\text{Crop}-\text{ Year of }}$	f Applied	Analysed	Appl.	End	Y 1 st	Y 1 st	M 1 st	M 1 st	C _{mean}
harvest	Product	pesticide	date	mon.	Precip.		Precip.		
Spring barley and	Fighter 480	Bentazone(P)	Jun 10	Jun 15*	693	327	49	29	< 0.01
	Bentazone(P)								
Red fescue 2010	Fox 480 SC	Bifenox(P)	Oct 10	Jun 12	351	190	75	72	0.02
	Bifenox(P)	Bifenox acid(M)	Oct 10	Jun 12	351	190	75	72	2.54
		Nitrofen(M)	Oct 10	Jun 12	351	190	75	72	0.01
Red fescue 2011	Fusilade Max	Fluazifop-P(M)	May 11	Mar 12	730	0	59	0	< 0.01
	Fluazifop-P-butyl (P)	TFMP(M)	May 11	Apr 15	730	0	59	0	< 0.01
Spring barley and	Glyphogan	Glyphosate(P)	Oct 11	Aug 12	425	17	56	17	< 0.01
White clover 2012	Glyphosate(P)	AMPA(M)	Oct 11	Aug 12	425	17	56	17	< 0.01
	Fighter 480	Bentazone(P)	May 12	Sept 15	527	220	29	4	< 0.01
	Bentazone(P)								
	Flexity	Metrafenone(P)	Jun 12	Apr 15	580	215	96	14	< 0.01
	Metrafenone(P)								
White clover 2013	Fighter 480	Bentazone(P)	May 13	Sept 15	711	213	82	0	0.02
	Bentazone(P)								
	Kerb 400 SC	Propyzamid(P)	Jan 13	Apr 15	640	213	64	51	< 0.01
	Propyzamid(P)	RH-24560(M)	Jan 13	Apr 15	640	213	64	51	< 0.01
		RH-24644(M)	Jan 13	Apr 15	640	213	64	51	< 0.01
		RH-24655(M)	Jan 13	Apr 15	640	213	64	51	< 0.01
Winter wheat 2014	Folicur EC250	1,2,4-triazole (M)**	Nov 14	Sept 15	796	241	73	51	0.03
	Tebuconazole (P) Lexus 50 WG Flupyrsulfuron- methyl(P)	Flupyrsulfuron-methyl(P)	Nov 14 +Apr 15	Oct 16	796	241	94	81	< 0.01
	metnyi(i)	IN-JV460(M)	Nov 14 +Apr 15	Oct 16	796	241	94	81	< 0.01
		IN-KY374(M)	Nov 14 +Apr 15	Oct 16	796	241	94	81	< 0.01
		IN-KC576(M)	Nov 14 +Apr 15	Oct 16	796	241	94	81	< 0.01
Spring Barley 2016	Starane 180S Fluroxypyr(P)	Fluroxypyr methoxy- pyridine(M)	May 15	May 18	785	286	46	0	< 0.01
		Fluroxypyr pyrdinol(M)	May 15	May 18	785	286	46	0	< 0.01
	Bumper 25 EC Propiconazole(P) ¹⁾	1,2,4-triazole(M)	Jun 16	Jun 19*	621	204	129	23	?
Spring Barley 2017 SD: Fungazil A	Zypar Florasulam(P)	TSA (M)	Jun 17	Jan 19	1176	271	110	0	< 0.01
(Imazalil)	Halauxifen-methyl	X-757 (M)	Jun 17	Jan 19	1176	271	110	0	< 0.01
	(P)								
	Bumper 25 EC	1,2,4-triazole (M)	Jun 17	Jun 19*	1176	271	110	0	?
Sugar Beet 2018 SD: Gaucho WS70 (Imidacloprid) + Tachigaren WP (Hymexazol)	Propiconazole(P) ²⁾ Conviso One Thiencarbazone- methyl (P)	AE1394083 (M)	May 18	Jun 19*	607	234	31	0	<0.01
× - /	Goltix SC 700	Metamitron (P)	May 18	Jun 19*	607	234	31	0	< 0.01
	Metamitron (P)	Desamino-metamitron (M)	May 18 May 18	Jun 19 [*]	607	234	31	0	<0.01
Spring barley 2019	Talius	MTM-126-ATM (M) IN-MM671 (M)	May 18 Jun 19	Jun 19* Jun 19*	607	234	31	0	<0.01
	Proquinazid (P)	IN-MM991 (M)	Jun 19	Jun 19*	-	-	-	-	-

Systematic chemical nomenclature for the analysed pesticides is given in Appendix 1. SD = Seed dressing. ¹⁾ Propiconazole only applied in half of the maximum allowed dose.


²⁾ Propiconazole applied twice 19 June and 7 July.

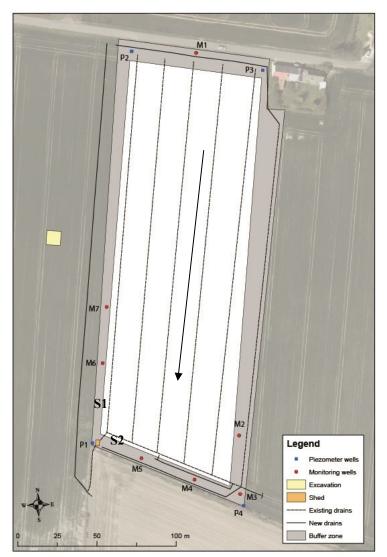
*Monitoring continues the following year.

Monitoring started in May 2014. *Monitoring of 1,2,4-triazole in drainage was not conducted given no drainage occurring between June 2016 to October 2017. The values given are hence based on a scar data material.

In the hydrological years 2014/2015, tebuconazole was applied on winter wheat in November 2014 to test the leaching potential of its degradation product 1,2,4-triazole. It should be noted that it was not possible to sample the drainage before the application and thereby measure any background concentration in drainage. Samples collected from the vertical wells prior to application did not contain 1,2,4-triazole. In May 2015, another azole fungicide, prothioconazole, was applied to spring barley to evaluate that it will not degrade to 1,2,4-triazole in major amounts in soil as specified in the EFSA conclusion of 2007. Following this application an increase in concentration of 1,2,4-triazole was detected in the water samples collected from drainage. Note that no samples were obtained from drainage between August 2015 and May 2016 given the economic constraints. Shortly after May 2016, it was possible to collect two drainage samples that both contained 1,2,4-triazole. Drainage was first initiated again in late fall 2017 approximately five months after the application with propiconazole in June 2017, where a concentration above 0.1 µg L⁻¹ was detected in the first sample. The concentration level in the drainage samples hereafter decline. This pattern was repeated following the 2019 azole-application, which will be evaluated in the next PLAP-report. Hitherto, nearly all drainage samples (77 of 79 samples, that is 97%) showed detections of 1,2,4-triazole, albeit in concentrations not exceeding 0.1 μ g L⁻¹ (Figure 6.6B). The fact that 1,2,4-triazole is detected in water from drainage in a continuous pattern, indicates a surface-near source wherefrom 1,2,4-triazole was formed and do not degraded quickly enough.

In the vertical monitoring wells, 5 of 268 (5%) groundwater samples contained 1,2,4triazol, albeit in concentrations not exceeding 0.1 μ g L⁻¹ (Figure 6.6C). For the horizontal monitoring wells, 16 of 78 (21%) groundwater samples contained 1,2,4-triazol, albeit in concentrations not exceeding 0.1 μ g L⁻¹ (Figure 6.6C). Though drainage samples were not collected from August 2015 to May 2016, there is an overall pattern indicating that detections of 1,2,4-triazol in groundwater samples occur when drainage samples contain 1,2,4-triazol. However, this is not quantified, but especially the double application of propiconazole in 2017 (Table 6.2 and Figure 6.6) showing the highest measured concentration of 1,2,4-triazole in drainage samples and the most detections in the groundwater samples support the pattern (Figure 6.6C). Concurrently, since drainage is related to rainfall intensity, the detection of 1,2,4-triazole in groundwater also seems related to rainfall intensity. Monitoring is being continued.

Figure 6.6. 1,2,4-triazole detections at **Faardrup**: Precipitation and simulated percolation 1 m b.g.s. (A) together with the concentration of 1,2,4-triazole in water samples collected from drainage (B – drainage given as a black line) and groundwater (C). Note that no samples were analysed for 1,2,4-triazole between August 2015 and May 2016 given economic constraints. The green vertical lines indicate the date of the tebuconazole (2014), prothioconazole (2015) and propiconazole (2016 and 2017) application. The purple vertical line represents seed dressing, which was not registered prior 2017. Note that concentrations specified as 0.001 μ g L⁻¹ represent non-detects.


The two herbicides **metamitron** and **thiencarbazone-methyl** were applied together on sugar beets 29 May 2018. In this connection, metamitron itself plus its two degradation products, **metamitron-desamino** and **MTM-126-ATM**, as well as the degradation product of thiencarbazone-methyl **AE1394083** (BYH 18636-carboxylic acid) were included in the monitoring program. None of the compounds were detected in any of the 16-17 drainage samples nor in 69-70 groundwater samples (the number of samples are compound specific, why the interval). Monitoring is continued for an additional year.

7 Pesticide leaching at Lund

7.1 Materials and methods

7.1.1 Field description and monitoring design

Lund is located in the Southern part of the Stevns peninsula in the Eastern part of Zealand 500 m West of the village Lund (Figure 1.1). The area is located South of the road Lundeledsvej, approximately 500 m North of the shoreline at an elevation of 7-10 m a.s.l. It covers an area of 2.76 ha, of which the cultivated area makes up 2.06 ha (300 m x 100 m, Figure 7.1). The field is privately owned and leased by the Department of Agroecology at Aarhus University.

Figure 7.1. Overview of the Lund field. The innermost white area indicates the cultivated land, while the grey area indicates the surrounding buffer zone. The positions of the various installations are indicated, as is the direction of groundwater flow (arrow). Pesticide monitoring is conducted weekly from the drainage system during periods of continuous drainage and monthly from selected vertical monitoring well screens. At S1 and S2, water contents (via TDR) and soil temperatures (via Pt100) are measured at four different depths as at the other PLAP-fields. Additionally, suction cups are installed to collected pore water from the variably saturated matrix for analysis of no pH-dependent compounds.

The monitoring design for Lund is similar to the other till fields (Silstrup, Estrup and Faardrup) as described in detail in Lindhardt *et al.* (2001) with one exception; no horizontal wells have yet been installed given the need of knowledge regarding the groundwater fluctuations of the field to assess the optimal depth of such a well. A brief description of the drilling and design of a horizontal well is given in Appendix 8.

7.1.2 Agricultural management

Management practice at Lund during the 2017-19 growing seasons is briefly summarized below and detailed in Appendix 3 (Table A3.6).

The field was ploughed 22 March 2017 and on 3 April 2017 sown with spring barley (cv. Irina seed dressed with imazalil) with a lay of smooth meadow grass and white clover. The 20 April 2017 the spring barley had emerged. A mixture of bentazone and pendimethalin was used against weeds on 9 May 2017. Only the bentazone was included in the monitoring. Azoxystrobin, a fungicide, was applied 15 June 2017 and together with its degradation product CyPM both were included in the monitoring program. Harvest of the spring barley was done 13 August 2017 yielding 71 hkg ha⁻¹ of grain (85 % dry matter) and 85.2 hkg ha⁻¹ of straw being removed from the field (dry matter not determined). The ley was desiccated using glyphosate 19 October 2017, and on 31 October 2017 30 kg ha⁻¹ of KBr was applied as a tracer.

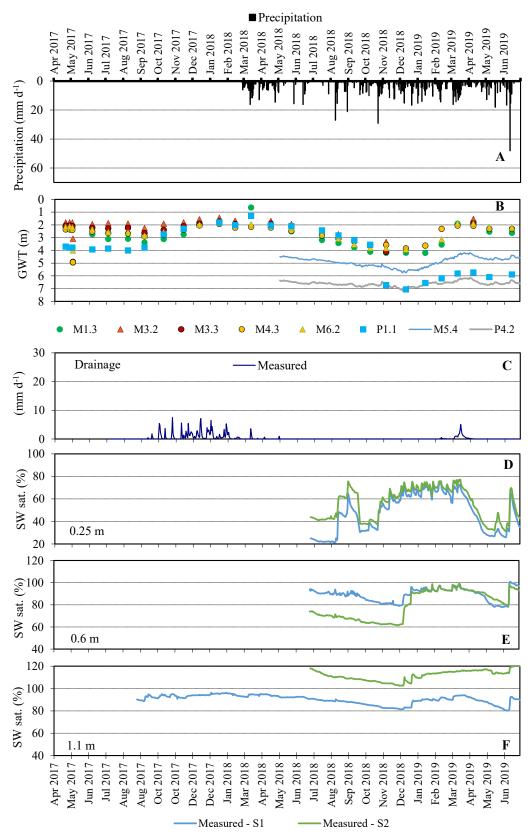
Ploughing of the field was done 4 January 2018. A spring barley (cv. Quench with a seed dressing containing prothioconazole and tebuconazole) was sown 20 April 2018.

A mixture of the fungicide prothioconazole and the herbicides halauxifen-methyl and florasulam was sprayed on the field 30 May 2018. The degradation product TSA of florasulam, as well as 1,2,4-triazole of prothioconazole were included in the monitoring. A second spraying with prothioconazole against fungi was done 12 June 2018. The spring barley was harvested 6 August yielding 55.5 hkg ha⁻¹ of grain (85% dry matter) and 22.5 hkg ha⁻¹ of straw (100 % dry matter).

The field was ploughed 19 September 2018 and sown with winter barley (cv. Memento coated with prothioconazole and tebuconazole) the same day. On the 28 September 2018, the winter barley had emerged. Diflufenican together with prosulfocarb was used against weeds 8 November 2018, neither were monitored. Another herbicide used, but not monitored, was fluroxypyr applied 9 May 2019. On 11 May, the field was sprayed with halauxifen-methyl and florasulam. The degradation product TSA of florasulam had been monitored since the previous May.

Harvest of winter barley was done 13 July 2019 where the grain yield was 66.4 hkg ha⁻¹ (85% dry matter) and 35.9 hkg ha⁻¹ of straw (dry matter not measured).

7.2 Results and discussion


7.2.1 Soil water dynamics and water balance

Yet, no numerical model has been set up for the Lund field. Therefore, the results presented are solely monitoring results based on data gathered hitherto. Furthermore, the

data period is not consistent for all measurement devices due to initial installation errors and lag in device installation.

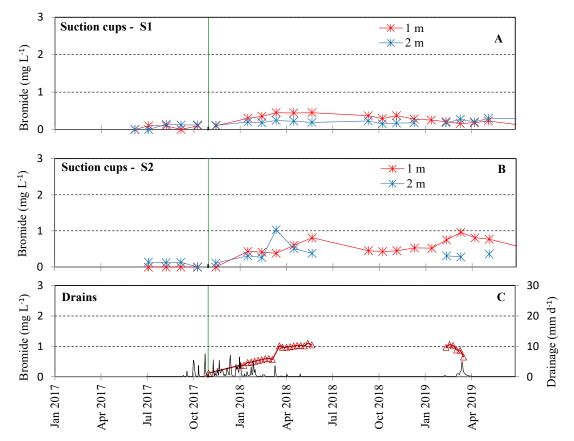
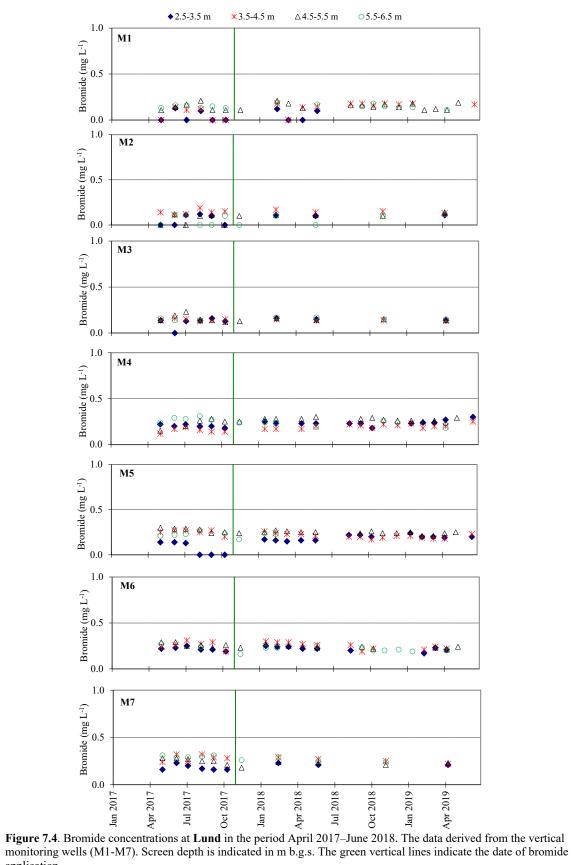
The monitored groundwater levels from the recent hydrological year, indicate that the screens in many of the wells do not respond hydraulically as expected to seasonal fluctuations in the groundwater table – it was more or less only P1.1 and then, after a half year of pumping before sampling, well screens M1.3, M3.2, M3.3, M4.3 and M6.2 started showing the expected hydraulic response (Figure 7.2B). To improve the other wells' hydraulic response regarding groundwater level measurements as well as sampling of groundwater from the hydraulic active pathways in the till – wells will have to be cleaned up. The monitoring wells in contact with the hydraulic active system in the till need to be delineated and selected for future monitoring. Pesticide monitoring data should thus be interpreted tentatively for the present.

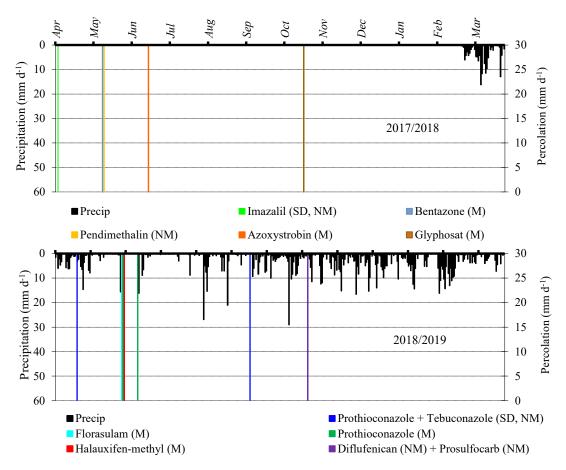
As the measured precipitation does not cover the whole period – no evaluations can be based on these data. Likewise, the water saturation measured via TDR has not been measured consistently in all depths. The available time series at 1.1 m depth (showing between 80% to 100% water saturation) could indicate that the measurements are off since groundwater table is located around 1.5 m depth during the measuring period.

Figure 7.2. Soil water dynamics at **Lund**: Measured precipitation (A), measured groundwater table, GWT (B), measured drainage (C), and measured saturation (SW sat.) at three different soil depths (D, E and F). The measured data in B derived from piezometers located in the buffer zone. The measured data in D, E and F derived from TDR probes installed at S1 and S2 (Figure 7.1).

7.2.2 Bromide leaching

30 kg ha⁻¹ potassium bromide was applied to the field at the end of October 2017 (Figure 7.3). The concentrations measured in the suction cups installed at S1 and S2 (Figure 7.1) show that background concentrations were present prior to the bromide application (Figure 7.3A and B). The cause of the background concentration is under investigation. Bromide concentrations did, however, increase steadily after application. Bromide was not present in the drainage prior to the application but was measured almost instantly after the application (Figure 7.3C). The concentrations in drainage also seemed to increase and follow the pattern seen in the suction cups. In the vertical monitoring wells, the pattern is somewhat different. Here, background concentrations prior to the bromide applications are also measured, while no increase in concentrations are measured after the application within the recent hydrological year (Figure 7.4). This could indicate that bromide was present in the matrix soil in both the variably saturated zone and the saturated zone (groundwater) and that the drainage was primarily driven by the precipitation. A detailed hydrogeological field-scale analysis is needed to clarify this and will be conducted based on additional field activities and modelling (MACRO) incorporating the soil characteristics as well as a longer coherent monitoring of climate, agricultural practices (including crop information), water saturation in the till, drainage, and the level of the groundwater.


Figure 7.3. Bromide concentrations at Lund. A and B refer to suction cups located at S1 and S2 (Figure 7.1), respectively. C is the bromide concentration in drainage.

application.

7.2.3 Pesticide leaching

Monitoring at Lund began in May 2017. The used pesticides as well as their degradation products are shown in Table 7.1 together with information regarding the seeds including any seed dressing (SD) as given by the commercial agro business supplier. The pesticides selected for testing at Lund have previously been thoroughly tested at the other PLAP-fields. Water was collected monthly from the upper two waterfilled screens in all the seven vertical monitoring wells. The application time of the pesticides included in the monitoring is shown together with the available precipitation in Figure 7.5. It is noted that precipitation measurements only are available from January 2018. Moreover due to the very few datapoints, pesticides applied later than April 2019 are not evaluated and not included in Figure 7.5, although presented in Table 7.1.

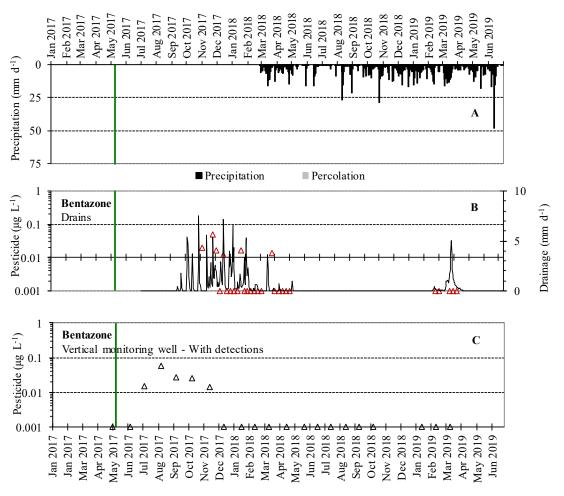


Figure 7.5. Application of pesticides at **Lund** in 2017/2018 (upper) and 2018/2019 (lower) - Substances being monitored in the program are marked (M) and not monitored (NM). Substances applied as seed dressing are marked SD. Measured precipitation are given on the primary axis and simulated percolation 1 m b.g.s. on the secondary axis.

Table 7.1. Pesticides analysed at **Lund**. For each compound it is listed whether it is a pesticide (P) or degradation product (M), as well as the application date (Appl. date) and end of monitoring period (End. mon.). Precipitation (precip. in mm) are accumulated within the first year (Y 1st Precip, Y 1st Percol) and first month (M 1st Precip, M 1st Percol) after the first application – Given lack of monitored climate data and a hydrological model for Lund, no estimates are available (nd). C_{mean} is average leachate concentration [μ g L⁻¹] at 1 m depth the first year after application. See Appendix 2 for calculation method and Appendix 8 (Table A8.5) for previous applications of pesticides. Seed dressing SD is added for each crop.

tor each crop.									
Crop – Year of harvest	Applied	Analyte	Appl.	End	Y 1 st	Y 1 st	M 1st	M 1st	C _{mean}
-	Product	-	date	mon.	Precip.	Percol.	Precip.	Percol	
Spring barley 2017 SD: Fungazil A (Imazalil)	Fighter 480	Bentazon (P)	May 17	Jun 19*	nd	nd	nd	nd	nd
	Amistar	Azoxystrobin (P)	Jun 17	Jun 19*	nd	nd	nd	nd	nd
		CyPM (M)	Jun 17	Jun 19*	nd	nd	nd	nd	nd
	Glyphonova 450	Glyphosate(P)	Oct 17	Jun 19*	nd	nd	nd	nd	nd
	Plus	AMPA(M)	Oct 17	Jun 19*	nd	nd	nd	nd	nd
Spring barley 2018	Zypar								
SD: Redigo Pro 170 FS (Prothioconazole + tebuconazole)	Florasulam (P)	TSA (M)	May 18	Jun 19*	nd	nd	39	nd	nd
,	Proline 250 EC								
	Prothioconazole (P)	1,2,4-triazole (M)	May 18	Jun 19*	nd	nd	39	nd	nd
Winter barley 2019	Zypar		•						
SD: Redigo Pro 170 FS	Florasulam (P)	TSA (M)	May 18	Jun 19*	nd	nd	39	nd	nd
(Prothioconazole + tebuconazole)	Halauxifen-methyl (P)	X-729 (M)	May 18	Jun 19*	nd	nd	39	nd	nd

The herbicide bentazone was applied on 9 May 2017 to test its leaching potential in spring barley and the coherent leaching of its three degradation products, 6-hydroxybentazone, 8-hydroxy-bentazone and N-methyl-bentazone. Following the application, only bentazone was detected once $(0.02 \ \mu g \ L^{-1})$ in a drainage sample collected from the field 1 November 2017 (Figure 7.6B). This detection was in the first sample collected from the tile drain system of Lund even though pulses of drainage were monitored since September 2017. The cause for the lack of sampling relate to water building up in the tile drainage system from below giving rise to erroneously flowrates and water compositions in the drainage. Obtaining this knowledge of the tile drain system, gave rise to the installation of a pump removing the drainage building up from downstream the drainage well. A total of 22 drainage samples were collected whereof none contained the three degradation products and six contained bentazon with the maximum concentration being $0.05 \text{ }\mu\text{g }\text{L}^{-1}$ on the 22 November 2017. In water from the vertical monitoring wells M1-M7 (168 groundwater samples in total for bentazon and 146 samples for the three degradation products), bentazon was detected in 5 out of 14 water samples from the upper screen of the downstream well M5 (1.5-2 m depth). None, of the three degradation products were detected. Monitoring of the three degradation products was hence stopped on 18 April 2018, a year after the initiation of the test given lack of detections and causes for testing based on EFSA-documentation. Bentazon was detected two months after the application for a period of around six months with a maximum concentration of $0.058 \mu g$ L⁻¹. No concentrations were detected in groundwater samples after November 2017 (Figure 7.6C). It is noted that the last bentazon concentrations were detected in drainage in March 2018. Due to lack of supporting data (Figure 7.6A), a detailed evaluation of potential causes for the measured leaching is not possible. Yet, in the current hydrological year 2018/2019, data shows that bentazone is not detected in any of the samples, whether that be from drainage or groundwater (Figure 7.6B and 7.6C). This indicate that bentazone is either degraded or sorbed to the topsoil. Monitoring of bentazone continues.

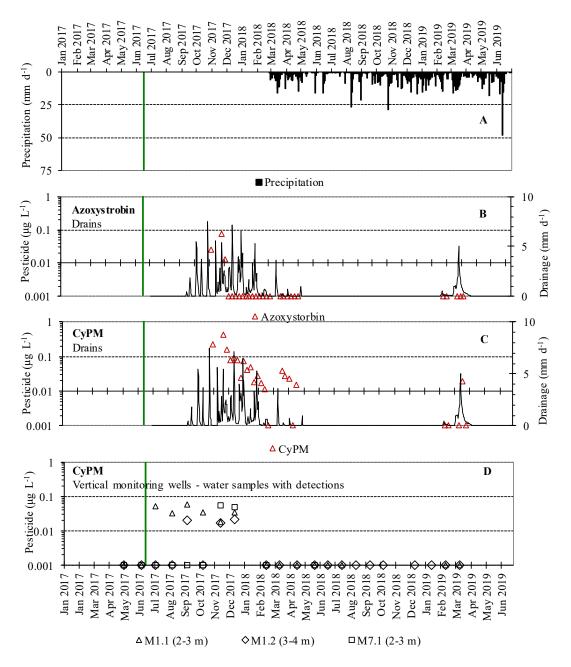
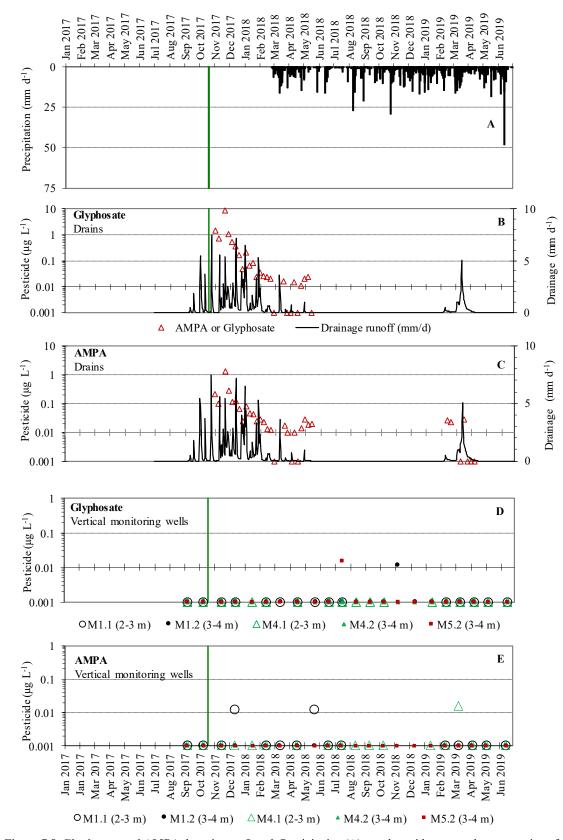


Figure 7.6. Bentazone detection at Lund: Precipitation (A) together with the concentration of bentazone detections in water samples collected from drainage (B) and groundwater (C). The green vertical line indicates the date of bentazone application. Water samples without detections of bentazon is specified as $0.001 \ \mu g \ L^{-1}$.


The fungicide azoxystrobin was applied on 15 June 2017 on the spring barley to evaluate the leaching potential of azoxystrobin and its degradation product, CyPM (Figure 7.7). None of the two compounds were detected in groundwater before application. Since no water was flowing in the tile drain system just before application of the fungicide, a drainage background sample and hence concentration in the drainage could not be obtained. Azoxystrobin was not detected in any of the collected groundwater samples, but present in the three first samples of drainage collected 1, 22 and 29 of November 2017 with a maximum concentration of $0.077 \ \mu g \ L^{-1}$. Hereafter, none of the collected drainage samples had concentrations of azoxystrobin indicating that a pulse of azoxystrobin had passed 1.1 m depth in November 2017 (Figure 7.7B). Contrarily, the degradation product CyPM, was detected in samples of both the drainage and the groundwater. In fact, 19 of 25 drainage samples (76%) contained CyPM, with concentrations exceeding 0.1 μ g L⁻¹ (max. 0.43 μ g L⁻¹) in the first three drainage samples following the azoxystrobin application (Figure 7.7C). Hence, CyPM concentrations exceeding 0.1 µg L⁻¹ were evident in 12% of the drainage samples. A single CyPM detection in the drainage sample seems to coincide with the drainage peak events as also seen at the other fields having a tile drain system. CyPM was detected only twice in 198 groundwater samples (1%) collected from the downstream well M7 in November (0.054 μ g L⁻¹) and December $(0.049 \ \mu g \ L^{-1})$ (Figure 7.7D). CyPM was, however, present in nine groundwater samples

out of 37 collected from the upstream well M1, but here the concentrations peaked two months earlier than in the water from the downstream wells. This indicates an inflow from upstreams fields, which is declining, when a quick pulse of CyPM leach through the Lund field in November-December 2017 (Figure 7.7C and 7.7D). Hence, upstream fields seem to contribute to the CyPM detections in the water from the downstream wells.

Figure 7.7. Azoxystrobin and **CyPM** detections at **Lund**: Precipitation (A) together with concentrations of azoxystrobin (B) and CyPM (C) in drainage samples presented in log-scale with the flow in the tile drain system of the field (secondary axis) and CyPM (D) in groundwater samples, where M1 is the upstream well. The green vertical line indicates the date of application. Note that concentrations specified as 0.001 μ g L⁻¹ represent non-detects.

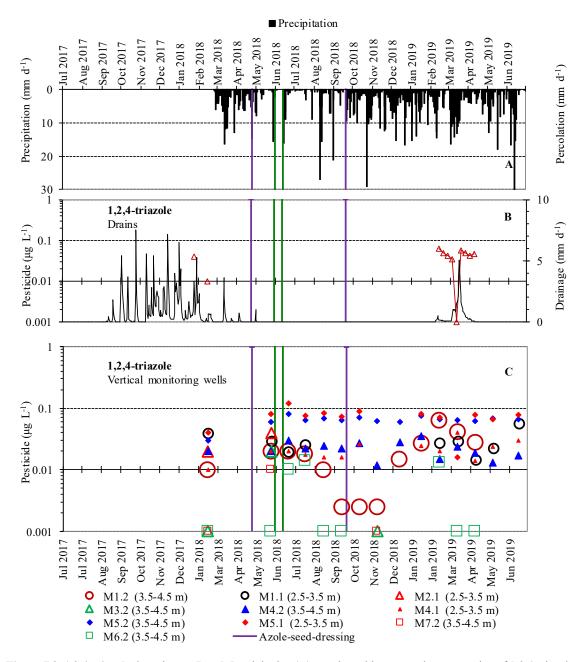

Glyphosate, a herbicide, was applied on 19 October 2017 to kill off the grass clover ley. As of yet, 21 of 33 drainage samples contained glyphosate, where eight samples (24%) had concentrations exceeding 0.1 µg L⁻¹. The maximum glyphosate concentration was 8.6 µg L⁻¹ on 22 November 2017 (Figure 7.8B). No drainage samples with glyphosate detected were collected in the recent hydrological year 2018/2019. Leaching of the degradation product, AMPA, to the tile drain system showed similar pattern as that of glyphosate (but being a factor 10 lower in concentration level) with three samples showing detections in the recent hydrological year (Figure 7.8C). These three detections coincide with peaks in drainage as seen at the other fields with a tile drain system. As of yet, 26 of 33 samples contained AMPA, where five samples (15%) had concentrations exceeding 0.1 µg L⁻¹. As seen for CyPM, the detections in the drainage clearly indicate a pulse of glyphosate and AMPA leaching through the clay till and for glyphosate in especially high concentrations. In the groundwater samples, no detections of neither glyphosate nor AMPA were made prior to the application (Figure 7.8D and E). Of 406 groundwater samples analysed for glyphosate and AMPA, two and three samples, respectively, showed detections, albeit with concentrations not exceeding 0.1 μ g L⁻¹. From the groundwater monitoring hitherto, it is thus difficult to deduce the impact of the applied glyphosate in terms of persistence of both glyphosate and AMPA. The results indicate that the hydraulic contact between the wells and the active transport pathways within the till needs to be examined in more detail. Monitoring is ongoing.

Figure 7.8. Glyphosate and **AMPA** detections at **Lund**: Precipitation (A) together with measured concentration of glyphosate in drainage (B) and AMPA detections in drainage(C) and groundwater (D); Water collected from vertical screens (M). The green vertical line indicates the date of glyphosate application. Note that concentrations specified as $0.001 \ \mu g \ L^{-1}$ represent non-detects.

To examine the background level of 1,2,4-triazole in the drainage and groundwater from Lund compared to those of the other PLAP-fields, water samples were collected on 24 January (one drainage sample only) and 14 February (one drainage sample as well as groundwater from the two upper waterfilled screens of all the wells). The results revealed that 1,2,4-triazole was present in the drainage with maximum concentration of 0.04 μ g L^{-1} (Figure 7.9B). Detections were also made in the groundwater from the downstream wells M2, M4 and M5 with maximum concentration of 0.04 μ g L⁻¹, and in the upstream well M1 yielding maximum concentration of 0.04 μ g L⁻¹ (Figure 7.9C). The last drainage sample collected before July 2018 (water stopped flowing in the tile drain system during summer) revealed a 1,2,4-triazole concentration of 0.01 µg L⁻¹. On 24 April 2018 spring barley seeds coated with tebuconazole and prothioconazole were sown in the field. A month later, groundwater samples from the two upper screens of the vertical wells M1-7 were collected. They showed an increase of 1,2,4-triazole concentration in all groundwater samples collected except from the upper screen in the upstream well M1 having a decline in concentration and M6.2 still having no detections of 1,2,4-triazole. Bearing these detections in mind, the field was sprayed with the fungicide prothioconazole on 30 May 2018 and again 12 June 2018. Following the two prothioconazole applications, the earlier detected increase in 1,2,4-triazole concentration, following sowing with seeds dressed with tebuconazole and prothioconazole, continued for groundwater collected from the two upper screens of M5 and M4. In the recent hydrological year 2018/2019, all the drainage samples except one showed detections of 1,2,4-triazole, albeit not exceeding 0.1 μ g L⁻¹. In groundwater samples, detections of 1,2,4-triazole were obtained in 97 of 128 samples, where one sample (1%) exceeded 0.1 μ g L⁻¹ (Figure 7.9C). Especially, groundwater samples from the two upper screens in downstream well M5 have concentrations often above 0.06 ug L⁻¹. Detections from groundwater collected from the upstream well M1 are generally below the concentrations detected in the downstream well M5, and therefore contribution from upstream fields to the groundwater immediately below the Lund field seems to be of minor importance for the level of detections and the concentration of the water samples collected from M5. However, further monitoring is needed to clarify this. Monitoring continues.

Florasulam and **halauxifen-methyl** were applied on spring barley 30 May 2018 and on winter barley 11 May 2019. On 30 May 2019, the degradation product **TSA** of florasulam was included in the monitoring program. As of now there were no detections of TSA in the nine drainage samples and 114 groundwater samples collected. In addition to TSA, the degradation product **X-729** of haluxifen-methyl was included in the monitoring program after the May 2019 application. Within this short test period, the two degradation products were not detected in the 18 groundwater samples collected. No drainage samples have yet been collected. Monitoring continues.

Figure 7.9. 1,2,4-triazole detections at **Lund**: Precipitation (A) together with measured concentration of 1,2,4-triazole detections in drainage (B) and groundwater (C); Water collected from upstream (M1) and downstream vertical screens (M2-7). The green vertical lines indicate the dates of prothioconazole application. The purple vertical lines indicate the application of seeds coated with tebuconazole and prothioconazole. Note that concentrations specified as 0.001 μ g L⁻¹ for M1 and 0.0025 μ g L⁻¹ for M2-7 represent non-detects. Seed dressing prior 2017 have not been registered.

8 Pesticide analysis quality assurance

Reliable results and scientifically valid methods of analysis are essential for the integrity of the present monitoring programme. Consequently, the field monitoring work has been supported by intensive quality assurance entailing continuous evaluation of the analyses employed. Two types of sample are used in the quality control 1) samples with known pesticide composition and concentration are used for *internal monitoring* of the laboratory method (internal QC), and 2) *externally spiked samples* that are used to incorporate additional procedures such as sample handling, transport and storage (external QC). Pesticide analysis quality assurance (QA) data for the period July 2018 to June 2019 are presented below, while those for the preceding monitoring periods are given in previous monitoring reports (available on http://pesticidvarsling.dk/).

8.1 Materials and methods

All pesticide analyses were carried out at a commercial laboratory selected based on a competitive tender. To assure the quality of the analyses, the call for tenders included requirements as to the laboratory's quality assurance (QA) system comprising both an internal and an external control procedure.

8.1.1 Internal QA

With each batch of samples, the laboratory analysed one or two control samples prepared in-house at the laboratory as part of their standard method of analysis. The pesticide concentration in the internal QA samples ranged between $0.03-0.10 \ \mu g \ L^{-1}$. Using these data, it was possible to calculate and separate the analytical standard deviation into within-day (S_w), between-day (S_b) and total standard deviation (S_t). Total standard deviation was calculated using the following formula (Wilson 1970, Danish EPA 1997):

$$s_t = \sqrt{s_w^2 + s_b^2}$$

8.1.2 External QA

Three times during the period July 2018 to June 2019, two external control samples per test field were analysed at the laboratory (except at Faardrup, please see below) along with the various water samples from the five fields. In this reporting period, the external control sample times were in February, March and April 2019. Two standard solutions of different concentrations were prepared from stock mixtures in ampoules prepared by Dr. Ehrenstorfer/LGC, Germany (Table 8.1). New ampoules were used for each set of standard solutions. The standard solutions were prepared two days before a sampling day and stored cold and dark until use. For the preparation of standard solutions, e.g. 150 μ L (for low level sample when 3L groundwater is available) or 350 μ L (for high level sample when 3L groundwater is available) or 350 μ L (for high level sample when 3L groundwater is available) of the pesticide mixtures, was pipetted into a preparation glass containing 10 mL of ultrapure water. The glass was sealed, shaken thoroughly, and shipped to the staff collecting samples at the field locations. The staff finished the preparation of control samples in the field by quantitatively transferring the standard solution to a 1.0, 2.0, or 3.0 L measuring flask – depending on the available

water in the groundwater well (determined before preparation of the standard solutions). The standard solution was transferred to the measuring flaks, diluted and the volume in the flask adjusted to the mark with groundwater from a defined groundwater well in each field. After thorough mixing, the control sample was decanted to a sample bottle like the monitoring sample bottles, labelled, and transported to the laboratory together with the regular samples.

In the present report period, the final concentrations in the external QC samples shipped for analysis in the laboratory were $0.050 \ \mu g \ L^{-1}$ for the spiked low-level sample, and $0.117 \ \mu g \ L^{-1}$ for the high-level sample. The pesticides included, their concentration in the initial ampoule, and in the final QC samples sent for analysis are indicated in Table 8.1.

Blank samples consisting only of ultra-pure HPLC water were also included as control for false positive findings in the external QA procedure every month. All samples (both spiked and blanks) included in the QA procedure were labelled with coded reference numbers, so that the laboratory was unaware of which samples were QC controls, blanks, or true samples.

Table 8.1. Pesticides included in the **external** QC control samples in the period 1.7.2018-30.6.2019. Concentrations in both the original ampoules and in the final high-level and low-level external control samples used. Compounds in ampoule were dissolved in: ampoule no. 1 in acetonitrile, ampoule no. 2 in MTBE, ampoule no. 3 in Millipore water and ampoule no. 4 in methanol.

Compound	Ampoule	Ampoule	Lot	High-level	Low-level	
	concentration	No.	no.	control	control	
	(µg L ⁻¹)			(µg L ⁻¹)	(µg L ⁻¹)	
1,2,4-triazole	1000	1	929095MB	0.117	0.050	
AE F099095	1000	2	991583AL	0.117	0.050	
AE1394083	1000	2	991583AL	0.117	0.050	
AMPA	1000	4	929106WA	0.117	0.050	
Bentazone	1000	3	991582AL	0.117	0.050	
CyPM	1000	3	991582AL	0.117	0.050	
Desamino-metamitron	1000	3	991582AL	0.117	0.050	
E/Z BH 517-TSO	1000	2	991583AL	0.117	0.050	
Glyphosate	1000	4	929106WA	0.117	0.050	
Propyzamide	1000	3	991582AL	0.117	0.050	
TSA	1000	2	991583AL	0.117	0.050	

8.2 Results and discussion

8.2.1 Internal QA

Ideally, the analytical procedure provides precise and accurate results. However, in the real-world results from analysis are subject to a certain standard deviation. Such standard deviation may be the combined result of several contributing factors. Overall, the accuracy of an analytical result reflects two types of error: Random errors related to precision and systematic errors relating to bias. In a programme like PLAP it is relevant to consider possible changes in analytical "reliability over time". As random and systematic errors may both change over time it is relevant to distinguish between standard deviations resulting from *within-day* variation as opposed to those associated with *between-day* variation in the analytical results. To this end, control samples are included in the analytical process as described above. Thus, by means of statistical analysis of the internal QA data provided by the laboratory it is possible to separate and estimate the different causes of the analytical variation in two categories: *between-day* variation and *within-day* variation (Funk *et al.*, 1995; Miller *et al.*, 2000). This kind of analysis can

provide an indication of the reliability of the analytical results used in the PLAP. The statistical tool used is an analysis of variance (ANOVA) and encompasses all duplicate QA pesticide analyses, single analyses being excluded. The analysis can be divided into three stages:

- 1. **Normality**: An initial test for normality is made as this is an underlying assumption for the one-way ANOVA.
- 2. Between-day contribution: In brief, this test will reveal any day-to-day contribution to the variance in the measurements. If there is none, the total standard deviation can be considered attributable to the within-day error of the analysis. For this purpose, an ANOVA-based test is used to determine if the between-day standard deviation (S_b) differs significantly from 0 (this test is made as an F-test with the H₀: between-day mean square = within-day mean square).
- 3. Calculating standard deviations: If the F-test described above reveals a contribution from the between-day standard deviation (S_b) , it is relevant to calculate three values: The within-day standard deviation (S_w) , the between-day standard deviation (S_b) , and the total standard deviation (S_t) .

As the error associated with the analytical result is likely to be highly dependent on the compound analysed, the QA applied is pesticide specific. In the current reporting period internal quality data was available for 22 compounds. The results of the internal QA statistical analysis for each pesticide are presented in Table 8.2. For reference, estimated S_b values are listed for all pesticides, including those for which the between-day variance is not significantly greater than the within-day variance. ANOVA details and variance estimates are also included, even for pesticides, where the requirement for normality is not fulfilled. Obviously, such data should be interpreted with caution. Considering the average of all compounds the mean variation S_w was 0.05, S_b 0.008 and S_t was 0.01, levels that are considered suitable when relating to the residue limit for pesticides (0.1 μ g L⁻¹).

As a rule of thumb, the between-day standard deviation should be no more than double the within-day standard deviation. Table 8.2 shows that S_b/S_w ratios greater than two were observed for five compounds this year (AE-F160459 S_b/S_w ratio 2.3, AE1394083 S_b/S_w ratio 2.4, carbendazim S_b/S_w ratio 6.5, metamitron S_b/S_w ratio 2.1, and TSA S_b/S_w ratio 2.3). For these compounds, the results indicate that day-to-day variation makes a significant contribution, but none of the between day contributions are, however, significant on the 0.05 significance level.

In the PLAP-report covering 1999-2018, the degradation products: AE-F099095, AE-F160459, BH 517-T2SO2, E/Z BH 517-TSO, IN-JE127, IN-KF311, TSA and X-757 were introduced in the analytical programme. The data included in this year's report still rely on few duplicate samples and the methods are still being improved.

This report includes nine new pesticides and degradation products (AE-F147447, AE1394083, carbendazim, metamitron, desamino-metamitron, MTM-126-AMT, metconazole, propyzamide and X-729) in the QA monitoring programme. Data for some of these compounds only rely on very few duplicate samples and the methods are continuously improved. During last years' reporting period, laboratory stability tests showed that IN-JE127 was unstable in water and QA monitoring of the compound was discontinued and not included in the present report.

1,2,4-triazole (degradation product of triazole fungicides), **azoxystrobin**, **CyPM** (degradation product of azoxystrobin), **bentazone**, **glyphosate** and **AMPA** (degradation product of glyphosate): All six compounds have been included in the analytical programme for several years and the analytical procedures for all compounds are in good control, with very low deviations ($S_t 0.003-0.015$) in addition to low S_b/S_w -ratio's (0.3-1.5).

AE1394083 degradation product of thiencarbazone-methyl: The compound was introduced in this year's analytical programme and data analysis relies only on 17 duplicate samples and data should therefore be considered tentatively. AE1394083 has a ratio > 2 (2.4), but this high S_b/S_w ratios is caused by the between-day deviation (S_b: 0.006) being relatively high compared to the very low S_w (0.003). However, both S_w and S_b are low and acceptable, and the analytical procedure is in good control.

AE-F099095, AE-F147447 and AE-F160459 degradation products of mesosulfuronmethyl: this year the degradation product AE-F147447 was introduced in the programme. The degradation products AE-F099095 and AE-F147447 have S_b/S_w ratios < 2.0, whereas AE-F160459 has a S_b/S_w ratio of 2.3. The slightly elevated S_b/S_w ratio of AE-F160459 is due to a between-day standard deviation (S_b – 0.012) being relatively high compared to the within-day deviation (S_w – 0.005). The standard deviations of AE-F147447 are slightly higher than the two degradation products introduced in last year's reporting period, but the analysis has improved during the reporting period, and the analyses of all three compounds are in good control, but it may be possible to further improve the analytical methods for AE-F147447 and AE-F160459 and, especially, bring down the between-day deviation.

BH 517-T2SO2 and E/Z BH 517-TSO degradation products of cycloxydim: Both degradation products were last year introduced in the programme, where the statistics only relied on data from 13 duplicate samples. This year the number of duplicate samples have increased (n = 26) and the analyses of both BH 517-T2SO2 and E/Z BH 517-TSO have S_b/S_w ratios < 2.0 and very low within-day and between day deviations: S_w 0.004 and 0.004 and S_b 0.004 and 0.005, respectively. The methods are in good control and both meets the normality criterion.

Carbendazim degradation product of thiophanate-methyl: although the degradation product is newly introduced in the programme, the data relies on 34 duplicate samples. Carbendazim has a ratio above two (6.5), but this high S_b/S_w ratios is caused by the between-day deviation (S_b : 0.011) being relatively high compared to the very low S_w (0.002). However, carbendazim has an acceptable total standard deviation S_t of 0.011 and the analysis has improved during the reporting period and is in good control.

IN-KF311 degradation product of flupyrsulfuron-methyl: This year the degradation product IN-J127 was discontinued due to instability in aqueous solution. The analytical procedure of IN-KF311 is slightly improved compared to last year. Although the S_b/S_w ratio is below 2.0 (1.2), the between-day (S_b 0.021) and with-in day (S_w 0.025) deviations are still relatively high and the method still needs improvement to bring down the deviations.

Metamitron and its degradation products **MMT-126-AMT** and **desamino-metamitron**: This year, all three compounds were introduced to the analytical programme and data

analyses relies only on 11-13 duplicate samples and data should therefore be considered tentatively. Metamitron has a S_b/S_w ratio above 2.0 (2.1), but the analytical procedure is in very good control with very low standard deviations (S_w, 0.001, S_b 0.003 and S_t 0.003) and data meets the criterion of normality. The analytical procedure of MTM-126-AMT and desamino-metamitron is in good control with S_b/S_w ratio's < 2 (1.8 and 1.5-1.7, respectively) and very low within-day and between-day deviations. During the reporting period, the control concentration of desamino-metamitron was changed from 0.03 μ gL⁻¹ to 0.05 μ gL⁻¹. The statistical data for each control concentration is presented separately in Table 8.2 and Figure A6.3.

Metconazole: The compound was introduced in this year's analytical programme. The data analysis of metconazole is based only on two duplicate samples and thus not yet sufficient to do a thorough statistical analysis and data should therefore be considered tentatively. However, the method seems promising with a S_b/S_w ratio of 1.5 and a total standard deviation S_t of 0.005.

Propyzamide: The compound was introduced in this year's analytical programme. During the reporting period, the control concentration was changed from 0.03 μ gL⁻¹ to 0.05 μ gL⁻¹. The statistical data for each control concentration is presented separately in Table 8.2 and Figure A6.5. The analytical procedure for propyzamide is in good control, with very low deviations in addition to a low Sb/Sw-ratio for both control concentration 0.03 (Sb/Sw ratio 1.0) and 0.05 (Sb/Sw ratio 1.6) and data meets the criterion of normality. As the compound was newly introduced, data for each control concentration relies only on few duplicate samples (n = 16 for control concentration 0.03 μ gL⁻¹ and n = 5 for control concentration 0.05 μ gL⁻¹) and data should thus be considered tentatively.

TSA degradation product of florasulam: Last year, TSA was introduced in the programme. The analysis of the compound does not meet the criteria of normality and the S_b/S_w ratio is still above 2.0 (2.3 this year compared to 3.5 last year), but the analytical procedure is improved compared to last year with a slightly lower between-day deviation. The high S_b/S_w ratio is due to a very low within day deviation ($S_w 0.003$) and relatively higher between-day deviations ($S_b 0.006$). However, both S_w and S_b are still very low values, indicating an analytical procedure in good control.

X-757 and **X-729** degradation products of halauxifen-methyl: The degradation product X-729 was this year introduced in the programme. The data analysis of X-729 is based only on two duplicate samples and thus not yet sufficient to do a thorough statistical analysis and data should therefore be considered tentatively. However, the method seems promising with a S_b/S_w ratio of 0.7 and a total standard deviation S_t of 0.012. Compared to last year, the analytical procedure for X-757 is improved. The between-day deviation of X-757 is decreased from S_b 0.045 to S_b 0.017 and the S_b/S_w ratio is now < 2 (1.4) compared to 2.4 last year. The method meets the criterion of normality and is now in good control.

Table 8.2. Internal QA of pesticide analyses carried out in the period 1.7.2018-30.6.2019. Results of the test for normality, one-way analysis of variance (ANOVA), the estimated values of standard deviations (w: within-day, b: between-day, t: total – see text for details), pesticide concentration in internal QC sample (Conc.) and number of duplicate samples (n) are given for each pesticide. The P value α =0.05 was used for testing.

Compound	Normal	Significant Sb	$\mathbf{S}_{\mathbf{w}}$	Sb	St	Ratio	n	Conc.
	distribut.	between-day	(µgL ⁻¹)	(µgL ⁻¹)	(µgL ⁻¹)	S_b/S_w		(µgL ⁻¹)
	α=0.05	contribut.						
		ANOVA						
		α=0.05						
1,2,4-triazole*	0.000	-	0.002	0.002	0.003	1.2	49	0.03
AE-F099095*	0.000	-	0.003	0.005	0.006	1.6	39	0.05
AE-F147447*	0.000	-	0.010	0.019	0.021	1.9	40	0.1
AE-F160459*	yes	-	0.005	0.012	0.013	2.3	39	0.05
AE1394083*	yes	-	0.003	0.006	0.007	2.4	17	0.05
AMPA*	0.008	-	0.003	0.003	0.004	1.1	18	0.03
Azoxystrobin	0.000	yes	0.014	0.005	0.015	0.3	13	0.05
BH 517-T2SO2*	yes	-	0.004	0.004	0.006	1.1	23	0.05
Bentazone*	yes	-	0.004	0.005	0.006	1.4	14	0.05
Carbendazim*	0.000	-	0.002	0.011	0.011	6.5	34	0.05
CyPM*	yes	-	0.003	0.004	0.005	1.5	13	0.05
Desamino-	yes		0.001	0.002	0.002	1.5	11	0.03
metamitron*a		-						
Desamino-	yes		0.001	0.002	0.003	1.7	12	0.05
metamitron*b		-						
EZ BH 517-TSO*	yes	-	0.004	0.005	0.007	1.2	23	0.05
Glyphosate	yes	-	0.003	0.003	0.004	1.0	18	0.03
IN-KF311*	0.000	-	0.021	0.025	0.033	1.2	30	0.1
MTM-126-AMT*	0.006	-	0.003	0.006	0.007	1.8	13	0.05
Metamitron	yes	-	0.001	0.003	0.003	2.1	12	0.05
Metconazole	yes	yes	0.003	0.004	0.005	1.5	2	0.05
Propyzamide ^a	yes	-	0.001	0.001	0.002	1.0	16	0.03
Propyzamide ^b	yes	-	0.004	0.007	0.008	1.6	5	0.05
TSA*	0.001	-	0.003	0.006	0.007	2.3	24	0.03
X-729*	yes	yes	0.010	0.007	0.012	0.7	2	0.05
X-757*	yes	-	0.012	0.017	0.021	1.4	28	0.1

*Degradation product. ^{a)} Control concentration 0.03 µgL⁻¹. ^{b)} Control concentration 0.05 µgL⁻¹.

The total standard deviation (S_t) of the various analyses of pesticides and degradation products lie within the range of 0.002-0.033 μ g L⁻¹, the highest value observed for IN-KF311. In general, the data suggest that the analytical procedure used for the quantification of the compounds is acceptable and satisfactory and in general has improved or is in line with last year's report, but there is still room for improvement and optimisation of, especially, the between-day variation (S_b) and the newly introduced compounds.

8.2.2 External QA

As described above the external QA program was based on samples spiked at the field. As part of the quality control, a set of blanks made from HPLC water were also analysed to evaluate the possibility of false positive and negative findings in the programme. From these results it can be concluded that contamination of samples during collection, storage and analysis is not likely to occur. A total of 22 blank samples made from HPLC water were analysed and no compounds were detected in any of these analysed blank samples. Based on this, samples analysed in the monitoring program and detected to contain pesticides or degradation products are regarded as true positive findings.

Table 8.3. Recovery of externally spiked samples carried out in the period 1.7.2018-30.6.2019. Average recovery (%) of the nominal concentration at low/high concentration level is indicated for each field. For each compound n_{low} and n_{high} refer to the number of samples recovered with the spiked compound at low and high concentrations, respectively. n_{total analysed} is the total number of spiked samples (including both low and high level samples). Bold font is used for recoveries outside the range of 70-120%.

Compound	Tyls	strup	Jynd	evad	Sils	trup	Est	rup	Faar	drup	Lu	ınd	Avg.	$n_{low}/$	n _{total}
	%	0 [*]	0	6	0	V0	0	6	0	6	0	6	%	nhigh	analysed
	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High			
1,2,4-triazole	-	-	192	142	122	108	178	134	118	94	169	120	142	13/13	26
AE-F099095	-	-	92	86	90	89	95	88					90	9/ 8	18
AMPA	-	-									88	89	88	3/3	6
Bentazone	-	-									81	78	79	2/2	4
CyPM	-	-									95	85	90	2/2	4
Desamino- metamitron	-	-							84	85			84	1/1	2
E/Z BH 517-TSO	-	-	94	89	138	120							104	3/3	6
Glyphosate	-	-									106	108	107	3/3	6
Propyzamide	-	-			134	117	101	107					117	5/5	10
TSA Tylstrup was put on stand	-	-			100	84					85	62	83	6/5	12

Table 8.3 provides an overview of the recovery of all externally spiked samples. Since the results for each field in Table 8.3 are based on very few observations for each concentration level (high/low) and that each concentration level is not spiked in duplicate in the fields, the data should be interpreted with precaution and not too rigorously. Unfortunately, year 2018 was extremely dry and especially, at Faardrup water was scarce. Consequently, externally spiked samples could only be prepared once in Faardrup (April 2019) as no groundwater was available at the first two control sample events (February and March 2019).

A total of 26 samples were spiked in this reporting period. In general, the recovery of the spiked compounds is acceptable (i.e. in the range 70% to 120%). This year, only one compound (TSA) had average recoveries below 70%, whereas three compounds (1,2,4-triazole, E/Z BH 517-TSO and propyzamide) had average recoveries larger than 120%. Water used for making the spiked samples is taken on location from up-stream wells. For this reason, minor background content may be present in some of the water used for spiking, and in particular for the low-level QC samples, background content can cause an elevated recovery percentage. For this reason, the QC data must be considered as a whole, and used to keep track on possible changes in the quality of the program from period to period. In the present reporting period QC external data, especially for TSA, points to the need of keeping track of these particular compounds.

In 2015, a new procedure was implemented in the QA programme. Now every year upon arrival of the new ampoules, the concentration of the most critical compounds is confirmed at the commercial laboratory before the ampoules are used in the QA control sample program. This procedure was implemented due to the previous experience with flawed production of AMPA and glyphosate ampoules.

In general, all recoveries of the low external QC (concentration in QC_{low} is 0.05 μ g L⁻¹) are within the acceptable range, except for 1,2,4-triazole, E/Z BH 517-TSO and propyzamide. The degradation product 1,2,4-triazole has an elevated recovery of up to 192% (QC_{low} at Jyndevad) and recoveries in all QC_{low} samples were around 120% or above, which reflects the background concentration (ranging from 0.02 to 0.08 μ g L⁻¹) of 1,2,4-triazole in the water from all monitoring wells used for preparation of the spiked samples. This year's recoveries of 1,2,4-triazole relies on 26 spiked samples and in

combination with the internal QC samples, the QA program confirms that the analytical method is in good control and fulfils all criteria (Table 8.2 and Appendix 6, Figure A6.1).

The recoveries of TSA (degradation product of florasulam) in the external spiked QC_{high} samples at Lund is slightly lower than acceptable (62%), but the internal QC data shows that the analytical method for TSA is acceptable and in good control.

The recoveries of E/Z BH 517-TSO (degradation product of cycloxydim) and propyzamide at Silstrup were both above 120% in QC_{low} (138 and 134%) and slightly elevated in QC_{high} (120 and 117%), respectively, which reflects the background concentration ranging from 0.016 to 0.02 μ g L⁻¹ of E/Z BH 517-TSO and 0.012 μ g L⁻¹ of propyzamide in the water from the monitoring wells used for preparation of the spiked samples. The analytical procedures of both compounds were in good control and fulfil all criteria.

All compounds included in the external spiking procedure (Table 8.1) were detected in all spiked QC samples by the commercial laboratory.

During the 2018/2019 monitoring period, two pesticides (glyphosate and propyzamide) and five degradation products (1,2,4-triazole, AMPA, carbendazim, CyPM and E/Z BH 517-TSO) were detected in water samples from the experimental fields. In total, five pesticides (azoxystrobin, bentazone, glyphosate, metamitron, and propyzamide) and 14 degradation products (1,2,4-triazole, AE1394083, AE-F099095, AE-F147447, AE-F160459, AMPA, BH 517-T2SO2, carbendazim, CyPM, desamino-metamitron, E/Z BH 517-TSO, MTM-126-AMT, TSA and X-729) were included in the monitoring programme. The external and internal QA data relating to these particular pesticides and degradation products are of special interest, and analytical data (both internal and external QC samples) is presented in Appendix 6.

8.3 Summary and concluding remarks

The QA system showed that:

- The internal QC indicates that the reproducibility of the pesticide analyses was in general very good, with total standard deviation (S_t) in the range 0.002-0.033 μ g L⁻¹.
- As demonstrated by the external QA, recovery was generally precise in externally spiked samples, except for 1,2,4-triazole, E/Z BH 517-TSO, propyzamide and TSA (only one QC_{high} sample with a slightly lower recovery of 62%).
- The external QA recovery of 1,2,4-triazole, E/Z BH 517-TSO and propyzamide was higher than the set criteria but the discrepancy relates to the background content of the compounds in the water from the monitoring wells used for preparation of the spiked external QA samples. Both the QA program and the analytical methods were in good control.
- Based on the results from analysis of blank 'HPLC water samples' shipped together with the true monitoring samples it is concluded that contamination of samples during collection, storage and analysis is not likely to occur. No false-positive samples were detected.

9 Summary of monitoring results

This section summarizes the monitoring data from the entire monitoring period, i.e. both data from the two most recent monitoring years (detailed in this report) and data from the previous monitoring years (detailed in previous reports available on http://pesticidvarsling.dk). This includes both analysis results of samples collected just before the specific pesticide application and from upstream well screens. Pesticide detections in samples from the drainage systems, suction cups and groundwater monitoring wells are detailed in Appendix 5. The monitoring data in 1 m depth (water collected from drainage and suction cups) reveal that the applied pesticides exhibit three different leaching patterns - no leaching, slight leaching and pronounced leaching (Table 9.1). Pronounced leaching in 1 m depth is defined as root zone leaching exceeding an average concentration of 0.1 µg L⁻¹ within the first season after application. Here it should be noted that 0.1 μ g L⁻¹ is not a regulative threshold for water collected from 1 m depth. On sandy and clayey till soils, leaching is determined as the weighted average concentration in water collected from suction cups and drainage, respectively (Appendix 2).

The monitoring data from the groundwater well screens is divided into three categories: no detection of the pesticide (or its degradation products), detections of the pesticide (or its degradation products) not exceeding 0.1 μ g L⁻¹ and detections of the pesticide (or its degradation products) exceeding 0.1 μ g L⁻¹ (Table 9.3). It should be noted, though, that the present evaluation of the leaching risk of some of these pesticides is still preliminary as their potential leaching period extends beyond the current monitoring period. Additionally, an observed leaching at the PLAP-fields can only be tranfered as a potential leaching risk to areas of similar soil types and climate conditions.

Until June 2019, 130 pesticides and/or degradation products (51 pesticides and 79 degradation products) have been analysed in PLAP, comprising six agricultural fields (ranging between 1.2 and 2.4 ha in size) cultivated with different crops. 4 new compounds have been added for an evaluation in the hydrological year 2018-2019. The leaching as a result of the application(s) of 60 pesticides were evaluated here among:

- 17, where only the pesticide was analysed (including epoxiconazole and propiconazole although their degradation product 1,2,4-triazole is detected, but it is only included as an outcome of tebuconazole in Tables 9.2 and 9.4)
- 34, where the pesticide was analysed together with one or more of its degradation products
- 9 (cycloxydim, fludioxonil, haluxifen-methyl, mancozeb, metsulfuron-methyl, thiencarbazone-methyl, thiophanate-methyl, thifensulfuron-methyl and tribenuron-methyl), where only the degradation products of the pesticide were analysed

With the application of a specific pesticide on a specific crop being under evaluation for the direct application in the pesticide regulatory work of the Danish EPA, all collected monitoring results including analyses of water samples for its degradation products refers to the specific pesticide in the whole report but will be evaluated in regard to the specific crop in Chapter 2-7. Of the 60 pesticides (51+9) being chosen for test in PLAP. 17 resulted in detections in groundwater samples in concentrations exceeding 0.1 µg L⁻¹ of the pesticide and/or its degradation products (Table 9.3 and 9.4). 16 of these 17 pesticides (not fludioxonil) yielded detections in samples from 1 m depth above 0.1 μ g L⁻¹ (Table 9.1 and 9.2). Four of the 17 pesticides resulted in detections indicating a potential leaching risk through sandy soils (metalaxyl-M, metribuzin, rimsulfuron and tebuconazole), whereas the others plus tebuconazole revealed a potential leaching risk through fractured clayey tills (azoxystrobin, bentazone, bifenox, diflufenican, ethofumesate, fluazifop-Pbutyl, glyphosate, mesotrione, metamitron, propyzamide, pyridate and terbuthylazine). Here it should be emphasised that the presented leaching risk for tebuconazole is due to the presence of 1,2,4-triazole in both sandy soils and fractured clavey tills that can stem from other applied azole fungicides including the use in seed dressings. Such situation with many sources potentially contributing to the leaching of a compound (here 1,2,4triazole) have not been evaluated in PLAP before and is now exposed to further evaluation in PLAP, the Danish National Groundwater Monitoring Programme (GRUMO) and the Danish Waterworks quality control of the drinking water. Further, the research project TRIAFUNG will provide knowledge on the persistence of azoles in the plough layer of the PLAP-fields. The following 17 pesticides (aclonifen, boscalid, chlormequat, cyazofamid, florasulam, haluxifen-methyl, iodosulfuron-methyl-Na, linuron, metconazole, thiacloprid, thiamethoxam, thiencarbazone-methyl, thifensulfuron-methyl, thiophanat-methyl, triasulfuron and tribenuron-methyl) did not result in any detection of the pesticide and/or its degradation product in water samples collected from the variablysaturated zone (via drains and suction cups) or saturated zone (via groundwater well screens situated at 1.5-4.5 m depth). Both the number of detections at 1 m depth (water from suction cups and drainage) and in groundwater, emphasize that clayey till soils are more vulnerable to leaching compared to sandy soils (Table 9.1-9.4). In particular, the presence of fractures facilitates transport of compounds to the groundwater. By including the new clayey till field (Lund) in PLAP the representability of vulnerable soils has increased and hereby improved the early warning in relation to leaching through vulnerable soils.

Table 9.1. Level of detections in water collected from drainage and suction cups at 1 m depth of pesticides and/or their
degradation products at the five PLAP fields. Pesticides applied in spring 2019 are not included in the table. (+)
indicates that the pesticide and/or its degradation product is included in the monitoring program July 2017 – June 2019.

	Pesticid		nd		Clay		
Lever	i osticiu	Tylstrup	Jyndevad	Silstrup	Estrup	Faardrup	Lund
High	Azoxystrobin (+)						
e	Bentazone (+)						
	Bifenox						
	Diflufenican						
	Ethofumesate						
	Fluazifop-P-butyl						
	Fluroxypyr (+)						
	Glyphosate (+)						
	Mesotrione (+)						
	Metalaxyl-M						
	Metamitron						
	Metribuzin						
	Picolinafen						
	Pirimicarb						
	Propyzamide (+)						
	Rimsulfuron						
	Tebuconazole*(+)						
	Terbuthylazine						
Low	Amidosulfuron						
	Bromoxynil						
	Clomazone						
	Clopyralid						
	Cycloxydim (+)						
	Dimethoate						
	Epoxiconazole						
	Flamprop-M-isopropyl						
	Fludioxonil						
	Flupyrsulfuron-methyl (+)						
	Foramsulfuron (+)						
	Ioxynil						
	MCPA Managarah						
	Mancozeb						
	Mesosulfuron-methyl (+) Metrafenone						
	Pendimethalin						
	Phenmedipham Propiconazole						
	Prosulfocarb						
	Pyridate						
	Triflusulfuron-methyl						
None	Aclonifen						
None	Aminopyralid			1		i	
	Boscalid					1	
	Chlormequat					i	
	Cyazofamid					1	
					1		
	Desmedipham Fenpropimorph						
	Florasulam						
	Haluxifen-methyl (+)						
	Iodosulfuron-methyl-Na						
	Linuron		í			1	
	Metconazole (+)		1		1		
	Metsulfuron-methyl						
	Thiacloprid						
	Thiamethoxam		í i				
	Thiencarbazone-methyl (+)		1				
	Thifensulfuron-methyl ^{**}						
	Thiophanat-methyl (+)						
	Triasulfuron (+)			1		1 I	
	Tribenuron-methyl						
	i nochuron-meuryi						

The pesticide (or its degradation products) leached at 1 m depth in average concentrations exceeding 0.1 µg L-1 within the first season after application.

The pesticide (or its degradation products) was detected in more than three consecutive samples or in a single sample in concentrations exceeding 0.1 μ g L⁻¹; average concentration (1 m depth) below 0.1 μ g L⁻¹ within the first season after application.

The pesticide either not detected or only detected in very few samples in concentrations below 0.1µg L⁻¹.

The pesticide either not detected or only detected in very rew samples in concentrations below 0.1 g L ?
 * These numbers can include 1,2,4-triazole degraded from the pesticides: epoxiconazole, propiconazole and prothioconazole.
 ** This information can include triazinamin degradated from iodosulfuron-methyl-Na.
 *** IN-JE127 (degradation product of flupyrsulfuron-methyl) is unstable in aquatic solution – Results should be disregarded.

Table 9.2. Monitoring output from drainage at **1 m depth** and suction cups at **1 m depth** (and 2 m depth for Tylstrup) given for each of the five fields as the total number (T) of samples analysed for the specific analyte (various pesticides and/or their *degradation products*), number of detections (D), number of detections exceeding 0.1 μ g L⁻¹ (X) and the max conc. M (μ g L⁻¹). The pesticide and *degradation products* (if analysed) are listed under Analyte. The pesticides (including degradation products) are listed regarding the level of detections as in Table 9.1.

Analyte	1	, Fylst				ynde					lstru			Est				aar	dru	ıp		L	une	d
(Pesticide/Degradation product)	T	D	x	м	Т	•		М	Т		x	-	Т	D	x	М	Т			М	т	D 2	ĸ	М
Azoxystrobin	95	0	0	-	65	0	0	-	188			0.11	415	141	15	1.40	106	0	0	-	<u> </u>	3 (0.08
CyPM	95	0	0	-	65	0	0	-	211	15	224	0.56	415	376	150	2.10	106	4	0	0.06	25	19 3	3	0.43
Bentazone	202	4	0 (0.02	230	109	17	4.5	120	45	55	6.4	439	226	16	20	202	28	6	43	27	6 ()	0.05
2-amino-N-isopropyl-benzamide	72	0	0	-	47	2	0	0.03	65	0	0	-	243	1	0	0.06	68	1	0	0.06				
6-hydroxy-bentazone	65	0	0	-	43	0	0	-														0 (-
8-hydroxy-bentazone	65	0	0	-	43	0	0	-													22			-
N-methyl-bentazone	65	0	0	-	43	0	0	-													22	1 () (0.022
Bifenox	22	0	0	-	56	2		0.04		5		0.38	95	4	1	0.15	62	6		0.09				
Bifenox acid	22	0	0	-	53	1	0		56		0 18	4.8	105	16	10	1.9	42			8.6				
Nitrofen	22	0	0	-	56	0	0	-	68	5		0.34	95	0	0	-	62	6	1	0.16				
Diflufenican					38	0	0	-	66		1 1	0.12	57	27	12	0.49								
AE-05422291					38	0	0	-	66	0		-	57	0	0	-								
AE-B107137					52	0	0	-	61	5		0.13	58	18	0	0.09								
Ethofumesate									201	20	03	0.23	126	35	8	3.36	192	15	6	12				
Fluazifop-P-butyl																	128	0	0	-				
Fluazifop-P	65	0	0	-	51	0	0	-	175		0	-					160	11	3	3.8				
TFMP	-										3 23	0.64					91	0	0	-				
Fluroxypyr	70	0	0	-	55	0	0	-	50	0	0	-	90	3	2	1.4	256	1	1	0.19				
Fluroxypyr-methoxypyridine																	29	0	0	-				
Fluroxypyr-pyridinol					72	0	0		257	10	822	47	601	343	109	31	29 236	0 5	0	- 0.09	22	51 0	5	06
Glyphosate AMPA					72	1		- 0.01				4.7 0.35	601	343 499	120	1.6	236	15		0.09				8.6 1.3
AMFA Mesotrione					67	0	0	- 0.01	238		3 7	1.10	93	499	120	3.3	230	15	1	0.11	55.	20.	,	1.5
AMBA					67	0	0	2	76	0		-	93	40	0	0.04								
MNBA					67	0	0		76		0	0.09	93	11	1	0.46								
Metalaxyl-M	156	4	0.0	0.03	95	11		0.04	/0	0	0	0.07		11	1	0.40								
CGA 108906	153				105			3.7																
CGA 62826	154	35			105	73																		
Metamitron									200	49	9 11	0.55	123	42	15	26.37	209	12	2	1.70				
Desamino-metamitron									201	64	47	0.67	125	49	11	5.55	209	16	4	2.50				
MTM-126-AMT																	14	0	0	-				
Metribuzin	91	2		0.02	6	0	0	-																
Desamino-diketo-metribuzin	249	81	51	2.1	6	0	0																	
Desamino-metribuzin	87	0	0	-	4	0	0																	
Diketo-metribuzin	334	253	61).69		3		0.09																
Picolinafen					36	1		0.02					81	17	0	0.07								
CL 153815	0.0	0	~		36	0	0	-				0.05	81	31	11	0.50		_	~	0.07				
Pirimicarb	82	0	0	-	69	0	0				4 0	0.05	205	40	0	0.08	228	7		0.06				
Pirimicarb-desmethyl	81	0	0	-	69	1	0	0.01	233	1	0	0.05	198	0	0	-	129	6	0	0.05				
Pirimicarb-desmethyl- formamido	52	0	0	-	69	0	0	-	161	0	0	-	230	26	13	0.38	129	3	0	0.04				
Propyzamide	82	0	0	_					83	37	7 12	5.1	5	0	0		124	4	2	0.51				
RH-24580	82	0	0	2					66	2		0.02		0	0	-	124	0	0	-				
RH-24644	82	0	0	_					66		5 0	0.02					124	4		0.02				
RH-24655	58	0	ŏ	-					66	0		-					124	1		0.02				
Rimsulfuron	65	Ő	Ő	-	52	0	0	-		Ŭ	Ŭ						12.	•	Ŭ	0.02				
PPU	268	194).15		194	64	0.29	1	0	0	-												
PPU-desamino	268	63).04		123				0	0	-												
Tebuconazole	77	0	0	-	58	0	0	-	19	2	0	0.08	81	41	17	2.00	54	4	0	0.05				
1,2,4-triazole*	98	20).16		66	9	0.27	51	51	16	0.17	157	157	150	0.45	79	77	4	0.2	11	10 () (0.062
Terbuthylazine	72	0	0	-	79	0	0	-	91	60	09	1.55	161	112	34	11.0	110	41	11	10.0				
2-hydroxy-desethyl-	72	5	0.4	0.02					71	25	8 1	0.11	131	87	24	6.30	68	8	1	1.00				
terbuthylazine									·															
Desethyl-terbuthylazine	72	2		0.01	150	20	0	0.06				1.08	164	146	35	8.20	110	89		8.30				
Desisopropylatrazine	72	17		0.04					71		30	0.04	161	71	1	0.44	110	25		0.36				
Hydroxy-terbuthylazine	72	1	0 (0.04					71	26	50	0.04	131	88	16	0.99	110	21	1	0.58				
* These granthese continuous 1.2.4 t				1.0				• 1								41								

These numbers can include 1,2,4-triazole degraded from the pesticides: epoxiconazole, propiconazole and prothioconazole.

Table 9.2 (Continued). Monitoring output from drainage at **1 m depth** and suction cups at **1 m depth** (and 2 m depth for Tylstrup) given for each of the five fields as the total number (T) of samples analysed for the specific analyte (various pesticides and/or their *degradation products*), number of detections (D), number of detections exceeding 0.1 μ g L⁻¹ (X) and the max conc. M (μ g L⁻¹). The pesticide and *degradation products* (if analysed) are listed under Analyte. The pesticides are listed regarding the level of detections as in Table 9.1.

Analyte	1	[ylst	trup)	J	ynde	eva	d		Sils	stru	р		Est	rup		F	aar	dru	p		L	und	I
(Pesticide/Degradation product)	T	D	Х	М	Т	D	Х	М	Т	D	Х	М	Т	D	Х	М	Т	D	Х	Μ	T	DY	K	М
Amidosulfuron					23	3	1	0.11	1	0	0	-	100	0	0	-					Т			
Desmethyl-amidosulfuron					23	0	0	-	1	0	0	-												
Bromoxynil	72	0	0	-	61	0	0	-	48	0	0	-	142	3	2	0.60	174	0	0	-				
Clomazone	82	0	0	-	23	0	0	-	19	0	0	-	60	0	0	-	85	1	1	0.28				
FMC 65317	74	0	0	-	23	0	0	-	19	0	0	-	60	0	0	-	85	1	1	0.30				
Clopyralid	107	2	1	0.72					79	4	3	4.09	1	0	0	-	32	1	0	0.08				
Cycloxydim																								
E/Z BH 517-TSO					39	11	3	0.53	9	8	1	0.11												
BH 517-T2SO2					39	0	0	-	9	0	0	-												
Dimethoate	65	0	0	-	52	1	ŏ	-	109	1	1	1.42	111	0	0	-	77	0	0	-				
Epoxiconazole	74	Ő	0	-	90	0	ŏ	-	36	0	0	-	49	14	2	0.39	81	Ő	0	-				
Flamprop-M-isopropyl	65	0	0	-		0	Ŭ		109			0.11	155	20	0	0.07	71	1		0.04				
	65	0							109				155	13	0	0.07	77	1		0.04				
Flamprop	05	U	0	-					108	/	0	0.10	155	15	0	0.03	' '	1	U	0.09				
Fludioxonil																								
CGA 192155	65	0	0	-	34	0	0	-																
CGA 339833	65	0	0	-	34	0	0	-																
Flupyrsulfuron-methyl					30	0	0	-									36	0	0	-				
IN-JV460					30	0	0	-									36	0	0	-				
IN-KC576					30	0	0	-									36	0	0	-				
IN-KY374					30	4	3	0.45									36	0	0	-				
IN-KF311					31	0	0	-	42	0	0	-												
IN-JE127***					31	0	0	-	42	0	0	-												
Foramsulfuron									75	10	2	0.24	92	20	3	0.32								
AE-F092944					2	0	0	-	75	0	0	-	92	1	0	0.01								
AE-F130619									75	10	0	0.07	92	6	0	0.06								
loxynil	72	0	0	-	61	0	0	-	48	0	0	-	142	20	5	0.25	173	1	0	0.01				
Mancozeb																								
EBIS	27	0	0	-	10	0	0	-																
ETU	44	7	0	0.04																				
MCPA					56	0	0	-	51	0	0	-	103	12	2	3.89	143	2	1	0.28				
2-methyl-4-chlorophenol					56	Ő	Ő	-	51		0	-	103	1	0	0.05	143	1		0.24				
Mesosulfuron-methyl					78	Ő	Ő	-					75	13	Ő	0.06		-	-	•				
Mesosulfuron					45	Ő	Ő	-					74	0	Ő	-								
AE-F147447					28	Ő	ŏ	-	24	0	0	-	20	Ő	Ő	-1								
AE-F099095	54	0	0	-	25	0	ŏ	-	23	Ő	0	-	19	Ő	Ő	-1								
AE-F160459	54	0	0	-	25	0	0	_	23		0	-	19	0	0	-1								
Metrafenone	54	0	0	-	25	0	0	-	25	0	0	-	120	20	0	0.07	59	0	0	-				
Pendimethalin	144	0	0	-	71	0	0	-	105	14	0	0.06	243	72	29	32.00		2		0.04				
Phenmedipham	144	U	U	-	/1	0	0	-	160		0	-	243	12	29	52.00	128	0	0	- 0.04				
									100		0	2					126	U	0	-				
3-aminophenol MHPC									160								128	2	1	0.10				
	00	^	0		00	0	0			0	0	-	241	21	n	0.07		2		0.19				
Propiconazole	89	0		-	89	0	0	-	109	6	0	0.03	241	26	3	0.86		0	0	-				
Prosulfocarb	74	1	0	0.03	20	0	0		74	5	1	0.18					78	0	0	-				
Pyridate					39	0	0	-				a (c												
PHCP					59	0	0	-	66	4	4	2.69						_	-					
Friflusulfuron-methyl									32	0	0	-					63	0	0	-				
IN-D8526									32		0	-					63	0	0	-				
IN-E7710									32	5	0	0.01					63	0	0	-				
IN-M7222									32	0	0	-					63	0	0	-				

*** IN-JE127 (degradation product of flupyrsulfuron-methyl) is unstable in aquatic solution – Results should be disregarded.

Table 9.2 (Continued). Monitoring output from drainage at **1 m depth** and suction cups at **1 m depth** (and 2 m depth for Tylstrup) given for each of the five fields as the total number (T) of samples analysed for the specific analyte (various pesticides and/or their *degradation products*), number of detections (D), number of detections exceeding 0.1 μ g L⁻¹ (X) and the max conc. M (μ g L⁻¹). The pesticide and *degradation products* (if analysed) are listed under Analyte. The pesticides are listed regarding the level of detections as in Table 9.1.

Analyte	1	Гyls	truj)	J	ynd	eva	d		Sil	stru	р		Est	rup		Fa	ard	rup			Lui	nd
(Pesticide/Degradation product)	Т	D	Х	М	Т	D	Х	М	Т	D	Х	М	Т	D	Х	М	Т	D	Х	М	Т	D	ХМ
Aclonifen	68	0	0	-	43	0	0	-															
Aminopyralid	91	0	0	-									96	0	0	-							
Boscalid	56	0	0	-																			
Chlormequat					28	0	0	-	21	1	0	0.01	46	1	0	0.02							
Cyazofamid	68	0	0	-	32	0	0	-															
Desmedipham									159	0	0	-					128	0	0	-			
EHPC									100	0	0	-					99	0	0	-			
Fenpropimorph	89	0	0	-	79	1	0	0.04	109	0	0	-	106	1	0	0.01	174	0	0	-			
Fenpropimorph acid	75	0	0	-	79	0	0	-	109	1	0	0.02	103	0	0	-	174	0	0	-			
Florasulam					54	0	0	-					92	0	0	-							
Florasulam-desmethyl					28	0	0	-					81	0	0	-							
TSA									50	0	0	-					34	0	0	-	9	0	0 -
Haluxifen-methyl																							
X-757									49	0	0	-					34	0	0	_			
X-729										0	0	-	1	0	0	-	54	0	0	-	1	0	0 -
Iodosulfuron-methyl-Na									60	0	0	-	1	0	0						1	0	0 -
Metsulfuron-methyl									60	0	0	_	154	1	0	0.05							
Linuron	67	0	0	-						0	0		154	1	0	0.05							
Metconazole	01	0	0						1	0	0	-											
Metsulfuron-methyl									*	Ŭ	v												
Triazinamin/IN-A4098													153	0	0	-							
Thiacloprid													47	õ	Ő	-							
M34													55	Ő	Ő	-							
Thiacloprid sulfonic acid													56	ŏ	ŏ	-							
Thiacloprid-amide													47	1	õ	0.01							
Thiacloprid sulfonic acid													56	0	ŏ	-							
Thiamethoxam	64	0	0	-										Č.	Ŭ		68	0	0	_			
CGA 322704	64	0	Ő														68	0	Ő				
Thiencarbazone-methyl	Ŭ.	Ŭ	Ŭ															Ŭ	Ŭ				
AE1394083													16	0	0	-							
Thifensulfuron-methyl+Iodosulfuron-														v	0								
methyl-Na																							
Triazinamin/IN-A4098									88	0	0	-	57	0	0	-							
Thiophanat-methyl										v	0			0	v								
Carbendazim					18	0	0	-					22	3	0	0.02							
Triasulfuron	82	0	0	-	10	U	0	-					<u>~</u>	3	0	0.02							
Triazinamin/IN-A4098	76	0	0																				
Tribenuron-methyl	10	0	0	-																			
Triazinamin-methyl	138	0	0	-	77	0	0	-	109	0	0		55	2	0	0.04	77	0	0				
1 nu2mumm-meinyi	130	0	0	-	11	U	0	-	109	U	U	-	55	2	U	0.04	111	U	U	-	_	_	

Level	Pesticide	Tylstrup	Jyndevad	Silstrup	Estrup	Faardrup	Lund
High	Azoxystrobin (+)						
-	Bentazone (+)						
	Bifenox						
	Diflufenican						
	Ethofumesate						
	Fluazifop-P-butyl						
	Fludioxonil						
	Glyphosate (+)						
	Mesotrione (+)						
	Metalaxyl-M						
	Metamitron						
	Metribuzin						
	Propyzamide (+)						
	Pyridate						
	Rimsulfuron Tebuconazole (+) *						
T	Terbuthylazine						
Low	Aminopyralid						
	Clopyralid						
	Cycloxydim (+) Desmediphan						
	Dimethoate						
	Epoxiconazole						
	Fenpropimorph						
	Flamprop-M-isopropyl						
	Fluroxypyr (+)						
	Foramsulfuron (+)						
	Ioxynil						
	Mancozeb						
	Metsulfuron-methyl						
	MCPA						
	Metrafenone						
	Pendimethalin						
	Phenmedipham						
	Pirimicarb						
	Propiconazole						
	Prosulfocarb						
	Triflusulfuron-methyl						
None	Aclonifen						
1 tone	Amidosulfuron						
	Boscalid						
	Bromoxynil						
	Chlormequat						
	Clomazone						
	Cyazofamid						
	Florasulam						
	Flupyrsulfuron-methyl (+)						
	Haluxifen-methyl (+)						
	Iodosulfuron-methyl-Na						
	Linuron						
	Mesosulfuron-methyl (+)						
	Metconazole (+)						
	Picolinafen						
	Thiacloprid						
	Thiamethoxam						
	Thiencarbazone-methyl (+)						
	Thifensulfuron-methyl**						
	Thiophanat-methyl (+)						
	Triasulfuron (+)						
	Tribenuron-methyl						

Table 9.3. Level of detections of pesticides and/or their degradation products in water samples from the **groundwater monitoring screens** at the five PLAP fields (see Table 9.4 for details). (+) indicates that a pesticide and/or its degradation product is included in the monitoring program July 2017 – June 2019.

The pesticide (or its degradation products) was detected in groundwater samples in a concentration exceeding 0.1 µg L^{-1} within the monitoring period after application.

The pesticide (or its degration products) was detected in groundwater samples in concentrations below 0.1 μ g L⁻¹ within within the monitoring period after application.

The pesticide was not detected in the sampled groundwater.

* This information can include 1,2,4-triazole degraded from the pesticides: epoxiconazole, propiconazole and prothioconazole.
 ** This information can include triazinamin/*IN-A4098* degradated from iodosulfuron-methyl-Na.
 *** IN-JE127 (degradation product of flupyrsulfuron-methyl) is unstable in aquatic solution – Results should be disregarded.

Table 9.4. Monitoring output from the **groundwater monitoring screens** given for each of the five fields as the total number (T) of samples analysed for the specific analyte (various pesticides and/or their *degradation products*), number of detections (D), number of detections exceeding 0.1 μ g L⁻¹(X) and the max conc. M (μ g L⁻¹). The pesticide and degradation products (if analysed) are listed under Analyte. The pesticides (including degradation products) are listed regarding the level of detections as in Table 9.3.

Analyte	1	ſyls	tru	р		Jyndev	ad	S	Silstr	up		Estru				Faard	lruj	p		Lune	d
	Т	D	Х	М	Т	D	ХМ	Т	D	X M	Т	D	Х	М	Т	D	Х	М	Т	D	ХМ
Azoxystrobin	216	0	0	-	233	0	0 -	644	8	0 0.03	766	3	0	0.04	286	0	0	-	240	0	0 -
CyPM	216	0	0	-	233	0	0 -	756	100	120.52	766	41	5	0.46	286	0	0	-	240	11	0 0.06
Bentazone	509	0	0	-	902	3	0 0.03	406	29	3 0.44	744	44	0	0.05	527	21	4	0.60	240	5	0 0.06
2-amino-N-isopropyl-	191	0	0	-	178	0	0 -	205	0	0 -	351	1	0	0.03	193	0	0	-			
<i>benzami</i> de																					
N-methyl-bentazone	180	0	0	-	229	0	0 -												146	0	0 -
8-hydroxy-bentazone	180	0	0	-	229	0	0 -												146	0	0 -
6-hydroxy-bentazone	180	0	0	-	229	0	0 -												146	0	0 -
Bifenox	49	0	0	-	222	2	0 0.05	183	5	0 0.10	193	0	0	-	104	0	0	-			
Bifenox acid	49	0	0	-	170	0	0 -	182	27	203.10	197	1	1	0.11	104	1	1	0.19			
Nitrofen	49	0	0	-	222	0	0 -	183	0	0 -	193	0	0	-	104	0	0	-			
Diflufenican					152	0	0 -	201	1	1 0.47	71	0	0	-							
AE-05422291					152	0	0 -	201	0	0 -	71	0	0	-							
AE-B107137					152	0	0 -	201	1	0 0.02	89	2	0	0.03							
Ethofumesate								529	5	0 0.04	204	0	0	-	362	31	6	1.4			
Fluazifop-P-butyl															232	0	0	-			
Fluazifop-P	178	0	0	-	190	0	0 -	442	1	0 0.07					299	6	1	0.17			
TFMP	3	0	0	-	3	0	0 -	435	87	160.29					238	0	0	-			
Fludioxonil																					
CGA 192155	182	0	0	-	232	1	0 0.05														
CGA 339833	182	0	0	-	221	1	1 0.37														
Glyphosate					223	0	0 -	646	40	0 0.05	1017	53	6	0.67	451	5	0	0.03	204	2	0 0.02
AMPA					223	2	0 0.02	646	40	0 0.08	1018	8	0	0.07	451	2	0	0.03	204	3	0 0.02
Mesotrione					237	0	0 -	223	0	0 -	157	5	1	0.13							
AMBA					237	0	0 -	223	0	0 -	157	0	0	-							
MNBA					237	0	0 -	223	0	0 -	155	1	0	0.02							
Metalaxyl-M	352	21	0	0.08	392	88	23 1.30														
CGA 108906	352	288	47	1.50	393	278	84 2.70														
CGA 62826	352	17	0	0.04	393	174	9 0.68														
Metamitron								529	29	2 0.17	204	0	0	-	432	24	4	0.63			
Desamino-metamitron								529	30	4 0.19	203	0	0	-	432	48	12	1.30			
MTM-126-AMT															66	0	0	-			
Metribuzin	388	1	0	0.01	26	0	0 -														
Desamino-diketo-metribuzin				0.20		20	13 1.83														
Desamino-metribuzin	366			-	26	0	0 -														
Diketo-metribuzin	526	453	315	0.55	26	26	19 1.37														
Propyzamide	221	0	0	-				276	26	6 0.22	7	0	0	-	360	1	0	0.03			
RH-24580	221	0	0	-				227	0	0 -					360	0	0	-			
RH-24644	221		0	-				227	2	0 0.03					360	0	0	-			
RH-24655	157		0	-				227	0	0 -					360	0	0	-			
Pyridate					116	0	0 -														
PHCP					184	0	0 -	189	14	4 0.31											
Rimsulfuron	178	0	0	-	189	Õ	0 -														
PPU	656		0	0.05		374	12 0.23														
PPU-desamino	656			0.03		98	0 0.09														
Tebuconazole	196			0.01	214	1	0 0.01	38	0	0 -	162	5	2	0.12	174	1	0	0.01			
1,2,4-triazole*				0.06		326	3 0.15	152	79	3 0.14		229		0.26	346	30	ŏ	0.04	128	97	1 0.12
Terbuthylazine	179		Ő	-	260	0	0 -	316		1 0.12		1		0.02	283			1.90			
2-hydroxy-desethyl-	191			0.03		-	-	236	1	0 0.02		0	Ő	-	193	7		0.09			
terbuthylazine	1	-	2						•				Ŭ			,	0				
Desethyl-terbuthylazine	191	0	0	-	517	27	0 0.02	375	161	2 0.14	298	7	0	0.05	283	66	30	0.94			
Desisopropylatrazine	191			0.01			5 0.02	236	4			, 27		0.03	283			0.04			
Hydroxy-terbuthylazine	191		ŏ	-				236		0 -	230	0	0	-	283			0.07			
* This information can include 1					1.1.0	.1								_				5.07	1		

* This information can include 1,2,4-triazole degraded from the pesticides: epoxiconazole, propiconazole and prothioconazole.

Table 9.4 (*Continued*). Monitoring output from the **groundwater monitoring screens** given for each of the five fields as the total number (T) of samples analysed for the specific analyte (various pesticides and/or their *degradation products*), number of detections (D), number of detections exceeding 0.1 μ g L⁻¹(X) and the max conc. M (μ g L⁻¹). The pesticide and degradation products (if analysed) are listed under Analyte. The pesticides (including degradation products) are listed as in Table 9.3.

Analyte	Tylstrup	Jy	ndevad	S	ilstru	р	I	Estru	р		I	Faai	dru	ւթ	Lund
	T DX M	Τ	DXM	Т	D X	М	Т	D	Х	М	Т	D	Х	M	T DXM
Aminopyralid	212 2 0 0.06						152	0	0	-					
Clopyralid	138 0 0 -			286	1 0	0.03					96	0	0	-	
Cycloxydim															
E/Z BH 517-TSO		200	2 0 0.03	44	290	0.05									
BH 517-T2SO2		200	0 0 0	44	0 0	-									
Desmedipham				348	1 0	0.03					232	0	0	-	
EHPC				207	0 0	-					176	0	0	-	
Dimethoate	17600 -	190	00 -	222	1 0	0.09	200	0	0	-	207	0	0	-	
Epoxiconazole	19900 -	324	1 0 0.01	179	0 0	-	88	0	0	-	209	0	0	-	
Fenpropimorph	313 0 0 -	258	1 0 0.03	222	0 0	-	189	0	0	-	306	1	0	0.02	
Fenpropimorph acid	27600 -	264	00 -	222	0 0	-	158	0		-	306	0		-	
Flamprop-M-isopropyl	17600 -			222		0.02	263	0	0	-	199		0	-	
Flamprop	17600 -			222	0 0	-	263	0	0	-	207	0	0	-	
Fluroxypyr	194 0 0 -	193	00 -	216	0 0	-	155	1	0	0.06	515	1	0	0.07	
Fluroxypyr-methoxypyridine											146	0	0	-	
Fluroxypyr-pyridinol											146	0	0	-	
Foramsulfuron				215	4 0	0.04	153	0	0	-					
AE-F092944		7	00 -	220	0 0	-	153	0		-					
AE-F130619				215	90		153	0		-					
Ioxynil	19800 -	218	00 -	-	0.0	-	166	0		-	306	1	0	0.01	
Mancozeb															
EBIS	7800 -	99	00 -												
ETU	200 2 0 0.02														
Metsulfuron-methyl															
Triazinamin/IN-A4098							260	1	0	0.04					
МСРА		210	00 -	190	0 0	-	146	1		0.02	365	0	0	-	
2-methyl-4-chlorophenol		210	00 -	191		-	146	0		-	365	0		-	
Metrafenone		210	0 0		0 0		189	1		0.04	168	0		-	
Pendimethalin	43600 -	257	00 -	344	0 0	-	381			0.05	180	0		-	
Phenmedipham				348	0 0	-		-			232		0	0.03	
3-aminophenol				245	0 0	-						-	Ŭ	0.02	
MHPC				348	0 0	-					232	1	0	0.05	
Pirimicarb	301 0 0 -	251	00 -	646	3 0	0.01	293	1	0	0.02	437	2		0.04	
Pirimicarb-desmethyl	301 0 0 -	251	00 -	646	0 0	-	289	0		-	232		0	0.04	
Pirimicarb-desmethyl-formamido	173 0 0 -	251	00 -	468	0 0	-	337	Ő		-	232	2		0.08	
Propiconazole	313 0 0 -	297	00 -	222	0 0	-	397			0.02	511		0	0.04	
Prosulfocarb	168 4 0 0.03			226		0.03		-	2		187	-	0	-	
Triflusulfuron-methyl	100 1 0 0.05			158	0 0	-					130	0		_	
IN-D8526				158	0 0	2					130		0	_	
IN-E7710				158	0 0	-					130		0	_	
IN-M7222					1 0						130		0	_	

Table 9.4 (Continued). Monitoring output from the groundwater monitoring screens given for each of the five fields as the total number (T) of samples analysed for the specific analyte (various pesticides and/or their *degradation products*), number of detections (D), number of detections exceeding 0.1 μ g L⁻¹(X) and the max conc. M (μ g L⁻¹). The pesticide and degradation products (if analysed) are listed under Analyte. The pesticides (including degradation products) are listed as in Table 9.3.

Analyte	Tylstrup	Jyndevad	Silstrup	Estrup	Faardrup	Lund
-	T DX M	TDXM	TDXM	T DX M	т рхм	T DXM
Aclonifen	127 0 0 -	171 00 -				
Amidosulfuron	12, 0 0	88 0 0 -		143 00 -		
Desmethyl-amidosulfuron		88 00 -		1.5 0 0		
Boscalid	11100 -	00 0 0				
Bromoxynil	192 0 0 -	218 00 -	159 0 0 -	166 0 0 -	306 0 0 -	
Chlormequat	19200 -	14 0 0 -	102 0 0 -	74 0 0 -	500 0 0 -	
Clomazone	230 0 0 -	104 0 0 -	49 0 0 -	98 0 0 -	235 0 0 -	
FMC 65317	208 0 0 -	105 0 0 -	49 0 0 -	98 0 0 -	235 0 0 -	
Cyazofamid	127 0 0 -	135 0 0 -	49 0 0 -	30 00 -	235 0 0 -	
	12/00 -	191 0 0 -		160 0 0 -		
Florasulam		191 00 -				
Florasulam-desmethyl			142 0.0	130 0 0 -	127 0 0	114 0.0
TSA			142 0 0 -		137 0 0 -	114 00-
Flupyrsulfuron-methyl		229 0 0 -			174 0 0 -	
IN-JV460		229 0 0 -			174 0 0 -	
IN-KC576		229 0 0 -			174 0 0 -	
IN-KY374		229 00 -			174 0 0 -	
IN-KF311		150 0 0 -	105 0 0 -	4 0 0 -		
IN-JE127***		150 0 0 -	86 0 0 -	4 0 0 -		
Haluxifen-methyl						
X-757			141 0 0 -		136 0 0 -	
X-729				14 0 0 -		180000-
Iodosulfuron-methyl-Na			250 0 0 -			
Metsulfuron-methyl			250 0 0 -	263 00 -		
Linuron	271 0 0 -					
Mesosulfuron-methyl		285 00 -		126 0 0 -		
Mesosulfuron		12 00 -		107 0 0 -		
AE-F099095	144 0 0 -	122 00 -	84 0 0 -	51 0 0 -	1 0 0 -	
AE-F160459	144 0 0 -	122 00 -	84 0 0 -	51 0 0 -	1 0 0 -	
AE-F147447		122 00 -	84 0 0 -	51 0 0 -		
Metconazole				14 0 0 -		
Picolinafen		35 00 -		158 0 0 -		
CL153815		35 00 -		158 0 0 -		
Thiacloprid				100 0 0 -		
M34				100 0 0 -		
Thiacloprid sulfonic acid				100 0 0 -		
Thiacloprid-amide				100 0 0 -		
Thiamethoxam	175 0 0 -			100 0 0	184 0 0 -	
CGA 322704	175 0 0 -				184 0 0 -	
Thiencarbazone-methyl	175 0 0					
AE1394083					69 0 0 -	
Thifensulfuron-methyl **					09 0 0 -	
Triazinamin/IN-A4098			341 0 0 -	86 0 0 -		
			341 0 0 -	80 00 -		
Thiophanat-methyl Carbendazim		76 0 0 -		33 0 0 -		
	201.0.0	76 00 -		33 00 -		
Triasulfuron	301 0 0 -					
Triazinamin/IN-A4098	291 0 0 -					
Tribenuron-methyl	116.0.0	252 0.0	222 0.0	107 0.0	205 0 0	
Triazinamin-methyl	446 0 0 -	252 00 -	222 0 0 -	107 0 0 -	205 0 0 -	

*** This information can include triazinamin/*IN-A4098* degradated from iodosulfuron-methyl-Na. **** IN-JE127 (degradation product of flupyrsulfuron-methyl) is unstable in aquatic solution – Results should be disregarded.

An evaluation of the pesticides resulting in detections indicating a potential leaching risk is given in the following:

Azoxystrobin and in particular its degradation product CyPM leached from the root 0 zone (1 m depth) in concentrations up to 0.21 μ g L⁻¹ at the clayey till fields Silstrup, Estrup and Lund (Figure 7.7). CyPM leached into the drainage in average concentrations exceeding 0.1 μ g L⁻¹ within the first year after application at both the Silstrup and Estrup fields. It is noted that no threshold for drainage water exists. Following the May 2014 application at Silstrup, azoxystrobin was for the first time detected in concentrations exceeding 0.1 μ g L⁻¹ in water from drainage (0.11 μ g L⁻ ¹). Such a concentration level was previously found at Estrup (Max. 2.1 µg L⁻¹; Table 9.1 and 9.2) and is now also detected in the drainage at Lund (Max. 0.43 μ g L⁻¹). At all three fields, leaching of azoxystrobin was mostly confined to the depth of the tile drain system, and was rarely detected in groundwater (Table 9.3 and 9.4). It is noted that the lack of detections in the groundwater samples from Lund could be caused by filter screens not being hydraulically well connected to the hydraulic active pathways in the till – this is under evaluation. However, detections of CyPM in groundwater samples from Silstrup (Applications in 2004, 2005, 2009, 2013 and 2014) and Estrup (Applications in 2004, 2006, 2008, 2009, 2012 and 2014) gradually increased after each application. Out of 756 (Silstrup) + 766 (Estrup) + 240 (Lund) groundwater samples collected at Silstrup, Estrup and Lund, 100 (Silstrup) + 41 (Estrup) + 11 (Lund) samples contained CyPM, whereof 12 (Silstrup) + 5 (Estrup) + 0 (Lund) exceeded 0.1 µg L⁻¹. 9 of 12 (Silstrup) and 4 of 5 (Estrup) samples were collected after the application in 2014, with a maximum concentration of 0.52 μ g L⁻¹ at Silstrup and 0.46 μ g L⁻¹ at Estrup. Many of the CyPM detections at Silstrup and Estrup were in water collected from the horisontal wells in 2 m depth, which became operational in early 2012. Particularly at Estrup, the low permeable layer seems to minimize the hydraulic connection from the surface to the vertical well screens but not to the new horizontal well screens, which could be due to a spatial variation in presence of the low permeable layer or more dominant vertical hydraulic active macropores intersected by the horisontal well compared to the vertical well. This is subject for further research. Horisontal wells have not yet been installed at Lund. At the clayey till field Faardrup, azoxystrobin and CyPM were detected in four samples from the drainage (Max. 0.06 μ g L⁻¹) before 2007, but never in samples of groundwater. At the sandy Jyndevad field during the period 2005-2007 azoxystrobin and CyPM was not found in water from neither the saturated nor the variably-saturated zone (Appendix 5). At all four clayey till fields, azoxystrobin was generally only detected during the first couple of months following applications, while CvPM, except for Lund (Figure 7.7) leached to groundwater for a longer time period - more than two and five years at Silstrup and Estrup, respectively (Jørgensen et al., 2012). At Lund, background samples reveal no CyPM in the groundwater before application of azoxystrobin to the field (water was not flowing in the tile drain system why no background samples of drainage were obtained leaving the background concentration in the drainage as an unknown). Following application, only detections in groundwater samples collected from the upstream well M1 was obtained up to half a year after the application. Five months after application two detections of higher concentrations than detected in the groundwater from the upstream well, were obtained in groundwater from a downstream well. This indicate that both the use of azoxystrobin at the field and upstream fields seems to contribute to the detections in

the groundwater underneath the field and during a shorter period than at Silstrup and Estrup. Monitoring at Lund continues.

Bentazone leached through the root zone (1 m b.g.s.) in average concentrations 0 exceeding 0.1 μ g L⁻¹ to the drainage system at the clayey till fields of Silstrup, Estrup and Faardrup. Such concentration levels have not been registered at Lund (Figure 7.6). Moreover, bentazone was frequently detected in the monitoring screens situated at depth beneath the drainage system at Silstrup and Faardrup (Table 9.3 and 9.4). At Estrup and Lund, leaching was mostly confined to the depth of the drainage system and rarely detected in water from groundwater monitoring screens (Appendix 5). On the sandy soils, bentazone leached at Jyndevad, but was only detected twice at 1 m depth at Tylstrup. At Jyndevad many high concentrations (exceeding $0.1 \,\mu g \, L^{-1}$) were detected in the soil water samples from suction cups 1 m b.g.s. four months after application in 2012 and 2013. Thereafter, leaching diminished, and bentazone was not detected in the monitoring wells. Although leached in high average concentrations (>0.1 μ g L⁻¹) at four fields, bentazone generally leached within a short time span. Initial concentrations of bentazone were usually very high and decreasing rapidly. In general, concentrations exceeding 0.1 μ g L⁻¹ were only detected within a period of one to four months following the application. The degradation product 2amino-N-isopropyl-benzamide was detected twice in water from 1 m depth at Jyndevad, once in drainage at Estrup and Faardrup (Table 9.2), and once in water from a horizontal well at Estrup (Table 9.4). Bentazone was until May 2017 applied in total 20 times on all PLAP fields excluding Lund, where bentazone for the first time as a part of PLAP was applied in 2017. From 2001 to July 2019, bentazone was detected in concentrations exceeding 0.1 µg L⁻¹ in three groundwater samples from Silstrup in 2003 (Max. 0.44 µg L⁻¹) and in four groundwater samples from Faardrup in 2005 (Max. 0.60 μ g L⁻¹) – no exceedances have been obtained at Tylstrup, Jyndevad, Estrup and Lund. Including Lund, bentazone was detected in 418 samples from the variably saturated zone out of 1220 and 102 out of 3328 groundwater samples. In total bentazone has been analysed in 4435 water samples from drainage and groundwater. Especially application of bentazone on pea at Silstrup and maize at Faardrup resulted in a large number of detections and consequently in the groundwater concentrations exceeding 0.1 µg L⁻¹ (Rosenborn et al., 2013; Pea: 21% detections in groundwater with 1% above 0.1 µg L⁻¹; Maize: 5% detections in groundwater with 2% exceeding 0.1 μ g L⁻¹). The leaching of bentazone was monitored at Faardrup until September 2015, where no detections in the water samples from drainage nor groundwater were made within the latter five months. The detections in water from the horizontal well in 2 m depth are clearly linked to periods of drainage related to snowmelt. Bentazone was applied to spring barley in May 2016 at both Tylstrup and Jyndevad, at Jyndevad and Lund in May 2017 to test, whether bentazone and/or three of its degradation products not tested in PLAP before (6hydroxy-bentazone, 8-hydroxy-bentazone and N-methyl-bentazone) pose a contamination risk to the groundwater. However, none of the three degradation products were detected in the groundwater. There was one detection of N-methylbentazone (0.022 μ g L⁻¹) in a drainage sample from Lund keeping in mind that the analyses of the water samples for 8-hydroxy-bentazone has a high uncertainty. After the application of bentazone in May 2016 at Tylstrup and Jyndevad, bentazone was again monitored in the suction cups, but not in the groundwater samples. At Tylstrup bentazone was detected twice in the spring 2017 in water from the suction cups at 1 m depth, whereas the detections at Jyndevad started from August 2016. Generally,

the bentazone concentrations at Jyndevad seemed to level off after February 2017. After a bentazone application in May 2017 at Jyndevad, the concentration level in water from 1 m depth, however, rose to 4.6 μ g L⁻¹ at S2 (Figure 3.7). The bentazone concentration in water from suction cups after the application in May 2017, hence, seem to follow the leaching pattern of the application in 2012 and 2013 and differ from the previous applications, where bentazone concentrations appeared after approximately three months. Monitoring at both Tylstrup and Jyndevad was stopped April 2018 but continues at Lund (Figure 7.6). As mentioned, regarding the analysis for azoxystrobin and CyPM, it should be noted, that the lack of detections in groundwater samples from Lund could be caused by filter screens not being hydraulically well connected to the hydraulic active pathways in the till – this is under evaluation.

- **Bifenox acid** (degradation product of **bifenox**) leached through the root zone and 0 entered the drainage water system in average concentrations exceeding 0.1 μ g L⁻¹ at the clayey till fields of Silstrup, Estrup and Faardrup. While the leaching at Estrup seems to be confined to the depth of the drainage system, leaching to groundwater monitoring wells situated beneath the drainage system was observed at Silstrup, where concentrations exceeding 0.1 μ g L⁻¹ were observed up to six months after application. As in Silstrup and Estrup the degradation product bifenox acid was detected in very high concentrations in drainage water from Faardrup, in a yearly average concentration of 2.54 μ g L⁻¹ (Table 6.2). In 2011/2012 bifenox acid leached, but in low concentrations, and bifenox was only detected in few water samples. Another degradation product from bifenox, nitrofen, was detected in drainage from Faardrup, often in low concentrations, but 0.16 ug L⁻¹ was detected in one drainage sample in November 2010. In Silstrup, 0.34 and 0.22 µg L⁻¹ was detected in two drainage samples from October 2011. Similar evidence of pronounced leaching was not observed on the sandy soil as there was only a single detection of bifenox acid in soil water, whereas bifenox was detected very sporadically in soil and groundwater, and always in concentrations less than 0.1 µg L⁻¹. The monitoring results thus reveal that the very toxic degradation product nitrofen can be formed in soil after application of bifenox. Detections of nitrofen in water from drainage resulted in the Danish EPA announcing bifenox to be banned in Denmark. The manufacturer immediately removed bifenox from the Danish market before the ban was finally issued in Denmark. Monitoring of bifenox stopped in December 2012.
- **Diflufenican** and the degradation product **AE-B107137** and **AE-B05422291** have been analysed after application at Jyndevad in 2011 and at Silstrup and Estrup in 2012 and 2013. None of the compounds were detected at Jyndevad, whereas both diflufenican and AE-B107137 were detected frequently in samples from drainage at the clayey till fields. Diflufenican was detected in one groundwater sample (0.47 μ g L⁻¹) from Silstrup and AE-B107137 was detected in one and two groundwater samples from Silstrup (0.02 μ g L⁻¹) and Estrup (max. 0.03 μ g L⁻¹), respectively. Monitoring stopped in April 2015.
- In the clayey till field Estrup, **ethofumesate**, **metamitron**, and its degradation product **desamino-metamitron** leached through the root zone (1 m b.g.s.) into the drainage in average concentrations exceeding 0.1 μ g L⁻¹ (Table 9.1). The compounds have not been detected in groundwater monitoring screens at this field. These compounds also leached 1 m b.g.s. at the Silstrup and Faardrup fields, reaching both

the drainage system (Table 9.1 and 9.2) and groundwater monitoring screens (Table 9.3 and 9.4). Average concentrations in drainage samples were not as high as at Estrup, although concentrations exceeding 0.1 μ g L⁻¹ were detected in water from both drainage and groundwater monitoring screens during a period of one to six months at both Silstrup and Faardrup (see Kjær et al., 2002 and Kjær et al., 2004 for details). The above leaching was observed following an application of 345 g ha⁻¹ of ethofumesate and 2.100 g ha⁻¹ of metamitron in 2000 and 2003. Since then, ethofumesate has been regulated and the leaching risk related to the new admissible dose of 70 g ha⁻¹ was evaluated with the two recent applications (2008 at Silstrup and 2009 at Faardrup). Although metamitron has not been regulated, a reduced dose of 1.400 g ha⁻¹ was used at one of the two recent applications, namely that at Silstrup in 2008. The leaching following these recent applications (2008 at Silstrup and 2009 at Faardrup) was minor. Apart from a few samples from the tile drain system and groundwater monitoring wells containing less than 0.1 µg L⁻¹, neither ethofumesate nor metamitron was detected in the analysed water samples. The monitoring of ethofumesate and metamitron stopped in June 2011, However, metamitron and its degradation product, desamino-metamitron, and another degradation product, MTM-126-ATM, not previously included in PLAP was monitored again as it was applied together with thiencarbazone-methyl in sugar beets at Faardrup 29 May 2018. These three compounds and the degradation product AE1394083 (BYH 18636carboxylic acid) of thiencarbazone-methyl was also included in the monitoring program but not detected in any of the 14-17 drainage samples and 66-70 groundwater samples (the number of samples is compound dependent – see Table 9.2 and 9.4). This evaluation is ongoing.

Fluazifop-P-butyl has been included in the monitoring programme several times at \cap Jyndevad, Tylstrup, Silstrup and Faardrup. As fluazifop-P-butyl rapidly degrades, monitoring has until July 2008 only focused on its degradation product fluazifop-P (free acid). Except for one detection below 0.1 μ g L⁻¹ in groundwater at Silstrup and 17 detections at Faardrup with eight exceeding 0.1 μ g L⁻¹ (four drainage samples, three soil water samples from the variably saturated zone and one groundwater sample, Table 9.2 and 9.4), leaching to groundwater was not pronounced. At Faardrup, fluazifop-P-butyl was applied May 2011 in a reduced dose and another degradation product of fluazifop-P-butyl (TFMP) was included in the monitoring programme. TFMP was not detected in drainage or groundwater. TFMP was included in the monitoring programme at Silstrup in July 2008 following an application of fluazifop-P-butyl. After approximately one month, TFMP was detected in the groundwater monitoring wells, where concentrations at or above 0.1 μ g L⁻¹ were found within a ten-month period, following application (Table 9.3 and 9.4). At the onset of drainage in September, TFMP was detected in all the drainage samples at concentrations exceeding 0.1 μ g L⁻¹. The average TFMP concentration in drainage was 0.24 μ g L⁻¹ in 2008/09. The leaching pattern of TFMP indicates pronounced preferential flow, also in periods with a relatively dry variably saturated zone. In 2009 the Danish EPA restricted the use of fluazifop-P-butyl regarding dosage, crop types and frequency of applications. After use in low doses at Silstrup in May 2011 no leaching was observed. The fifth application in April 2012 caused a sharp increase in concentrations in drainage as well as groundwater, reaching 0.64 μ g L⁻¹ and 0.22 μ g L⁻¹, respectively. The last detections of TFMP in drainage water was 0.022 μ g L⁻¹ on 30 October 2013 and in groundwater 0.023 µg L⁻¹ on 15 May 2013. This relatively high leaching potential of TFMP following the 2012 application compared to the 2011 application seems to be caused by heavy precipitation events shortly after the application (Vendelboe *et al.*, 2016). Since October 2013 TFMP has been detected in low concentrations in both groundwater and drainage. Until now the pesticide has been applied ten times at four PLAP fields. Monitoring of TFMP stopped in March 2015.

- \circ Fludioxoxil was applied to potatoes at Tylstrup and Jyndevad (sandy soils) in April 2014. To evaluate the leaching risk related to such application the degradation products, CGA 192155 and CGA 339833, were included in the PLAP-monitoring programme for the fields. Both compounds were detected once during the monitoring period that was extended to August 2016. This was in a groundwater sample from 1.5-2.5 m depth of the vertical well M1 collected 15 October 2015 (CGA 192155: 0.048 µg L⁻¹; CGA 339833: 0.37 µg L⁻¹).
- **Fluroxypyr** was analysed on all test fields. Fluroxypyr was detected in three samples collected from drainage: two times at Estrup with concentration of 1.4 μ g L⁻¹ and one time at Faardrup with concentration of 0.19 μ g L⁻¹ (Table 9.2). One groundwater sample from each of the two fields contained more than 0.05 μ g L⁻¹ (Table 9.4). The monitoring of fluroxypyr itself was stopped in June 2008. In May 2015 fluroxypyr was applied to winter wheat at Faardrup to evaluate the leaching potential of its two degradation products, **fluroxypyr-methoxypyridine** and **fluroxypyr-pyridinol**. None of the two compounds were detected in water from drainage (29 samples) or groundwater (146 samples). Hence, monitoring ended May 2018.
- Glyphosate and its degradation product AMPA were found to leach through the 0 variably saturated zone to the tile drains in concentrations up to 31 μ g L⁻¹ and 1.6 μ g L^{-1} at the clavey till fields Silstrup, Estrup, Faardrup and Lund (Table 9.2). At the clayey till fields glyphosate has been applied five times at Silstrup (in 2001, 2003, 2012, 2013 and 2014), seven times at Estrup (in 2002, 2005, 2007, 2011, 2013, 2014, and 2017), five times at Faardrup (in 1999, 2000, 2011, 2014 and 2016) and one time at Lund (in 2017) within the total monitoring period. All applications have resulted in detectable leaching of glyphosate and AMPA into the drainage, often at concentrations exceeding 0.1 µg L⁻¹ several months after application (Figure 7.8B and 7.8C). Concentration levels exceeding 0.1 μ g L⁻¹ of glyphosate (in 138 of 1198 drainage samples) and AMPA (in 143 of 1199 drainage samples) were mainly confined to the depth of the tile drain system and were only present for glyphosate in six groundwater samples collected at Estrup after heavy rain events or snowmelt, in one case more than two years after the application. Numbers of detections in groundwater samples are generally very limited (Glyphosate: 101 samples out of a total of 2540 groundwater samples; AMPA: 56 samples out of a total of 2541 groundwater samples). For Lund, it is too early to evaluate on the leaching of glyphosate and monitoring continues. From June 2007 to July 2010 external quality assurance of the analytical methods indicates that the true concentration of glyphosate may have been underestimated (Norgaard et al., 2014). Glyphosate and AMPA were also detected in drainage at the clayey till field of Faardrup (as well as at the now closed Slaeggerup field), but in low concentrations (Kjær et al., 2004). Evidence of glyphosate leaching was only seen on clayey till soils, whereas the leaching risk was negligible on the sandy soil of Jyndevad. Here, infiltrating water passed through a matrix rich in aluminium and iron, thereby providing good conditions for sorption and degradation (see Kjær et al., 2005a for details). After

application in September 2012 glyphosate and its degradation product AMPA have been detected in concentrations up to 0.66 µg L⁻¹ in drainage from Silstrup, but not in concentrations in groundwater exceeding 0.1 µg L⁻¹. After application in August 2013 glyphosate was detected in drainage in low concentrations up to 0.036 μ g L⁻¹, and AMPA in concentrations up to 0.054 µg L⁻¹. Glyphosate and AMPA was detected in low concentrations in nine groundwater samples in concentrations up to 0.052 µg L^{-1} . Following the applications of glyphosate at Estrup in October 2011 and in August 2013, detections revealed a pulse of glyphosate and its degradation product AMPA leaching to the drainage encompassing frequent detection with concentrations ≥ 0.1 μ g L⁻¹ shortly after the applications. In this context, glyphosate was detected in one groundwater sample in concentration $\ge 0.1 \ \mu g \ L^{-1} \ (0.13 \ \mu g \ L^{-1})$ following the 2011 application. Neither AMPA nor glyphosate were detected in groundwater from Estrup again until after the July 2014 application. A more detailed study of the detections at Estrup reveals that the leaching of glyphosate and AMPA were highly *climate driven*, controlled by the timing and intensity of the first rainfall event after glyphosate application (Nørgaard et al. 2014). Monitoring at Faardrup of glyphosate stopped August 2012. The Silstrup and Estrup field was sprayed in July 2014, 23 and 10 days, respectively, before the harvest of winter wheat. In the first sampling of drainage at Silstrup on 27 August 2014 the concentration of glyphosate was 0.27 µg L^{-1} and the concentration of AMPA was 0.089 µg L^{-1} . An additional 21 samples contained glyphosate (0.01 to 0.14 μ g L⁻¹). AMPA was detected in 53 of a total 65 samples (0.012 to 0.14 µg L⁻¹). Glyphosate and AMPA were only detected in 15 and 16 groundwater samples, respectively, all having concentrations below 0.1 μ g L⁻¹ and for glyphosate all were sampled before April 2015. Following the latter application at Estrup in July 2014 glyphosate was detected in 26 drainage samples out of 68 with two samples having concentrations of 0.13 and 0.32 μ g L⁻¹. Only six detections of glyphosate were obtained on groundwater samples with the two highest concentrations being 0.09 μ g L⁻¹ in September 2015 and 0.13 μ g L⁻¹ in March 2016. As observed before in PLAP, these detections seem to be weather driven, in this case by heavy rain and snowmelt events, respectively. Following the July 2014 application AMPA was not detected in the groundwater samples but in 60 samples out of 68 samples from drainage with nine exceeding 0.1 μ g L⁻¹ (Max. conc. 0.21 μ g L⁻¹). Monitoring at Silstrup and Estrup ended May 2016 but continues at Lund. Here glyphosate was detected in 21 of 33 drainage samples where eight samples exceeded concentration of 0,1 µg L⁻¹. In these 33 drainage samples, the degradation product, AMPA, was found in 26 of the 33 samples with five exceeding 0.1 μ g L⁻¹. In 203 groundwater samples, glyphosate was detected in three while AMPA was not detected. Two of the groundwater samples that were collected from the upstream well, M1, revealed the same leaching pattern of glyphosate for Lund as observed at the other fields.

• The herbicide **mesotrione** was applied to maize in 2012 at Jyndevad and at Silstrup (Figure 4.7C) and Estrup (Figure 5.7) in May and June 2015 plus twice in June 2016. At all three fields, mesotrione and two degradation products, **AMBA** and **MNBA**, were included in the monitoring. None of these compounds were detected in the background samples collected before application nor in the groundwater samples from Jyndevad and Silstrup collected after application (Table 9.4). Even though mesotrione and MNBA were detected in high concentrations in drainage samples from both Silstrup and Estrup (Table 9.2), it was only at Estrup, that mesotrione was detected in groundwater sampled from the horizontal wells in three of the 67 samples

and the highest concentration measured was 0.13 μ g L⁻¹ on 17 June 2015. Two of 90 water samples from the vertical groundwater wells contained mesotrione and the highest concentration was 0.067 μ g L⁻¹ on 6 June 2015. MNBA was detected once in the groundwater at a concentration of 0.017 μ g L⁻¹. Monitoring at Jyndevad ended March 2015, whereas it was stopped at Silstrup and Estrup by the end of May 2018.

The fungicide metalaxyl-M was applied at both Jyndevad and Tylstrup on potatoes \cap in July 2010. At Jyndevad, the compound itself as well as the two degradation products, CGA 62826 and CGA 108909, were still detected in the groundwater five years after the application. Metalaxyl-M, with a single exception, was found only in the vertical monitoring well M7 upstream the PLAP field, both degradation products were detected in water from both suction cups 1.0 m b.g.s., the vertical wells up- and downstream the field, as well as the horizontal well beneath the field. Regarding CGA 62826 the only exceedance of the regulatory limit was 0.15 μ g L⁻¹ found in the horizontal well 2.5 m b.g.s. on 15 July 2014. CGA 108909, however, was in total at or above the limit six times downstream the field and once upstream (it was also detected in irrigation water in September $2014 - 0.029 \ \mu g \ L^{-1}$). Highest concentration was 0.34 μ g L⁻¹ in the uppermost screen of M5.1 (Table 3.2). As both degradation products were detected in water from the suction cups 1 m b.g.s. the leaching seems to have peaked but is continuing June 2015. During the period April 2010 to June 2015 at Tylstrup, CGA 108906 was detected in 82% of the total 506 analysed water samples: One sample of the irrigated water had no detection, the 153 samples from the variably-saturated zone had 84% detections and the 352 samples from the saturated zone showed 82% detections. In 13% of the groundwater samples, which were found to be collected only from vertical screens, concentrations exceed 0.1 µg L^{-1} having a maximum concentration of 1.5 µg L^{-1} . The maximum concentration level detected in water collected from the horizontal groundwater screens of H1 only reached 0.099 μ g L⁻¹ since sampling was only initiated in March 2012, which was some months after a pulse of CGA 108906 had been detected in samples from 1 and 2 m depth at both S1 and S2 and at the downstream vertical screens. 1% (4/352) of the 13% (47/352) groundwater samples were collected from the screens of the upstream well M1. Here, samples were collected from the three lowest screens M1.2, M1.3 and M1.4 with a level of detections being 17%, 11% and 94%, respectively. These detections were primarily done in the beginning of the period, except for samples taken from M1.4 at 5-6 m depth, where detections were present throughout the whole monitoring period. This clearly indicates the earlier mentioned groundwater contribution of CGA 108906 from upstream fields, which was present before the metalaxyl-M application at the PLAP field in June 2010. With a background concentration of CGA 108906 ranging from $0.02-0.3 \ \mu g \ L^{-1}$, detected in the vertical groundwater monitoring wells, it is difficult to determine, to which extent the elevated concentrations observed in the downstream monitoring wells are due to the metalaxyl-M applied on the PLAP field in 2010 or to applications on the upstream fields. Detections of CGA 108906 in water from suction cups and the horizontal well H1, which is situated just beneath the fluctuating groundwater, clearly indicate that CGA 109806 does leach through the PLAP field in high concentrations and hence contribute to the detections in water samples from the vertical groundwater screens downstream the PLAP-field. The monitoring results confirmed the pronounced leaching potential of the two degradation products reported in the EU-admission directive for metalaxyl-M from 2002. At the national approval of metalaxyl-M in Denmark in 2007 the Danish EPA was aware of the degradation products and asked

for test in potatoes in PLAP as soon as possible regarding the planned crop rotation. Because of the monitoring results, metalaxyl-M was banned in Denmark in December 2013. Results from PLAP were sent to EFSA in connection with the reevaluation of metalaxyl-M in EU. The monitoring of the parent and the two degradation products in PLAP stopped in March 2015.

- o Two degradation products of metribuzine, diketo-metribuzine and desaminodiketo-metribuzine, leached 1 m b.g.s. at average concentrations exceeding 0.1 µg L^{-1} in the sandy soil at Tylstrup. Both degradation products appear to be relatively stable and leached for a long period of time. Average concentrations reaching 0.1 µg L^{-1} were seen as late as three years after application. Evidence was also found that their degradation products might be present in the groundwater at least six years after application, most likely because metribuzine and its degradation products have longterm sorption and dissipation characteristics (Rosenbom et al., 2009). Long-term sorption is currently not well described in the groundwater models, but new guidance on how to do this is expected to be published within the next year. In Denmark, the conservative Danish approach to groundwater modelling assures that compounds with a high leaching risk are not approved. At both sandy fields (Tylstrup and Jyndevad), previous applications of metribuzine has caused marked groundwater contamination with its degradation products (Kjær et al., 2005b). Metribuzine has been removed from the market as the use of it was banned in Denmark. The monitoring of metribuzine and degradation products stopped in February 2011.
- At Estrup, CL 153815 (degradation product of picolinafen) leached through the root zone and into the drainage water in average concentrations exceeding 0.1 μg L⁻¹ (Appendix 5). CL 153815 was not detected in deeper monitoring screens (Table 9.3). Leaching of CL 153815 was also not detected in the sandy soil Jyndevad after application in October 2007 (Table 9.1, 9.3 and Appendix 5). Monitoring stopped in March 2010.
- **Pirimicarb** together with its two degradation products, **pirimicarb-desmethyl** and **pirimicarb-desmethyl-formamido**, were included in the monitoring programme for all five fields. All the three compounds were detected, but only pirimicarb-desmethyl-formamido leached in average concentrations exceeding 0.1 μ g L⁻¹ through the root zone (1 m b.g.s.) into the drainage system (Table 9.1) at Estrup. Comparable high levels of leaching of pirimicarb-desmethyl-formamido were not observed with any of the previous applications of pirimicarb at the other PLAP fields (Table 9.1 and Kjær *et al.*, 2004). Both degradation products (pirimicarb-desmethyl and pirimicarb-desmethyl-formamido) were detected in deeper monitoring screens at Faardrup (Table 9.3 and 9.4). The monitoring stopped in June 2007.
- **Propyzamide** and its three degradation products **RH-24644**, **RH-24655** and **RH-24580** were found not to leach through the sandy field in Tylstrup (Kerb 500SC applied to winter rape in 2007) and the clay till field Faardrup (Kerb 400SC applied to winter clover in 2013), whereas the compounds except RH-24655 leached through the clay till fields at Silstrup (Kerb 500SC applied to winter rape in 2005 and 2018 only propyzamide was included in the 2018 test) and Faardrup (Kerb 500SC applied to winter rape in 2007) to the drainage system with concentrations of propyzamide exceeding 0.1 μ g L⁻¹ (max. 5.1 μ g L⁻¹; Table 9.1 and 9.2). During these periods, propyzamide was also detected in water from the groundwater screens situated

beneath the drainage system at Silstrup and Faardrup. Apart from two and four groundwater samples collected at Silstrup following the 2005 and 2018 application, respectively, concentrations in the groundwater from the screens were always less than 0.1 μ g L⁻¹ (Appendix 5, Table 9.3 and 9.4). The high concentrations of propyzamide in samples collected from both drainage and groundwater were in all three test periods obtained within months after the application of propyzamide on the field. This seems to be caused by preferential transport of propyzamide through the clayey till facilitated by all three applications being conducted in a month having a monthly precipitation above average (Appendix 4) and a water saturated soil matrix both before and after application. The monitoring continues at Silstrup.

- **Pyridate** was applied to maize at Jyndevad and Silstrup in May 2001. Only its degradation product, **PHCP**, was included in the monitoring programme for the two fields. The compound was not detected at Jyndevad, whereas it was detected at Silstrup in water from 1 m depth four times out of 62 samples all exceeding 0.1 μ g L⁻¹ and with a maximum concentration of 2.69 μ g L⁻¹ and 14 times out of 175 groundwater samples with four exceeding 0.1 μ g L⁻¹ and having a max concentration of 0.31 μ g L⁻¹. Monitoring stopped in July 2003 at Jyndevad and July 2004 at Silstrup.
- One degradation product of rimsulfuron PPU leached from the root zone (1 m \cap b.g.s.) in average concentrations reaching 0.10–0.13 μ g L⁻¹ at the sandy soil field at Jyndevad. Minor leaching of PPU was also seen at the sandy field Tylstrup, where low concentrations (0.021-0.11 μ g L⁻¹) were detected in the soil water sampled 1 and 2 m b.g.s. (Table 9.1 and 9.2). PPU was occasionally detected in groundwater and five samples out of 58 exceeded 0.1 μ g L⁻¹ at Jyndevad in 2011/2012, whereas PPU was detected in low concentration <0.1 μ g L⁻¹ at Tylstrup (Table 9.3 and 9.4). At both fields, PPU was relatively stable and persisted in the soil water for several years, with relatively little further degradation into PPU-desamino. Average leaching concentrations reaching 0.1 μ g L⁻¹ were seen up to three years after application at Jyndevad. With an overall transport time of about four years, PPU reached the downstream monitoring screens. The concentration of PPU-desamino was much lower and, apart from six samples out of 227 collected from one meter depth at Jyndevad, never exceeded 0.1 μ g L⁻¹. It should be noted that the concentration of PPU is underestimated by up to 22-47%: Results from the field-spiked samples indicate that PPU is unstable and may have degraded to PPU-desamino during analysis (Rosenborn et al., 2010a). The Danish EPA has withdrawn the approval of rimsulfuron based on the persistence of PPU supported by these monitoring data. Monitoring stopped in December 2012.
- **Tebuconazole** was applied in autumn 2007 at Tylstrup, Jyndevad, Estrup and Faardrup. Leaching occurred at the clayey till soil of Estrup through the root zone (1 m b.g.s.) and into the drainage in average concentrations exceeding 0.1 μ g L⁻¹ in an average yearly concentration of 0.44 μ g L⁻¹ (Table 9.1 and 9.2). Leaching was mainly confined to the depth of the tile drain system, although the snowmelt occurring in March 2011 (more than two years after application) induced leaching of tebuconazole to a groundwater monitoring well in concentrations exceeding 0.1 μ g L⁻¹ (Table 9.3 and 9.4). None of the applications at the three other PLAP fields caused tebuconazole to be detected in similar high concentrations in the variably-saturated zone, though concentrations below 0.1 μ g L⁻¹ were detected in samples from the

groundwater monitoring screens (Table 9.3 and 9.4). Monitoring of tebuconazole stopped in December 2012. To evaluate on the leaching potential of its degradation product **1,2,4-triazole**, tebuconazole was applied in 2014 on cereals at Estrup in May (Table 5.2) and at Tylstrup, Jyndevad and Faardrup in November 2014 (Table 2.2, 3.2 and 4.2). The monitoring results of 1,2,4-triazole from Tylstrup (Figure 2.7), Jyndevad (Figure 3.8), Estrup (Figure 5.8) Faardrup (Figure 6.6) revealed:

- an unprecedented high background concentration level of 1,2,4-triazole in water samples collected from the groundwater at all fields except for Faardrup. The concentration declined with depth, which indicates a source coming from the field surface.
- a 1,2,4-triazole contribution to the groundwater from the variably-saturated (1 m depth) caused by the actual application at the two sandy fields, whereas this contribution is unclear at the clayey till fields (Estrup and Faardrup) since it was not possible to obtain a drainage sample before application.

With such background concentration levels in the groundwater at Tylstrup, Jyndevad and Estrup it is, however, clear that the source resulting in the many detections can not only be the recent tebuconazole application. Previous applications of azole fungicides on the fields, be it by spraying or as seed dressings or even other sources may have contributed. To be able to account for a seed dressing contribution, it was decided to register from 2017 and onwards all use of seed dressing on the PLAP-fields. To evaluate the leaching of 1,2,4-triazole as a result of the application of other parent fungicides the following azole-fungicides have been applied:

- epoxiconazole to winter wheat in May 2015 at Jyndevad.
- **prothioconazole** to winter wheat in May and June 2015 at Tylstrup and in May 2015 at Faardrup, to spring barley in June 2015 at Jyndevad, and as a split application in May 2018 at Silstrup and in June 2018 at Lund.
- **propiconazole** (in half the maximum allowed dosage) to spring barley in June 2016 at both Jyndevad and Faardrup. Furthermore, it was used in spring barley as a split application in April to July 2017 in the maximum allowed dosage at Tylstrup, Silstrup and Faardrup.
- **metconazole** as a split application in May 2019 to spring barley at Estrup.

Following the epoxiconazole and prothioconazole application in 2015 (Figure 2.7, 3.8 and 6.6), the number of samples with detection of 1,2,4-triazole collected from 1 m depth and groundwater monitoring wells increased again. At Faardrup, no detections in groundwater were obtained following the period September 2015 to May 2016, during which monitoring was temporarily stopped due to analysis expenses. At Jyndevad, the applications resulted in a concentration level at 1 m depth (suction cups) exceeding 0.1 μ g L⁻¹ (Figure 3.8). With the half-dose application of propiconazole in 2016, more detections were generally obtained. Water from the upstream well M7 at Jyndevad showed concentrations of 1,2,4-triazole at 3.6-5.6 m depth, and though these concentrations could impact detected concentrations in water collected from downstream groundwater wells, the consistently higher concentration in water collected from the horizontal well in 2.5 m depth compared to similar depth at M7 indicate an immediate impact from the azole-applications at the PLAP-field (Figure 3.8C-D). This is supported by the higher concentrations of 1,2,4-triazole (compared to upstream wells) obtained from water collected via the suction cups in 1 m depth (at S2) indicating a contribution from the field (Figure 3.8B). Furthermore, the groundwater level is not above the suction cups and thus potential upstream sources cannot reach the suction cups (Figure 3.2). Following the half-dose application of propiconazole at Faardrup in June 2016, groundwater detections (eight samples out of 88) were obtained in low concentration in a period with no drainage and hence no drainage samples to be analysed. By the end of 2016, drainage and groundwater samples were collected at Silstrup to evaluate on the background concentrations at this field. With only a detection in the sample from the drainage $(0.05 \ \mu g \ L^{-1})$ and none in the 10 groundwater samples collected 7 December 2016, it was decided to apply propiconazole twice on spring barley during June-July 2017 added with the application of seeds coated with tebuconazole and prothioconazole in April and September 2017 and evaluate on the subsequent leaching (Figure 4.8). During this application period, no water was flowing in the tile drains. In September 2017, a period with intense precipitation and following percolation through the till (Figure 4.8A) at Silstrup began, and detections of 1,2,4-triazole occurred in both drainage and groundwater samples in concentrations exceeding 0.1 μ g L⁻¹ (0.17 in drainage and 0.14 μ g L⁻¹ in groundwater), where after concentrations in groundwater diminished as percolation decreased (Figure 4.8B-C). A similar leaching pattern, however, with minor detections in the groundwater, was detected at Faardrup following the split propiconazole applications in June-July 2017. The outcome reveals 1,2,4-triazole leaching through the variably-saturated zone (1 m depth) at both of the sandy fields but also at the fractured clayey till field Silstrup, Estrup and Faardrup, giving rise to not only increases in the number of detections of 1.2,4triazole in the groundwater, but also the detected concentrations. The initial detections at Lund revealed a background concentration level in the groundwater before the application of seeds coated with tebuconazole and prothioconazole in April 2018 and the prothioconazole applications in May and June 2018. Following both types of azol-application, this concentration level of 1.2,4-triazole in the drainage and groundwater collected from downstream well increased. The application of azoles in 2019 at Estrup (adding metconazole to the monitoring program) and Faardrup will add to the knowledge regarding the leaching of 1,2,4triazole through the soil under different climate and soil conditions. So far, the monitoring results clearly reveal that 1,2,4-triazole is leaching in different degrees through the fields/soils of PLAP into drainage and groundwater underneath the fields. The leaching seems to be controlled by the climate conditions and the sources of azoles being retarded in the upper 1 meter. The results from the Estrup field reveal a very high level of 1,2,4-triazole detection both in numbers and concentrations. Here, concentrations above the threshold of 0.1 μ g L⁻¹ is observed through many years in groundwater collected from specific well screens. In general, the concentration of the water collected from the upstream well at Estrup do not have the same high level as the ones from the downstream wells. This fact indicates, a strong azole source of the Estrup field combined with the high degree of precipitation at Estrup giving rise to high continuously 1,2,4-triazol detections at Estrup. At all fields except Lund, 1,2,4triazole is detected above 0.1 µg L⁻¹ in 1 m depth. At Silstrup, azole applications in 2017 in the form of both spraying and seed dressing did generate detections of 1,2,4triazole in groundwater for a short periode above the threshold. This is supported by the non-existing background level in the groundwater. Even though the described applications at Lund give rise to an increase in the concentrations detected in the groundwater, the link to the applications at the soil surface of the Lund field is not as clear as at Silstrup given the background concentrations in both drainage and groundwater. Monitoring of 1,2,4-triazole is ongoing.

Terbuthylazine as well as its degradation products leached through the root zone (1 0 m b.g.s.) at high average concentrations on clayey till soils. At the three clayey till soil fields Silstrup, Estrup and Faardrup, desethyl-terbuthylazine leached from the upper meter entering the drainage water in average concentrations exceeding 0.1 µg L^{-1} (Table 9.1 and 9.2). Four years after application in 2005 at Estrup, both terbuthylazine and desethyl-terbuthylazine were detected in drainage water, but concentrations did not exceed 0.1 µg L⁻¹. At Silstrup (Kjær *et al.*, 2007) and Faardrup (Kjær et al., 2009), desethyl-terbuthylazine was frequently detected in the horizontal monitoring screens situated beneath the drainage system (Table 9.3 and 9.4) at concentrations exceeding 0.1 μ g L⁻¹ during two 24-months periods, respectively. Leaching at Estrup (Kjær et al., 2007) was confined to the drainage depth, however. Minor leaching of desethyl-terbuthylazine was also seen at the two sandy fields Jyndevad and Tylstrup, where desethyl-terbuthylazine was detected in low concentrations (<0.1 µg L⁻¹) in the soil water sampled 1 m b.g.s. While desethylterbuthylazine was not detected in the groundwater monitoring screens at Tylstrup, it was frequently detected in low concentrations ($<0.1 \ \mu g \ L^{-1}$) at Jyndevad (Table 9.4, Kjær et al., 2004). Pronounced leaching of terbuthylazine was also seen at two of the three clayey till fields (Estrup and Faardrup), the leaching pattern being like that of 2-hydroxy-desethyl-terbuthylazine desethyl-terbuthylazine. and hydroxyterbuthylazine leached at both Faardrup and Estrup and at the latter field, the average drainage concentration exceeded 0.1 µg L⁻¹. Leaching of these two degradation products was at both fields confined to the drainage system. None of the two degradation products were detected from groundwater monitoring screen at Estrup, whereas at Faardrup both were detected, but at low frequencies of detection and low concentrations. The monitoring of terbuthylazine ended in June 2009.

The monitoring results from May 1999 – June 2019 generally revealed that:

- 18 pesticides resulted in detections in water samples from 1 m depth (tile drains and suction cups) in average concentration being exceeding 0.1 μ g L⁻¹ within a year after application (Table 9.1).
- 22 pesticides resulted in detections in water samples from 1 m depth (tile drains and suction cups) in average concentration being equal to or below $0.1 \ \mu g \ L^{-1}$ within a year after application (Table 9.1).
- 20 pesticides resulted in no detections at 1 m depth (Table 9.1).
- 17 pesticides resulted in detection in groundwater samples in concentrations exceeding $0.1 \ \mu g \ L^{-1}$. (Table 9.3).
- 21 pesticides resulted in detection in groundwater samples in concentrations being equal to or below $0.1 \ \mu g \ L^{-1}$. (Table 9.3).
- 22 pesticides resulted in no detections in groundwater; here among 17, which were not detected in water samples from 1 m depth (Table 9.3).

At the clayey till fields, several pesticides were often detected in water from the drainage system, whereas the frequency of detection in water from the groundwater monitoring screens situated beneath the drainage system was lower and varied considerably between the four fields. These differences should be seen in relation to the different sampling procedures applied. Integrated water samples are sampled from the drainage systems, and the sample system continuously captures water infiltrating throughout the drainage season. However, although the monitoring screens situated beneath the tile drain systems were sampled less frequently (on a monthly basis from a limited number of the monitoring

screens - Appendix 2), pesticides were frequently detected in selected screens at the clayey till fields.

The differences are, however, largely attributable to the hydrological and geochemical conditions, e.g. nitrate in the drainage (Ernstsen *et. al.*, 2015). Compared to the Silstrup and Faardrup fields, the C horizon (situated beneath the drainage depth) at Estrup is low permeable with less preferential flow through macropores (see Kjær *et al.* 2005c for details). The movement of water and solute to the groundwater, is therefore slower at Estrup. An indication of this is the long period with groundwater table over depth of the tile drain system generating a higher degree of water transported via drainage than on the clayey till fields of Silstrup and Faardrup and maybe also Lund. Comparing the clayey till fields, the number of water samples collected from drainage containing pesticides/degradation products was higher at Silstrup and Estrup than at Faardrup (Tabel 9.1 and 9.2), which is largely attributable to the differences in the hydro-geochemical conditions. The occurrence of precipitation and subsequent percolation within the first month after application were generally higher at Silstrup and Estrup than at Faardrup and Lund, where the infiltration of water is the lowest.

This PLAP-report presents the results of the monitoring period July 2017–June 2019. Within that period (Table 9.5):

- A total of 8105 single analyses have now been conducted on water samples collected at the six PLAP-fields: two sandy fields (Tylstrup and Jyndevad) and four clayey till fields (Silstrup, Estrup, Faardrup and Lund).
- PLAP has evaluated the leaching risk of 7 pesticides and 25 degradation products after the application of the maximum allowed dose of the 22 specific pesticides in connection with the specific crops with the exception of the propiconazole application in 2016 where, by mistake, only half of the dosage was used. 13 of the 32 compounds have not been evaluated in previous PLAP reports and were not detected in concentrations exceeding 0.1 µg L⁻¹ in groundwater samples.
- Out of the 32 compounds, only 1,2,4-triazole and propyzamide were detected in groundwater samples in concentrations exceeding $0.1 \ \mu g \ L^{-1}$ in total 23 out of 434 samples and 4 out of 17 samples, respectively.

Results covering the periode May 1999–June 2018 have been reported previously (Kjær *et al.*, 2002, Kjær *et al.*, 2003, Kjær *et al.*, 2004, Kjær *et al.*, 2005c, Kjær *et al.*, 2007, Kjær *et al.*, 2008, Kjær *et al.*, 2009, Rosenbom *et al.*, 2010b, Kjær *et al.*, 2011, and Brüsch *et al.*, 2013a, Brüsch *et al.*, 2013b, Brüsch *et al.*, 2014, Brüsch *et al.*, 2015, Brüsch *et al.*, 2016; Rosenbom *et al.*, 2017; Rosenbom *et al.*, 2019; Rosenbom *et al.*, 2020). The present report should therefore be seen as a continuation of previous reports with the main focus on the leaching risk of pesticides applied during July 2017 - June 2019. All reports and associated peer-reviewed articles can be found at: http://pesticidvarsling.dk.

Table 9.5 (*Same as Table 0.1*). 7 pesticides and 25 *degradation products* have been analysed in PLAP in the period July 2017-June 2019 of which 13 compounds have not been evaluated in PLAP before (in red). The number of water samples analysed collected from the Variably-saturated Zone (VZ; drains and suction cups), Saturated Zone (SZ; groundwater screens) and irrigated water (Irrigation) are presented together with the results of analysis on samples from VZ and SZ given as number of detections (Det.), detections >0.1 μ g L⁻¹ and maximum concentration (Max conc.). For water used for irrigation, the detected concentration in μ g L⁻¹ is presented in brackets. (-) indicate no detections.

Pesticide	Analyte	Nun	ıber o	f samples			Results o	f analy	ysis	
			fro	m:		VZ		1	SZ	
		VZ	SZ	Irrigation	Det.	>0.1	Max conc.	Det.	>0.1	Max conc.
						[µg L ⁻¹]	[µg L ⁻¹]		$[\mu g L^{-l}]$	[µg L ⁻¹]
Azoxystrobin	Azoxystrobin	27	212		3	0	0.08	1	0	0.01
	СуРМ	25	212		19	3	0.43	11	0	0.06
Bentazone	Bentazone	69	373		20	2	1.4	7	0	0.06
	6-hydroxy-bentazone	64	279		0	0	-	0	0	-
	8-hydroxy-bentazone	64	279		0	0	-	0	0	-
	N-methyl-bentazone	64	279		1	0	0.02	0	0	-
Cycloxydim	BH 517-T2SO2	44	222	1 (-)	0	0	-	0	0	-
	E/Z BH 517-TSO	18	222	1 (-)	18	3	0.28	31	0	0.05
Florasulam	TSA	91	358		0	0	-	0	0	-
Flupyrsulfuron-methyl	IN-JE127 Unstable in water	72	240	2 (-)	0	0	-	0	0	-
	IN-KF311	73	259	2 (-)	0	0	-	0	0	-
Fluroxypyr	Fluroxypyr-methoxypyridine	28	58		0	0	-	0	0	-
	Fluroxypyr-pyridinol	28	58		0	0	-	0	0	-
Foramsulfuron	Foramsulfuron	55	80		0	0	-	1	0	0.02
	AE-F092944	57	92		0	0	-	0	0	-
	AE-F130619	55	80		0	0	-	0	0	-
Glyphosate	Glyphosate	21	203		21	8	8.60	2	0	0.02
•	AMPA	33	203		26	5	1.30	3	0	0.02
Haluxifen-methyl	X-729	2	32		0	0	-	0	0	-
	X-757	81	243		0	0	-	0	0	-
Mesosulfuron-methyl	AE-F099095	113	380	9 (-)	0	0	-	0	0	-
	AE-F147447	72	242	8 (-)	0	0	-	0	0	-
	AE-F160459	113	380	9 (-)	0	0	-	0	0	-
Mesotrione	Mesotrione	55	80		1	0	0.01	0	0	-
	AMBA	55	80		0	0	-	0	0	-
	MNBA	55	80		0	0	-	0	0	-
Metconazole	Metconazole	1	14		0	0	-	0	0	-
Propyzamide	Propyzamide	22	57		14	6	5.1	17	4	0.22
Tebuconazole 2014 Epoxiconazole 2015 Prothioconazole 2015 Propiconazole 2016 Propiconazole 2017 Prothioconazole 2018	1,2,4-triazole	227	719	8 (-)	197	59	0.38	434	23	0.23
Thiencarbazone-methyl	AE1394083	16	69		0	0	-	0	0	-
Thiophanat-methyl	Carbendazim	40	109	6(-)	3	0	0.02	0	0	-
Triasulfuron [*]	Triazinamin	52	73		0	0	-	0	0	-
Sub total	32 (7 Pesticides; 25 Degradation products)	1792	6267	46	323	86		507	27	
Percent		22%		0.6%	18%	5%		8%	0.4%	
Total			81	05						•

* This information can include triazinamin/IN-A4098 degradated from iodosulfuron-methyl-Na.

10 References

Allerup, P. and Madsen, H. (1979): Accuracy of point precipitation measurements. Danish Meteorological Institute, *Climatological Papers No. 5*, Copenhagen, 84 pp.

Badawi, N., Rosenbom A.E., Olsen P. and Sørensen, S.R. (2015): Environmental Fate of the Herbicide Fluazifop-P-butyl and its Degradation Products in Two Loamy Agricultural Soils: A Combined Laboratory and Field Study. *Environ. Sci. Tech.*, 49, 8995-9003.

Barlebo, H.C., Rosenbom, A.E. and Kjær, J. (2007): Evaluation of Pesticide Scenarios for the Registration Procedure; no. 1178; Danish Environmental Protection Agency.

Boesten, J.J.T.I. (2000): From laboratory to field: uses and limitations of pesticide behaviour models for the soil/plant system. *Weed Res.*, 40. 123–138.

Brüsch, W., Kjær, J., Rosenbom, A.E., Juhler, R.K., Gudmundsson, L., Plauborg, F., Nielsen, C.B. and Olsen, P. (2013 a): The Danish Pesticide Leaching Assessment Programme: Monitoring results May 1999-June 2011. Geological Survey of Denmark and Greenland. Copenhagen.

Brüsch, W., Rosenbom, A.E., Juhler, R.K., Gudmundsson, L., Plauborg, F., Nielsen, C.B. and Olsen, P. (2013 b): The Danish Pesticide Leaching Assessment Programme: Monitoring results May 1999-June 2012. Geological Survey of Denmark and Greenland. Copenhagen.

Brüsch, W., Rosenbom, A.E., Badawi, N., v. Platten-Hallermund, F., Gudmundsson, L., Plauborg, F., Nielsen, C.B., Laier, T. and Olsen, P. (2015): The Danish Pesticide Leaching Assessment Programme: Monitoring results May 1999-June 2013. Geological Survey of Denmark and Greenland. Copenhagen.

Brüsch, W., Rosenbom, A.E., Badawi, N., Gudmundsson, L., v. Platten-Hallermund, F., Hansen, C.H., Nielsen, C.B., Plauborg, F. and Olsen, P. (2016): The Danish Pesticide Leaching Assessment Programme: Monitoring results May 1999-June 2014. Geological Survey of Denmark and Greenland. Copenhagen.

Danish EPA (1997): Bekendtgørelse nr. 637 af 30. juni 1997, Miljø- og Energiministeriet, 1997.

Danish EPA (2007): Miljømæssig vurdering, Bilag 2 a, Ridomil Gold MZ Pepite (Metalaxyl-M/Mancozeb).

DMI (2019):

https://www.dmi.dk/fileadmin/user_upload/Bruger_upload/PopArt/Vejret159_vejr_klim a 2018.pdf.

EEC (1971): Directive 71/250/EEC of 15 June 1971 establishing Community methods of analysis for the official control of feeding-stuffs, *Official Journal L 155, 12/07/1971 pp. 0013–0037*. Information is also available on:

Ernstsen, V., Olsen, P. and Rosenbom, A.E. (2015): Long-term monitoring of nitrate transport to drainage from three agricultural clayey till fields. *Hydrol. Earth Syst. Sci.*, 19, 3475-3488, doi:10.5194/hess-19-3475-2015.

Flerchinger, G.N., Seyfried, M.S. and Hardegree, S.P. (2006): Using soil freezing characteristics to model multi-season soil water dynamics. *Vadose Zone Journal*, 5, 1143-1153.

Funk, W., Dammann, V. and Donnevert, G. (1995): Quality assurance in analytical chemistry, VCH Verlagsgesellschaft GmbH, Weinheim.

Jacobsen O.H. and Kjær J. (2007): Is tile drainage water representative of root zone leaching of pesticides? *Pest Management Science*, 63(5), 417-428.

Jarvis N. J. A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality, European Journal of Soil Science 2020: 71: 279-302.

Juhler, R.K., Henriksen, T., Rosenbom, A.E. and Kjaer, J. (2010): Fate and transport of chlormequat in subsurface environments. *Environ. Sci. Pollut. Res.*, 17(6), 1245-1256.

Jørgensen, L.F., Kjær J., Olsen, P. and Rosenbom, A.E. (2012): Leaching of azoxystrobin and its degradation product R234886 from Danish agricultural field sites. *Chemosphere*, 88(5), 554-562.

Jørgensen, L.F., Kjær, J., Olsen, P. and Rosenbom, A.E. (2013): Corrigendum to "Leaching of azoxystrobin and its degradation product R234686 from Danish agricultural field sites" 88 (2012) 554-562," *Chemosphere*, Vol. 90(2), p. 885.

Kjær, J., Ullum, M., Olsen, P., Sjelborg, P., Helweg, A., Mogensen, B., Plauborg, F., Jørgensen, J.O., Iversen, B.O., Fomsgaard, I. and Lindhardt, B. (2002): The Danish Pesticide Leaching Assessment Programme: Monitoring results, May 1999–June 2001, Geological Survey of Denmark and Greenland. Copenhagen.

Kjær, J., Ullum, M., Olsen, P., Sjelborg, P., Helweg, A., Mogensen, B., Plauborg, F., Grant, R., Fomsgaard, I. and Brüsch, W. (2003): The Danish Pesticide Leaching Assessment Programme: Monitoring results, May 1999–June 2002, Geological Survey of Denmark and Greenland. Copenhagen.

Kjær, J., Olsen, P., Barlebo, H.C., Juhler, R.K., Plauborg, F., Grant, R., Gudmundsson, L. and Brüsch, W. (2004): The Danish Pesticide Leaching Assessment Programme: Monitoring results, May 1999–June 2003, Geological Survey of Denmark and Greenland. Copenhagen.

Kjær, J., Olsen, P., Ullum, M. and Grant, R. (2005a): Leaching of glyphosate and aminomethylphosphonic acid from Danish agricultural field sites, *J. Environ. Qual.*, 34, 608–630.

Kjær, J., Olsen, P., Henriksen, T. and Ullum, M. (2005b): Leaching of Metribuzin Metabolites and the associated Contamination of a Sandy Danish aquifer, *Environ. Sci. Technol.* 39, 8374-8381.

Kjær, J., Olsen, P., Barlebo, H.C., Juhler, R.K., Henriksen, T., Plauborg, F., Grant, R., Nyegaard P. and Gudmundsson, L. (2005c): The Danish Pesticide Leaching Assessment Programme: Monitoring results, May 1999–June 2004, Geological Survey of Denmark and Greenland. Copenhagen.

Kjær, J., Olsen, P., Barlebo, H.C., Juhler, R.K., Henriksen, T., Plauborg, F., Grant, R., Nyegaard P. and Gudmundsson, L. (2006): The Danish Pesticide Leaching Assessment Programme: Monitoring results, May 1999–June 2005, Geological Survey of Denmark and Greenland. Copenhagen.

Kjær, J., Olsen, P., Barlebo, H.C., Henriksen T., Plauborg, F., Grant, R., Nyegaard, P., Gudmundsson, L. and Rosenbom, A.E. (2007): The Danish Pesticide Leaching Assessment Programme: Monitoring results, May 1999–June 2006, Geological Survey of Denmark and Greenland. Copenhagen.

Kjær, J., Rosenbom, A., Olsen, P., Juhler, R.K., Plauborg, F., Grant, R., Nyegaard, P., Gudmundsson, L. and Brüsch, W. (2008): The Danish Pesticide Leaching Assessment Programme: Monitoring results May 1999-June 2007, Geological Survey of Denmark and Greenland. Copenhagen.

Kjær, J., Rosenbom, A., Olsen, P., Ernstsen, V., Plauborg, F., Grant, R., Nyegaard, P, Gudmundsson, L. and Brüsch, W. (2009): The Danish Pesticide Leaching Assessment Programme: Monitoring results May 1999-June 2008, Geological Survey of Denmark and Greenland. Copenhagen.

Kjær, J., Rosenbom, A.E., Olsen, P., Ernstsen, V., Plauborg, F., Grant, R., Gudmundsson, L. and Brüsch, W. (2011): The Danish Pesticide Leaching Assessment Programme: Monitoring results May 1999-June 2010, Geological Survey of Denmark and Greenland. Copenhagen.

Kördel, von W. (1997): Feldversuche zum Austrag von Pflanzenschutzmitteln über Drainage – Abschätzung der Belastung aquatischer Ökosysteme, *Gesunde Pflanzen, 49* (5): 163–170 (in German).

Larsbo, M., Roulier, S., Stenemo, F., Kasteel, R., and Jarvis, N. (2005): An improved dual-permeability model of water flow and solute transport in the vadose zone. *Vadose Zone Journal* 4(2), 398-406.

Lindhardt, B., Abildtrup, C., Vosgerau, H., Olsen, P., Torp, S., Iversen, B.V., Jørgensen, J.O., Plauborg, F., Rasmussen, P. and Gravesen, P. (2001): The Danish Pesticide Leaching Assessment Programme: Site characterization and monitoring design, Geological Survey of Denmark and Greenland, Copenhagen.

Miller, J.N. and Miller, J.C. (2000): Statistics and chemometrics for analytical chemistry, Pearson, Essex.

Norgaard, T., Moldrup, P., Ferré, T.P.A., Olsen, P., Rosenbom, A.E. and de Jonge, L.W. (2014): Leaching of Glyphosate and Aminomethylphosphonic Acid from an Agricultural Field over a Twelve-Year Period, *Vadose Zone Journal*, Vol. 13, No. 10.

Rosenbom, A.E., Karan, S., Badawi, N., Gudmundsson, L., Hansen, C.H., Kazmierczak, J., Nielsen, C.B., Plauborg, F. and Olsen, P. (2020): The Danish Pesticide Leaching Assessment Programme: Monitoring results May 1999-June 2018. Geological Survey of Denmark and Greenland. Copenhagen.

Rosenbom, A.E., Karan, S., Badawi, N., Gudmundsson, L., Hansen, C.H., Kazmierczak, J., Nielsen, C.B., Plauborg, F. and Olsen, P. (2019): The Danish Pesticide Leaching Assessment Programme: Monitoring results May 1999-June 2017. Geological Survey of Denmark and Greenland. Copenhagen.

Rosenbom, A.E., Haarder, E.B., Badawi, N., Gudmundsson, L., v. Platten-Hallermund, F., Hansen, C.H., Nielsen, C.B., Plauborg, F. and Olsen, P. (2017): The Danish Pesticide Leaching Assessment Programme: Monitoring results May 1999-June 2016. Geological Survey of Denmark and Greenland. Copenhagen.

Rosenbom, A.E., Badawi, N., Gudmundsson, L., v. Platten-Hallermund, F., Hansen, C.H., Haarder, E.B., Nielsen, C.B., Plauborg, F. and Olsen, P. (2016): The Danish

Pesticide Leaching Assessment Programme: Monitoring results May 1999-June 2015. Geological Survey of Denmark and Greenland. Copenhagen.

Rosenbom, A.E., Olsen, P., Plauborg, F., Grant, R., Juhler, R.K., Brüsch, W. and Kjær, J. (2015): Pesticide leaching through sandy and loamy fields - Long-term lessons learnt from the Danish Pesticide Leaching Assessment Programme, *Environmental Pollution*, Vol. 201, pp. 75-90.

Rosenbom, A.E., Kjær, J., Brüsch, W. and Olsen, P. (2013): Leaching of bentazone from Danish agricultural fields. Geophysical Research Abstracts Vol. 15, EGU2013-4961, 2013. EGU General Assembly 2013.

Rosenbom, A.E., Kjær, J., Henriksen, T., Ullum, M. and Olsen, P. (2009): Ability of the MACRO Model to Predict Long-Term Leaching of Metribuzin and Diketometribuzin, *Environ. Sci. Technol.*, 43(9), 3221-3226.

Rosenbom, A.E., Kjær, J. and Olsen, P. (2010a): Long-term leaching of rimsulfuron degradation product through sandy agricultural soils, *Chemosphere*, 79, 830-838.

Rosenbom A.E., Brüsch, W., Juhler, R.K., Ernstsen, V., Gudmundsson, L., Plauborg, F., Grant, R. and Olsen, P., (2010b): The Danish Pesticide Leaching Assessment Programme: Monitoring results May 1999-June 2009, Geological Survey of Denmark and Greenland. Copenhagen.

Sültenfuß, J., Roether, W. and Rhein, M. (2009): The Bremen mass spectrometric facility for the measurement of helium isotopes, neon, and tritium in water, *Isotopes in Environmental and Health Studies*, 45:2, 83-95.

Thorling, L., Ditlefsen, C., Ernstsen, E., Hansen, B., Johnsen, A.R., Troldborg, L. (2019): Grundvand. Status og udvikling 1989 – 2018. Teknisk rapport, GEUS 2019. ISBN Online: : 978-87-7871-522-7.

Topp, G.C., Davis, J.L. and Annan, A.P. (1980): Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. *Water Resources Research*, 16, 574-582.

U.S. Environmental Protection Agency (1998): Guidance for prospective groundwater monitoring studies. Environmental Fate and Effects Division, Office of Pesticide Programs, U.S. Environmental Protection Agency, September 16, 1998.

Vendelboe, A.L., Norgaard, T., Olsen, P., de Jonge, L., Rosenbom, A.E. (2016): When does the fluazifop-P-butyl degradate, TFMP, leach through an agricultural loamy soil to groundwater? *Sci. Tot. Env.* 562, 1044-1053.

Wilson, A.L. (1970): The performance characteristics of analytical methods II, *Talanta* 17(1), 31–44.

Appendixes

Appendix 1 Chemical abstracts nomenclature for the pesticides encompassed by the PLAP

Appendix 2 Pesticide monitoring programme – Sampling procedure

Appendix 3 Agricultural management

Appendix 4 Monthly precipitation data for PLAP fields

Appendix 5 Pesticide detections in samples for drains, suction cups and groundwater monitoring wells

Appendix 6 Laboratory internal control cards and external control sample results

Appendix 7 Pesticides analysed at five PLAP fields in the period up to 2009/2010

Appendix 8 New horizontal wells

Appendix 9 Groundwater age from recharge modelling and tritium-helium analysis

Appendix 1

Chemical abstracts nomenclature for the pesticides encompassed by the PLAP

Table A1.1. Systematic chemical nomenclature for the pesticides and degradation products encompassed by the PLAP. P (parent). M (degradation product). N: Total number of samples analysed in PLAP including QC samples. Monitoring is ongoing if latest analysis date is in June 2019.

Pesticide	P/M		CAS no.	Systematic name	Latest analysis	Ν
Aclonifen	Р	Aclonifen	74070-46- 5	2-chloro-6-nitro-3-phenoxyaniline	18.06.13	471
Amidosulfuron	Р	Amidosulfuron	120923- 37-7	N-[[[[(4,6-dimethoxy-2- pyrimidinyl)amino]carbonyl]-amino]sulfonyl]-N- methylmethanesulfonamide	01.03.06	568
Amidosulfuron	М	Desmethyl- amidosulfuron	-	3-(4-hydroxy-6-methoxypyrimidin-2-yl)-1-(N- methyl-N-methylsulfonyl-aminosulfonyl)-urea (AEF101630)	01.03.06	129
Aminopyralid	Р	Aminopyralid	150114- 71-9	4-amino-3,6-dichloropyridine-2-carboxylic acid	08.04.15	619
Azoxystrobin	Р	Azoxystrobin	131860- 33-8	Methyl (E)-2-(1)-3-methoxyacrylate	27.03.19	3712
Azoxystrobin	М	СуРМ	1185255- 09-7	E-2-(2-[6-cyanophenoxy)-pyrimidin-4-yloxy]- phenyl) – 3-methoxyacrylic acid	27.03.19	3863
Bentazone	Р	Bentazone	25057-89- 0	3-(1-methylethyl)-1H-2,1,3-benzothiadiazin- 4(3H)-one 2,2 dioxide	.03.19	5480
Bentazone	М	2-amino-N-isopropyl- benzamide	30391-89- 0	2-amino-N-isopropylbenzamide	28.06.07	2139
Bentazone	М	N-methyl-bentazone	61592-45- 8	3-isopropyl-1-methyl-1H-2,1,3-benzothiadiazin- 4(3H)-one 2,2-dioxide	25.04.18	739
Bentazone	М	6-hydroxy-bentazone	60374-42- 7	6-Hydroxy-3-isopropyl-1H-2,1,3-benzothiadiazin- 4(3H)-one 2,2-dioxide	25.04.18	739
Bentazone	М	8-hydroxy-bentazone	60374-43- 8	8-Hydroxy-3-(1-methylethyl)-1H-2,1,3- benzothiadiazin-4(3H)-one 2,2-dioxide	25.04.18	739
Bifenox	Р	Bifenox	42576-02-	methyl 5-(2,4-dichlorophenoxy)-2-nitrobenzoate	27.12.12	1190
Bifenox	М	Bifenox acid	53774-07- 5	5-(2,4-dichlorophenoxy)-2-nitrobenzoic acid	27.12.12	1112
Bifenox	М	Nitrofen	1836-75-5	2,4-dichlorophenyl 4'-nitrophenyl ether	27.12.12	1190
Boscalid	P	Boscalid	188425- 85-6	2-chloro-N-(4'-chlorobiphenyl-2-yl)nicotinamide	11.12.12	190
Bromoxynil	Р	Bromoxynil	1689-84-5	3,5-dibromo-4-hydroxybenzonitrile	13.03.15	2003
Chlormequat	P	Chlormequat	999-81-5	2-chloroethyltrimethylammonium chloride	10.07.08	335
Clomazone	P	Clomazone	81777-89-	2-[(2-chlorphenyl)methyl]-4,4-dimethyl-3-	08.04.15	1127
			1	isoxazolidione		
Clomazone	М	FMC 65317	-	(N-[2-chlorophenol)methyl]-3-hydroxy-2,2- dimethylpropanamide, (Propanamide-clomazone)	08.04.15	1095
Clopyralid	Р	Clopyralid	1702-17-6	3,6-Dichloropyridine-2-carboxylic acid	12.03.09	854
Cyazofamid	Р	Cyazofamid	120116- 88-3	4-chloro-2-cyano-N,N-dimethyl-5-p- tolylimidazole-1-sulfonamide	12.06.12	417
Cycloxydim	М	E/Z BH 517-TSO	-	2-[1-(ethylimino)butyl]-3-hydroxy-5-(tetrahydro- 2H-thiopyran-3-yl)-2-cyclohexen-1-one S-oxide	26.06.19	320
Cycloxydim	М	BH 517-T2SO2	-	2-propyl-6-(3-thianyl)-4,5,6,7- tetrahydrobenzoxazol-4-one S-dioxide	26.06.19	320
Desmedipham	Р	Desmedipham	13684-56- 5	Ethyl 3-(phenylcarbamoyloxy)phenylcarbamate	24.06.03	985
Desmedipham	М	EHPC	7159-96-8	Carbamic acid, (3-hydroxyphenyl)-ethyl ester	24.06.03	655
Diflufenican	P	Diflufenican	83164-33- 4	2',4'-difluoro-2-(α,α,α-trifluoro-m- tolyloxy)nicotinanilide	08.04.15	662
Diflufenican	М	AE-B107137	36701-89- 0	2-[3-(trifluoromethyl)phenoxy]pyridine-3- carboxylic acid	08.04.15	690
Diflufenican	М	AE-05422291	-	2-[3-(trifluoromethyl)phenoxy]pyridine-3- carboxamide	08.04.15	662
Dimethoate	Р	Dimethoate	60-51-5	O,O-dimethyl S-methylcarbamoylmethyl- phosphorodithioate	13.06.05	2039
Epoxiconazole	Р	Epoxiconazole	106325- 08-0	(2RS, 3SR)-1-(2-(2-chlorophenyl)-2,3-epoxy-2- (4-fluorophenyl)propyl)-1H-1,2,4-triazol	02.12.09	1527
Ethofumesat	Р	Ethofumesate	26225-79- 6	(±)-2-ethoxy-2,3-dihydro-3,3- dimethylbenzofuran-5-yl-methanesulfonate	30.06.11	1838
Fenpropimorph	Р	Fenpropimorph	67564-91- 4	Cis-4-[3-[4-(1,1-dimethylethyl)-phenyl]-2- methylpropyl]-2,6-imethylmorpholine	17.06.03	2508
Fenpropimorph	М	Fenpropimorph acid	-	Cis-4-[3-[4-(2-carboxypropyl)-phenyl]-2- methylpropyl]-2,6-dimethylmorpholine	17.06.03	2357
Flamprop-M- isopropyl	Р	Flamprop-M-isopropyl	63782-90- 1	Isopropyl N-benzoyl-N-(3-chloro-4- flourophenyl)-D-alaninate	13.06.05	1988
Flamprop-M- isopropyl	М	Flamprop	58667-63- 3	N-benzoyl-N-(3-chloro-4-flourophenyl)-D-alanine	13.06.05	1997
Florasulam	Р	Florasulam	145701-	2',6',8-Trifluoro-5-methoxy-s-triazolo [1,5-	19.06.08	578

Pesticide	P/M	Analyte	CAS no.	Systematic name	Latest analysis	Ν
Florasulam	М	Florasulam-desmethyl	-	N-(2,6-difluorophenyl)-8-fluro-5- hydroxy[1,2,4]triazolo[1,5-c]pyrimidine-2- sulfonamide	19.06.08	275
Florasulam	М	TSA	89517-96- 4	1H-1,2,4-triazole-3-sulfonamide	26.06.19	536
Fluazifop-P- buthyl	Р	Fluazifop-P-butyl	4 79241-46- 6	butyl (R)-2-{4-[5-(trifluoromethyl)-2- pyridyloxy]phenoxy}propionate	24.06.03	414
Fluazifop-P- buthyl	М	Fluazifop-P	83066-88- 0	(R)-2-(4-((5-(trifluoromethyl)-2- pyridinyl)oxy)phenoxy-propanoic acid	28.03.12	1781
Fluazifop-P- buthyl	М	TFMP	33252-63- 0	5-trifluoromethyl-pyridin-2-ol	08.04.15	1010
Fludioxonil	М	CGA 192155	126120- 85-2	2,2-difluoro-benzo[1,3]dioxol-4-carbocyclic acid	05.04.16	569
Fludioxonil	М	CGA 339833	-	3-carbamoyl-2-cyano-3-(2,2-difluoro- benzo[1,3]dioxol-4-yl)-oxirane-2-carbocyclic acid	05.04.16	558
Flupyrsulfuron- methyl	Р	Flupyrsulfuron-methyl	144740- 54-5	Methyl 2-[(4,6-dimethoxypyrimidin-2- ylcarbamoyl)sulfamoyl]-6- (trifluoromethyl)nicotinate monosodium salt monosodium salt	11.10.16	513
Flupyrsulfuron- methyl	М	IN-JE127	144740- 59-0	methyl 2-sulfamoyl-6-(trifluoromethyl)nicotinate	27.03.19	343
Flupyrsulfuron- methyl	М	IN-JV460	-	1-(4,6-dimethoxypyrimidine-2-yl)-2,4-diketo-7- trifluoro-methyl-1,2,3,4-tetrahydropyridol(2,3- d)pyrimidine	11.10.16	512
Flupyrsulfuron- methyl	М	IN-KC576	-	1-(4-hydroxy-6-methoxypyrimidin-2-yl)-7- (trifluoromethyl)pyrido[2,3-d]pyrimidine- 2,4(1H,3H)-dione	11.10.16	512
Flupyrsulfuron- methyl	М	IN-KF311	-	1-(4,6-dihydroxypyrimidin-2-yl)-7- (trifluoromethyl)pyrido[2,3- d]pyrimidine2,4(1H,3H)-dione	26.06.19	366
Flupyrsulfuron- methyl	М	IN-KY374	-	N-(4,6-dimethoxypyrimidine-2-yl)-N-(3- methoxycarbonyl-6-trifluoromethylpyridine-2-yl)- amine	11.10.16	512
Fluroxypyr	Р	Fluroxypyr	69377-81- 7	(4-amino-3,5-dichloro-6-fluro-2- pyridinyl)oxy]acetic acid	12.06.08	2065
Fluroxypyr	М	Fluroxypyr- methoxypyridine	35622-80- 1	4-amino-3,5-dichloro-6-fluoro-2-pirydynil-2- methoxypyridine	08.05.18	192
Fluroxypyr	М	Fluroxypyr-pyridinol	94133-62- 7	4-amino-3,5-dichloro-6-fluoro-2-pyridinol	08.05.18	192
Foramsulfuron	Р	Foramsulfuron	173159- 57-4		08.05.18	594
Foramsulfuron	М	AE-F092944	36315-01- 2	2-amino-4,6-dimethoxypyrimidine	07.05.19	610
Foramsulfuron	М	AE-F130619	-	4-amino-2-[3-(4,6-dimethoxypyrimidin-2- yl)ureidosulfonyl]-N, N-dimethylbenzamide	08.05.18	594
Glyphosate Glyphosate	P M	Glyphosate AMPA	1071-83-6 1066-51-	N-(phosphonomethyl)glycine Amino-methylphosphonic acid	17.06.19 17.06.19	4457 4455
Haluxifen-	М	X-757	19 -	4-amino-3-chloro-6-(4-chloro-2-fluoro-3-	26.06.19	396
methyl Haluxifen- methyl	М	X-729	943832- 60-8	hydroxyphenyl)pyridine-2-carboxylic acid 4-amino-3-chloro-6-(4-chloro-2-fluoro-3- methoxyphenyl)pyridine-2-carboxylic acid	17.06.19	41
Iodosulfuron*	М	Triazinamin/IN-A4098	1668-54-8	(haluxifen) 2-amino-4-methoxy-6-methyl-1,3,5-triazine	Silstrup 27.03.18 Estrup 04.04.18	Silstrup 493 Estrup
Iodosulfuron- methyl-Na	Р	Iodosulfuron-methyl-Na	144550- 36-7	sodium salt of methyl 4-iodo-2-[[[((4-methoxy-6- methyl-1,3,5-triazin-2-	22.12.10	162 355
Iodosulfuron- methyl-Na	М	metsulfuron-methyl	74223-64- 6	yl)amino]carbonyl]amino]sulfonyl]benzoate Methyl-2-(4-methoxy-6-methyl-1,3,5-triazin-2- ylcarbamoylsulfamoyl)benzoate	22.12.10	1347
Ioxynil	Р	Ioxynil	1689-83-4	4-hydroxy-3,5-diiodobenzonitrile	31.03.15	2008
Iinuron Mancozeb	P M	Linuron EBIS	330-55-2 33813-20- 6	3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea ethylene bisisothiocyanate sulfide	13.09.01 19.03.15	389 238
Mancozeb	M	ETU	96-45-7	Ethylenethiourea	03.04.01	282
MCPA MCPA	P M	MCPA 2-methyl-4-	94-74-6 1570-64-5	(4-chloro-2-methylphenoxy)acetic acid 2-methyl-4-chlorophenol	29.06.06 29.06.06	1465 1458
Mesosulfuron-	Р	chlorophenol Mesosulfuron-methyl	208465-	Methyl 2-[3-(4,6-dimethoxypyrimidin-2-	02.12.09	649
methyl		-	21-8	yl)ureidosulfonyl]-4- methanesulfonamidomethylbenzoate		
Mesosulfuron- methyl	М	AE-F147447	-	N-[(1,1-Dioxido-3-oxo-2,3-dihydro-1,2- benzothiazol-6-yl)methyl]methanesulfonamide	26.06.19	357
Mesosulfuron- methyl	М	AE-F099095	-	4,6-dimethoxypyrimidine-2-yl-urea	26.06.19	587
Mesosulfuron- methyl	М	AE-F160459	-	Methyl-2-{[(4-methoxy-6-oxo-1,6- dihydropyrimidin-2-yl)carbamoyl]sulfamoyl}-4- {[(methylsulfonyl)amino]methyl}benzoate	26.06.19	587
Mesosulfuron- methyl	М	Mesosulfuron	400852- 66-6	2-[[[(4,6-dimethoxy-2- pyrimidinyl)amino]carbonyl]amino]sulfonyl]-4- [[(methylsulfonyl)amino]methyl]benzoic acid	02.12.09	270

Pesticide	P/M	Analyte	CAS no.	Systematic name	Latest analysis	Ν
Mesotrione	P	Mesotrione	104206-	2-(4-mesyl-2-nitrobenzoyl)cyclohexane-1,3-dione	08.05.18	949
Mesotrione	М	MNBA	82-8 110964-	methylsulfonyl-2-nitrobenzoic acid	08.05.18	947
Mesotrione	М	AMBA	79-9 393085-	2-amino-4-methylsulfonylbenzoic acid	08.05.18	949
Metalaxyl-M	Р	Metalaxyl-M	45-5 70630-17-	methyl N-(methoxyacetyl)-N-(2,6-xylyl)-D-	19.03.15	1117
Metalaxyl-M	М	CGA 62826	0 75596-99- 5	alaninate 2-[(2,6- dimethylphenyl)(methoxyacetyl)amino]propanoic	19.03.15	1127
Metalaxyl-M	М	CGA 108906	104390-	acid 2-[(1-carboxyethyl)(methoxyacetyl)amino]-3-	19.03.15	1125
Metamitron	Р	Metamitron	56-9 41394-05-	methylbenzoic acid 4-amino-4,5-dihydro-3-methyl-6-phenyl-1,2,4-	18.06.19	1932
Metamitron	М	Desamino-metamitron	2	triazin-5-one 4,5-dihydro-3-methyl-6-phenyl-1,2,4-triazine-5-	18.06.19	1927
Metamitron	М	MTM-126-AMT	70569-26-	one 4-amino-3-methyl-1,2,4-triazin-5-one	18.06.19	87
Metconazole	Р	Metconazole	125116-	5-[(4-chlorophenyl)methyl]-2,2-dimethyl-1-(1,2,4-	28.05.19	18
Metrafenone	Р	Metrafenone	23-6 220899-	triazol-1-ylmethyl)cyclopentan-1-ol 3'-bromo-2,3,4,6'-tetramethoxy-2',6-	08.04.15	608
Metribuzin	Р	Metribuzin	03-6 21087-64- 9	dimethylbenzophenone 4-amino-6-tert-butyl-4,5-dihydro-3-methylthio-	28.05.02	577
Metribuzin	М	Desamino-metribuzin	35045-02-	1,2,4-triazine-5-one 6-(1,1-dimethylethyl)-3-(methylthio)- 1,2,4- triazine 5 (411) and	28.05.02	542
Metribuzin	М	Diketo-metribuzin	4 56507-37- 0	triazin-5-(4H)-one 4-amino-6-tert-butyl-4,5-dihydro-1,2,4-triazine-	09.03.11	994
Metribuzin	М	Desamino-diketo- metribuzin	52236-30-	3,5-dione 6-tert-butyl-4,5-dihydro-3-methylthio-1,2,4- triazine-3,5-dione	09.04.08	905
Metsulfuron-	М	Triazinamin/IN-A4098	3 1668-54-8	2-amino-4-methoxy-6-methyl-1,3,5-triazine	25.03.03	478
methyl Pendimethalin	Р	Pendimethalin	40487-42-	N-(1-ethyl)-2,6-dinitro-3,4-xynile	10.12.09	2883
Phenmedipham	Р	Phenmedipham	13684-63-	3-[(methoxycarbonyl)amino]phenyl (3-	24.06.03	986
Phenmedipham	М	3-aminophenol	4	methylphenyl)carbamate 1-amino-3-hydroxybenzene	26.02.02	392
Phenmedipham	М	MHPC	05-5	Methyl-N-(3-hydoxyphenyl)-carbamate	24.06.03	981
Picolinafen	Р	Picolinafen	1 137641-	4'-fluoro-6-(a,a,a-trifluoro-m-tolyloxy)pyridine-2-	30.03.10	352
Picolinafen	М	CL153815	05-5 137640-	carboxanilide 6-(3-trifluoromethylphenoxy)-2-pyridine	30.03.10	352
Pirimicarb	Р	Pirimicarb	84-7 23103-98-	carboxylic acid 2-(dimethylamino)-5,6-dimethyl-4-	26.06.07	3446
Pirimicarb	М	Pirimicarb-desmethyl-	2 27218-04-	pyrimidinyldimethylcarbamate 2-methylformamido-5,6-dimethylpyrimidine-4-yl	26.06.07	2708
Pirimicarb	М	formamido Pirimicarb-desmethyl	8 30614-22-	dimethylcarbamate 2-(dimethylamino)-5,6-dimethyl-4-	26.06.07	3105
Propiconazol	Р	Propiconazole	3 60207-90-	pyrimidinylmethylcarbamate 1-[[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-	22.03.05	3444
Propyzamide	Р	Propyzamide	1 23950-58-	2-yl]methyl]-1H-1,2,4-triazole 3,5-dichloro-N-(1,1-dimethylprop-2-	26.06.19	1325
Propyzamide	М	RH-24644	5	ynyl)benzamide 2-(3,5-dichlorophenyl)-4,4-dimethyl-5-methylene-	08.04.15	1233
Propyzamide	М	RH-24655	-	oxazoline 3,5-dichloro-N-(1,1-dimethylpropenyl)benzamide	08.04.15	1134
Propyzamide	М	RH-24580	-	N-(1,1-dimethylacetonyl)-3,5-dichlorobenzamide	08.04.15	1233
Prosulfocarb	Р	Prosulfocarb	52888-80- 9	N-[[3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-3- [2-(3,3,3,-trifluro=propyl)phenylsulfonyl]urea	19.03.15	921
Prothioconazole	Р	Prothioconazole	178928- 70-6	2-[2-(1-chlorocyclopropyl)-3-(2-chlorophenyl)-2- hydroxypropyl]-1,2-dihydro-3H-1,2,4-triazole-3- thione	01.06.18	2
Pyridate	Р	Pyridate	55512-33- 9	O-6-chloro-3-phenylpyridazin-4-yl S-octyl thiocarbonate	03.09.02	183
Pyridate	М	РНСР	40020-01- 7	3-phenyl-4-hydroxy-6-chloropyridazine	02.06.04	571
Rimsulfuron	Р	Rimsulfuron	122931- 48-0	N-[[(4,6-dimethoxy-2- pyrimidinyl)amino]carbonyl]-3-(ethylsulfonyl)-2- pyridiocaulfonomide	14.06.06	561
Rimsulfuron	М	PPU-desamino	-	pyridinesulfonamide N-((3-(ethylsulfonyl)-2-pyridyl)-4,6-dimethoxy-2 pyrimidinamine (IN70942)	11.12.12	2311
Rimsulfuron	М	PPU	138724- 53-5	N-(4,6-dimethoxy-2-pyrimidinyl-N-((3- ethylsulfonyl)-2-pyridinyl)urea (IN70941)	11.12.12	2311
Tebuconazole	Р	Tebuconazole	53-5 107534- 96-3	a-[2-(4-chlorophenyl)ethyl]-a-(1,1-dimethylethyl)-	27.12.12	1220
Tebuconazole	М	1,2,4-triazole	96-3 288-88-0	1H-1,2,4-triazole-1-ethanol 1,2,4-triazole	26.06.19	2384
Terbuthylazin	P	Terbuthylazine	5915-41-3	6-chloro-N-(1,1-dimethylethyl)-N-ethyl-	25.03.09	2384
Terbuthylazin	М	2-hydroxy-desethyl- terbuthylazine	-	1,3,5,triazine-2,4-diamine 6-hydroxy-N-(1,1-dimethylethyl)-1,3,5,triazine- 2,4-diamine	19.06.08	1371

Pesticide	P/M	Analyte	CAS no.	Systematic name	Latest analysis	Ν
Terbuthylazin	М	Desethyl-terbuthylazine	30125-63-	6-chloro-N-(1,1-dimethylethyl)-1,3,5,triazine-2,4-	10.06.09	2619
Terbuthylazin	М	Hydroxy-terbuthylazine	4 66753-07-	diamine 6-hydroxy-N-(1,1-dimethylethyl)-N'-ethyl-	19.06.08	1520
			9	1,3,5,triazine-2,4-diamine		
Thiacloprid	Р	Thiacloprid	111988- 49-9	(Z)-3-(6-chloro-3-pyridylmethyl)-1,3-thiazolidin- 2-ylidenecyanamide	28.03.12	168
Thiacloprid	М	Thiacloprid-amide	676228- 91-4	(3-[(6-chloro-3-pyridinyl)methyl]-2- thiazolidinylidene) urea	28.03.12	168
Thiacloprid	М	Thiacloprid sulfonic acid	-	Sodium,2-[[[(aminocarbonyl)amino]-carbonyl][(6- chloro-3-pyridinyl)-methyl]amino]ethanesulfonate	28.03.12	177
Thiacloprid	М	M34	-	2-{carbamoyl[(6-chloropyridin-3-yl)- methyl]amino}-ethanesulfonic acid	28.03.12	178
Thiamethoxam	Р	Thiamethoxam	153719- 23-4	3-(2-cholro-thiazol-5-ylmethyl)-5- methyl[1,3,5]oxadiazinan-4ylidene-N-nitroamine	18.06.08	559
Thiamethoxam	М	CGA 322704	210880- 92-5	[C(E)]-N-[(2-chloro-5-thiazolyl)methyl]-N'- methyl-N'-nitroguanidine	18.06.08	559
Thiencarbazone- methyl	Р	Thiencarbazone-methyl	317815- 83-1	Methyl-4-[(4,5-dihydro-3-methoxy-4-methyl-5- oxo-1H-1,2,4-triazol-1-yl)carbonylsulfamoyl]-5- methylthiophene-3-carboxylate		
Thiencarbazone- methyl	М	AE1394083	936331- 72-5	4-((4,5-Dihydro-3-methoxy-4-methyl-5-oxo-1H- 1,2,4-triazol-1-yl)carbonylsulfamoyl)-5- methylthiophene-3-carboxylic acid (Thiencarbazone)	18.06.19	92
Thifensulfuron- methyl	Р	Thifensulfuron-methyl	79277-27- 3	Methyl 3-(4-methoxy-6-methyl-1,3,5-triazin-2- ylcarbamoylsulfamoyl)thiophene-2-carboxylate		
Thifensulfuron- methyl*	М	Triazinamin/IN-A4098	1668-54-8	2-amino-4-methoxy-6-methyl-1,3,5-triazine	Silstrup 27.03.18	Silstrup 493
					Estrup 04.04.18	Estrup 162
Thiophanat- methyl	М	Carbendazim	10605-21- 7	methyl benzimidazol-2-ylcarbamate	25.06.19	172
Triasulfuron	Р	Triasulfuron	82097-50- 5	1-[2-(2-chloroethoxy)phenylsulfonyl]-2-(4- methoxy-6-methyl-1,3,5-triazine-2-yl)-urea	04.03.03	447
Triasulfuron	М	Triazinamin/IN-A4098	1668-54-8	2-amino-4-methoxy-6-methyl-1,3,5-triazine	04.03.03	424
Tribenuron- methyl	Р	Tribenuron-methyl	101200- 48-0	Methyl-2-[4-methoxy-6-methyl-1,3,5-triazin-2- yl(methyl)-carbamoylsulfamoyl]benzoate	09.06.01	3
Tribenuron- methyl	М	Triazinamin-methyl	5248-39-5	4-methoxy-6-methyl-1,3,5-triazin-methylamine	29.08.12	2391
Triflusulfuron- methyl	Р	Triflusulfuron-methyl	126535- 15-7	Methyl-2-[4-dimethylamino-6-(2,2,2- trifluoroethoxy)-1,3,5-triazin-2- ylcarbamoylsulfamoyl]-m-toluate	30.06.11	430
Triflusulfuron- methyl	М	IN-M7222	-	6-(2,2,2-trifluoroethoxy)-1,3,5-triazine-2,4- diamine	30.06.11	430
Triflusulfuron- methyl	М	IN-E7710	-	N-methyl-6-(2,2,2-trifluoroethoxy)-1,3,5-triazine- 2,4-diamine	30.06.11	430
Triflusulfuron- methyl	М	IN-D8526	-	N,N-dimethyl-6-(2,2,2-trifluoroethoxy)-1,3,5- triazine-2,4-diamine	30.06.11	430

* Iodosulfuron and thifensulfuron-methyl was applied together and both degradated to triazinamin/IN-A4098, why both pesticides

are given in this table.

Pesticide monitoring programme – Sampling procedure

From each of the PLAP fields, samples were collected of groundwater, drainage water and soil water in the variably saturated zone. A full description of the monitoring design and sampling procedure is provided in Lindhardt *et al.* (2001) and Kjær *et al.* (2003), respectively.

Until March 2002, pesticide analysis was performed monthly on water samples from the suction cups located both 1 m b.g.s. and 2 m b.g.s., from two screens of the horizontal monitoring wells and from two of the downstream vertical monitoring wells. In addition, more intensive monitoring encompassing all four groups of suction cups, six screens of the horizontal monitoring wells and five monitoring wells was performed every four months (Kjær *et al.*, 2002). At the clayey till fields, the pesticide analysis was also performed on drainage water samples.

The monitoring programme was revised in March 2002 and the number of pesticide analyses was reduced. At the clayey till fields, pesticide analysis of water sampled from the suction cups was ceased, and the monthly monitoring was restricted to just one monitoring well. At Jyndevad, pesticide analysis of the suction cups located 2 m b.g.s. was ceased and the interval for the intensive monitoring encompassing the larger number of monitoring screens was extended to six months, except for the suction cups 2 m b.g.s. at Tylstrup, where the four-months interval was retained (Kjær *et al.*, 2003).

On the sandy soils, the analysis of a number of pesticides in water from the monitoring wells had to be further reduced, due to economical constraints imposed by the high prices on pesticide analysis. This reduction was based on results from the suction cups implying that leaching risk of certain pesticides was negligible, why analysis of a limited number of groundwater samples would be reasonable (see Table A5.1 and Table A5.2 in Appendix 5).

Table A2.1. Pesticide monitoring programme in suction cups (S), horizontal monitoring wells (H) and vertical
monitoring wells (M) 2012-13. Water sampling places (S, H and M) from where sampling stopped in 2008 and 2009
are given in bold. Well M10 at Silstrup was included in the programme on 5 February 2009.

Field	Monthly monitoring (Intensive)	Half-yearly monitoring (Extensive)	Not monitored
Trilatman	M4, M5, S1a, S2a, H1 ^m	M1, M3, M4, M5, S1a,	MO MC M7
Tylstrup	M4, M3, 51a, 52a, H1 ^m	$S2a, S1b^*, S2b^*$	M2, M6 , M7
Jyndevad	M1, M4, S1a, S2a, H1 ^m	M2, M5, M7	M3, M6 , S1b, S2b
Silstrup	M5, H1.2, H2 ^m	M9, M10. M12, H1.1, H1.3	M1, M2, M4, M6 , M8, M7, M11, M13, H2.1, H2.2, H2.3
Estrup	M4, H1.2, H2 ^m	M1, M5, M6, H1.1 H1.3	M2, M3, M7
Faardrup	M4, M5, H2.3, H2 ^m	M6, H2.1, H2.5	M1, M2, M3, M7, H1.1, H1.2, H1.3

S1a and S1b refer to suction cups installed 1 and 2 m b.g.s., respectively, at location S1, whereas S2a and S2b refer to suction cups installed 1 and 2 m b.g.s., respectively, at location S2.^m- Mixed water samples from three screens.

**At Tylstrup suctions cups installed 2 m b.g.s. are monitored four times a year (see text).*

From september 2014 some wells and some deeper wells are monitored more frequent and some of the horizontal wells are monitored every month in water samples from the 3 screens, replacing mixed samples. This samples will be reported in the next report.

In March 2008, a new revision of the monitoring programme was completed resulting in an optimization of the programme including an additional reduction in the sampling programme (Table A2.1). On the clayey till fields, sampling from the suction cups for inorganic analysis, from one-two monitoring wells per field, and one horizontal well at Silstrup (H2) and Faardrup (H1) was suspended. On the sandy fields, only sampling from the monitoring well M6 at Tylstrup has been suspended (see Rosenbom *et al.*, 2010b for details).

From 2012 five new horizontal monitoring wells at the five PLAP fields were sampled monthly. Each horizontal well contains three screens and water samples from the screens are mixed to one sample.

Until July 2004, pesticide analyses were performed weekly on water sampled timeproportionally from the drainage system. Moreover, during storm events additional samples (sampled flow-proportionally over 1–2 days) were also analysed for pesticides. In June 2004, the drainage monitoring programme was revised. From July 2004 and onwards pesticide analysis was done weekly on water sampled flow-proportionally from the drainage water system. See Kjær *et al.* 2003 for further details on the methods of flowproportional sampling. The weighted average concentration of pesticides in the drainage water was calculated according to the following equation:

$$C = \frac{\sum_{i=1}^{n} M_{i}}{\sum_{i=1}^{n} V_{i}}$$
$$M_{i} = C_{i} \cdot V_{i}$$

where:

- n = Number of weeks within the period of continuous drainage runoff
- V_i= Weekly accumulated drainage runoff (mm/week)
- C_i = Pesticide concentration collected by means of flow-proportional sampler (μ g L⁻¹). ND are included as 0 μ g L⁻¹ calculating average concentrations.

Until July 2004 where both time and flow-proportional sampling was applied the numbers were:

 $M_i = Ct_i \cdot V_i$ If no flow event occurs within the i'th week $M_i = Cf_i \cdot Vf_i$ If a flow event occurs within the i'th week and if $Cf_i \cdot Vf_i > Ct_i \cdot V_i$

where:

- n = Number of weeks within the period of continuous drainage runoff
- V_i= Weekly accumulated drainage runoff (mm/week)
- Vf_i = Drainage runoff accumulated during a "flow event" (mm/storm event)
- Cf_i = Pesticide concentration in the "event samples" collected by means of the flowproportional sampler ($\mu g L^{-1}$)
- Ct_i = Pesticide concentration in the weekly samples collected by means of the timeproportional sampler (µg L⁻¹)

Table 2.2, 3.2, 4.2, 5.2 and 6.2 report the weighted average leachate concentration in the drainage water within the first drainage season after application. In these tables this calculation period is defined as the period from application until 1 July the following year,

as pesticides are usually present in the first drainage runoff occurring after application of pesticide.

On the sandy soils the weighted average concentration of pesticides leached to the suction cups situated 1 m b.g.s. was estimated using the measured pesticide concentration and estimated percolation on a monthly basis. Pesticide concentrations measured in suction cups S1 and S2 were assumed to be representative for each sample period. Moreover, accumulated percolation rates deriving from the MACRO model were assumed to be representative for each of the measured concentrations, the corresponding percolation (Perc.) was estimated according to the equation:

$$P_i = \sum_{t_1}^{t_2} P_t$$

where:

 $\begin{array}{ll} t = & sampling \ date; \ t_1 = 0.5(t_{i-1} + t_i); \ t_2 = 0.5(t_i + t_{i+1}) \\ P_t = & daily \ percolation \ at \ 1 \ m \ b.g.s. \ as \ estimated \ by \ the \ MACRO \ model \ (mm) \end{array}$

The average concentration was estimated according to the equation:

$$C = \frac{\sum C_i \cdot P_i}{\sum P_i}$$

where:

 C_i = measured pesticide concentration in the suction cups located 1 m b.g.s.

Table 2.2 and 3.2 report the weighted average leachate concentration. In these tables this calculation period is defined as the period from the date of first detection until 1 July the following year. On sandy soils the transport of pesticides down to the suction cups situated at 1 m depth may take some time. In most cases the first detection of pesticides occurs around 1 July, why the reported concentration represents the yearly average concentration. In a few cases the first detection of pesticides occurs later, but this later occurrence does not affect the weighted average calculation. E.g. the reported average concentration using a calculation period from the first detection until 1 July the following year is equal to that using a calculation period of a year (1 July–30 June) the following year. Unless noted the concentrations listed in Table 2.2 and 3.2 can therefore be considered as yearly average concentrations. In the few cases where reported concentration or not representative for the given leaching pattern (leaching increases the second or third year after application) a note is inserted in the table.

Agricultural management

Table A3.1. Management practice at Tylstrup during the 2012 to 2019 growing seasons. The active ingredients of the various pesticides are indicated in parentheses.

5	
Date	Management practice and growth stages – Tylstrup
22-03-2012	Ploughed - depth 24 cm
24-03-2012	Spring barley sown, cv. TamTam, seeding rate 185 kg ha ⁻¹ , sowing depth 2.75 cm, row distance 12.5
	cm. Using combine driller with a tubular packer roller. Final plant number 344 m ⁻² . Sown with rotor
00.04.0010	harrow combine sowing machine
03-04-2012	BBCH stage 6-7
10-04-2012	BBCH stage 09
19-04-2012	BBCH stage 11
29-04-2012	BBCH stage 12
29-04-2012	Fertilisation - 123.9 N, 17.7 P, 59 K, kg ha ⁻¹
30-04-2012	BBCH stage 12 DDCU stage 14
09-05-2012	BBCH stage 14 BBCH stage 20
16-05-2012	BBCH stage 22
21-05-2012 21-05-2012	Biomass 72.2 g m ⁻² - 100% DM
21-05-2012	Fox 480 SC (bifenox) - weeds - $1.2 \text{ L} \text{ ha}^{-1}$
25-05-2012	Mustang forte (aminopyralid/florasulam/2,4-D) - weeds - 0.75 L ha ⁻¹
25-05-2012	BBCH stage 29
31-05-2012	BBCH stage 32
31-05-2012	Irrigation 24 mm. Started 31/05. Ended 01/05
06-06-2012	BBCH stage 37
12-06-2012	BBCH stage 44
19-06-2012	BBCH stage 50
19-06-2012	Biomass 644.8 g m ⁻² - 100% DM
28-06-2012	BBCH stage 59
28-06-2012	Bell (boscalid + epoxiconazole) - fungi - 1.5 L ha ⁻¹ (epoxiconazole not analysed)
02-07-2012	BBCH stage 61
10-07-2012	BBCH stage 79
10-07-2012	Biomass 1138.3 g m ⁻² - 100% DM
24-07-2012	BBCH stage 83
06-08-2012	BBCH stage 86
13-08-2012	BBCH stage 88
13-08-2012	Glyfonova 450 Plus (glyphosate) - weeds - 2.4 L ha ⁻¹ (not analysed)
27-08-2012	BBCH stage 89
27-08-2012	Harvest of spring barley. Tubbleheight 15 cm, grain yield 62.0 hkg ha ⁻¹ - 85% DM. Straw remowed,
21 09 2012	yield 37.3 hkg ha ⁻¹ - 100% DM Treaser (notation hereida) 20 kg ha ⁻¹
31-08-2012	Tracer (potasium bromide), 30 kg ha ⁻¹
20-09-2012 23-09-2012	Ploughed - depth 22 cm Winter rye sown, cv. Magnifico, seeding rate 64.0 kg ha ⁻¹ , sowing depth 3.5 cm, row distance 13.0
23-09-2012	cm. Final plant number 125 m ⁻² . Sown with rotorharrow combine sowing machine
05-10-2012	BBCH stage 9
10-10-2012	BBCH stage 11
12-10-2012	BBCH stage 12
12-10-2012	Boxer (prosulfocarb) - weeds - 4.0 L ha ⁻¹
22-10-2012	BBCH stage 12
05-11-2012	BBCH stage 13
14-11-2012	BBCH stage 20
26-11-2012	BBCH stage 22
26-11-2012	Biomass 7.0 g m ⁻² - 100% DM
04-04-2013	Fertilisation - 56.7 N, 8.1 P, 27 K, kg ha ⁻¹
04-04-2013	BBCH stage 22
02-05-2013	BBCH stage 30-31
02-05-2013	Fertilisation - 71.4 N, 10.2 P, 34 K, kg ha ⁻¹
07-05-2013	BBCH stage 31
08-05-2013	Starane XL (fluroxypyr) - weeds - 1.2 L ha ⁻¹
24-05-2013	BBCH stage 50

Date	Management practice and growth stages – Tylstrup
24-05-2013	Biomass 422.8 g m ⁻² - 100% DM
28-05-2013	BBCH stage 57
31-05-2013	BBCH stage 59
10-06-2013	BBCH stage 67
18-06-2013	BBCH stage 70
25-06-2013	BBCH stage 72
02-07-2013	Biomass 1275.2 g m ⁻² - 100% DM
02-07-2013	BBCH stage 76
09-07-2013	BBCH stage 79
18-07-2013	BBCH stage 81
05-08-2013	BBCH stage 87
13-08-2013	BBCH stage 89
20-08-2013	Harvest of winter rye. Stubleheight 15 cm, grainyield 77.4 hkg ha ⁻¹ - 85% DM. Straw remowed, yield 33.8 hkg ha ⁻¹ - 100% DM
26-02-2014	Ploughed - depth 23 cm
02-04-2014	Seed bed preparation, 5 cm depth and packed with a roller
03-04-2014	Fertilisation - 175.5 N, kg ha ⁻¹
03-04-2014	Fertilisation - 100 K, kg ha ⁻¹
15-04-2014	Maxim 100 FS (fludioxonil) - fungi - 250 ml ton ⁻¹ potatoes ~ 625 mL ha ⁻¹ a sprayed on potatoes before the planting
15-04-2014	Seed bed preparation diagonally - depth 20 cm
15-04-2014	Planting of potatoes. cv. Kuras row distance 75 cm, plant distance 25 cm, depth 17 cm, final plant number 4 m ⁻²
16-04-2014	BBCH stage 00
16-04-2014	Command CS (clomazon) - weeds - 0.25 L ha ⁻¹ (not included)
25-04-2014	BBCH stage 01
30-04-2014	BBCH stage 03
05-05-2014	BBCH stage 05
15-05-2014	BBCH stage 08 to 09
15-05-2014	Titus WSB (rimsulfuron) - weeds - 10 g ha ⁻¹ (not included in monitoring)
17-05-2014	BBCH stage 9 – emergence
22-05-2014	Titus WSB (rimsulfuron) + U46 M (MCPA) - weeds - 20 g ha ⁻¹ + 100 mL ha ⁻¹ (not included in
	monitoring)
22-05-2014	BBCH stage 13
27-05-2014	BBCH stage 15
04-06-2014	BBCH stage 15
10-06-2014	BBCH stage 27
13-06-2014	BBCH stage 45
13-06-2014	Irrigation 24 mm. Started 13/06
18-06-2014	BBCH stage 47
18-06-2014	Biomass tubers 119.0 g Top 233.3 g m ⁻² - 100% DM
20-06-2014	BBCH stage 53
20-06-2014	Irrigation 24 mm. Started 20/06. Ended 20/06
26-06-2014	BBCH stage 59
26-06-2014	Dithane NT (mancozeb) - fungi - 2.0 L ha ⁻¹
02-07-2014	Biomass tubers 388.9 g. Top 391.2 g m ⁻² - 100% DM
02-07-2014	BBCH stage 60
03-07-2014	BBCH stage 60 Invisco 24 mm Started 04/07 Ended 04/07
04-07-2014	Irrigation 24 mm. Started 04/07. Ended 04/07
04-07-2014	Dithane NT (mancozeb) - fungi - 2.0 L ha ⁻¹
14-07-2014 14-07-2014	BBCH stage 69 Dithane NT (mancozeb) - fungi - 2.0 L ha ⁻¹
	BBCH stage 75?
23-07-2014 23-07-2014	Irrigation 24 mm. Started 23/07. Ended 23/07
23-07-2014 24-07-2014	Dithane NT (mancozeb) - fungi - $2.0 \text{ L} \text{ ha}^{-1}$
24-07-2014 24-07-2014	BBCH stage 75?
30-07-2014	Irrigation 30 mm. Started 30/07
02-08-2014	BBCH stage?
02-08-2014	Dithane NT (mancozeb) - fungi - 2.0 L ha ⁻¹
11-08-2014	BBCH stage 90?
11-08-2014	Dithane NT (mancozeb) - fungi - 2.0 L ha ⁻¹
13-08-2014	Biomass tubers 1,270.3 g. Top 266.3 g m^{-2} - 100% DM
13-08-2014	BBCH stage 92
18-08-2014	BBCH stage 92
18-08-2014	Dithane NT (mancozeb) - fungi - $2.0 \text{ L} \text{ ha}^{-1}$
25-08-2014	BBCH stage 92
	-
	1.50

Date	Management practice and growth stages – Tylstrup
25-08-2014	Dithane NT (mancozeb) - fungi - 2.0 L ha ⁻¹
12-09-2014	Harvest of potatoes. Tuber yield 107.1 hkg ha ⁻¹ - 100% DM
15-09-2014	Liming - 4.0 t ha ⁻¹
20-09-2014	Disk harrowed - depth 10 cm
20-09-2014	Stubble cultivated - depth 25 cm
22-09-2014	Sowing winter wheat, cv. Mariboss, sowing depth 3.0 cm, seeding rate 190 kg ha ⁻¹ , row distance
	12.5 cm, final plantnumber 248 m ⁻²
22-09-2014	BBCH stage 00
29-09-2014	BBCH stage 07-08
29-09-2014	Fertilisation - 24.5 N, kg ha ⁻¹
02-10-2014	BBCH stage 09 – emergence
09-10-2014	BBCH stage 11
13-10-2014	BBCH stage 12
22-10-2014	BBCH stage 13
30-10-2014	BBCH stage 13
30-10-2014	Lexus 50 WG (flupyrsulfuron) - weeds - 10 g ha ⁻¹ (i.e. 4.6 g a.i. ha ⁻¹)
14-11-2014	BBCH stage 14-15
14-11-2014	Orius 200 EW (tebuconazole) - fungi -1.25 L ha ⁻¹ (i.e. 250 g a.i. ha ⁻¹)
17-12-2014	BBCH stage 22
17-12-2014	Biomass 16.1 g m ⁻² - 100% DM
24-03-2015	BBCH stage 22
24-03-2015	Fertilisation - 49.6 N, 7.1 P, 23.6 K, kg ha ⁻¹
09-04-2015	BBCH stage 24
09-04-2015	Lexus 50 WG (flupyrsulfuron) - weeds - 10 g ha ⁻¹ (i.e. 4.6 g a.i. ha ⁻¹)
22-04-2015	BBCH stage 30
30-04-2015	BBCH stage 31
05-05-2015	BBCH stage 31
05-05-2015	Fertilisation - 105 N, 15 P, 50 K, kg ha ⁻¹
14-05-2015	BBCH stage 32
14-05-2015	Starane XL (fluroxypyr + florasulam) - weeds - $1.2 L ha^{-1}$ (i.e. 120 g a.i. $ha^{-1} + 3 g$ a.i. ha^{-1})
14-05-2015	Proline EC 250 (prothioconazole) - fungi - 0.8 L ha ⁻¹ (i.e. 200 g a.i. ha ⁻¹)
26-05-2015	BBCH stage 33
12-06-2015	BBCH stage 49 D_{1} is D_{2} 250 (d_{1} is d_{2} is d_{2} is d_{3} is $d_{$
12-06-2015	Proline EC 250 (prothioconazole) - fungi - 0.8 L ha ⁻¹ (i.e. 200 g a.i. ha ⁻¹)
15-06-2015	BBCH stage 51
15-06-2015	Biomass 890.1 g m ⁻² - 100% DM
13-07-2015	BBCH stage 71
21-07-2015	BBCH stage 75
21-07-2015	Irrigation 26 mm. Started 21/7 20:00. Ended 22/7 07:00
13-08-2015	BBCH stage 82 Discusses $1(72 - m^2) = 100\%$ DM
13-08-2015	Biomass 1673 g $m^{-2} - 100\%$ DM
20-08-2015	BBCH stage 88
20-08-2015	Broadsown a catchcrop of oil seed rape cv. Akiro, 16 kg ha ⁻¹ (on top of the soil)
20-08-2015	Glyphogan (glyhosate) - weeds - 2.7 l ha ⁻¹ (sprayed simultaneously with the sowing of the catch
01 00 2015	crop) (i.e. 972 g a.i. ha ⁻¹)
01-09-2015	BBCH stage 09 – emergence of catch crop
08-09-2015	BBCH stage 90 Harvest of winter wheat. Stubleheight 14 cm, grainyield 74.0 hkg ha ⁻¹ 85% DM
08-09-2015	
10-09-2015	Straw remowed, yield 46.4 hkg ha ⁻¹ - 100% DM
22-03-2016 15-04-2016	Ploughed - depth 23 cm Spring barley sown, cv. Evergreen, seeding rate 155 kg ha ⁻¹ , sowing depth 2.8 cm, row distance 13
13-04-2010	
15 04 2016	cm. Final plant number 272 m ⁻² Sown with rotorharrow combine sowing machine
15-04-2016	BBCH stage 0 Fartilization 168 N 24 P 80 K kg ha ⁻¹
18-04-2016	Fertilization – 168 N, 24 P, 80 K, kg ha ⁻¹ Undersowing of clover grass catch crop (AgrowGrass 350 MidiMaize) seeding rate 13 kg ha ⁻¹ ,
21-04-2016	
01 05 2016	sowing depth 1 cm, row distance 12 cm
01-05-2016	BBCH stage 9 BBCH stage 12
10-05-2016	BBCH stage 12 BBCH stage 23
19-05-2016	BBCH stage 23 $P_{10} = 23$ $P_{10} = 23$
19-05-2016	Biomass 47.8 g m ⁻² $- 100\%$ DM Fighter 480 (besterzone) weeds 1.5 L be ⁻¹ (i.e. 720 g a i. be ⁻¹)
19-05-2016	Fighter 480 (bentazone) – weeds - 1.5 L ha ⁻¹ (i.e. 720 g a.i. ha ⁻¹)
10.05.2016	Catabaran DDCU stage 11.12
19-05-2016	Catchcrop – BBCH stage 11-12
02-06-2016	BBCH stage 36
02-06-2016 09-06-2016	BBCH stage 36 BBCH stage 50
02-06-2016	BBCH stage 36

Data	Managament practice and growth stages Tulstmin
Date 10-06-2016	Management practice and growth stages – Tylstrup Biomass 414.8 g m ⁻² – 100% DM
24-06-2016	BBCH stage 54
04-07-2016	BBCH stage 58
13-07-2016	BBCH stage 75
13-07-2016	Biomass 1099.5 g m ⁻² - 100% DM
21-07-2016	BBCH stage 80-81
27-07-2016	BBCH stage 87
19-08-2016	BBCH stage 91
19-08-2016	Harvest of spring barley. Stubleheight 15 cm, grainyield 61.9 hkg ha ⁻¹ - 85% DM
29-08-2016	Straw remowed, yield 27.0 hkg ha ⁻¹ - 100% DM
10-03-2017	Rotor harrowed - depth 7 cm
22-03-2017	Ploughed - depth 23 cm
28-03-2017	BBCH stage 0
28-03-2017	Spring barley sown, CV Laurikka coated with Redigo Pro 170 FS, seeding rate 165 kg ha ⁻¹ , sowing
	depth 4 cm, row distance 13 cm. Final plant number not determined.
04-04-2017	BBCH stage 6
06-04-2017	Fertilisation - 133 N, 19 P, 63 K, kg ha ⁻¹
11-04-2017	BBCH stage 9 - emergence
27-04-2017	BBCH stage 12
08-05-2017	BBCH stage 22
08-05-2017	Biomass 57.3 g m ⁻² - 100% DM
09-05-2017	BBCH stage 22
09-05-2017	Hussar Plus OD (Iodosulfuron-mesosulfuron) - weeds - 0.07 L ha ⁻¹ (i.e. 3.5 g iodosulfuron and 0.525
11.05.0017	g mesosulfuron, a.i. ha ⁻¹)
11-05-2017	BBCH stage 23
23-05-2017	BBCH stage 31
29-05-2017	BBCH stage 37
01-06-2017	BBCH stage 41 Burner 25 EC (granicanazala) funci 0.5 L hatl (i.e. 125 a granicanazala a i hatl)
01-06-2017 14-06-2017	Bumper 25 EC (propiconazole) - fungi - 0.5 L ha ⁻¹ (i.e. 125 g propiconazole a.i. ha ⁻¹) BBCH stage 55
14-06-2017	Biomass 629.5 g m ⁻² - 100% DM
14-06-2017	Bumper 25 EC (propiconazole) - fungi - 0.5 L ha ⁻¹ (i.e. 125 g propiconazole a.i. ha ⁻¹)
03-07-2017	BBCH stage 77
17-07-2017	BBCH stage 80-83
17-07-2017	Biomass 629.3 g/m2 - 100% DM
14-08-2017	Harvest of spring barley. Stubleheight 15 cm, grainyield 67.1 hkg ha ⁻¹ - 85% DM
14-08-2017	Straw remowed - 28.6 hkg ha ⁻¹ 100% DM
15-08-2017	Winter rape
15-08-2017	Stubble cultivated - depth 7 cm
16-08-2017	Stubble cultivated - depth 20 cm
17-08-2017	Winter rape sown - cv. DK Exclaim, depth 2.0 cm, rowdistance 13 cm seed amount 1.8 kg ha ⁻¹ , final
	plantnumber 54 m ⁻²
18-08-2017	Command CS (clomazone) - weeds - 0.25 L ha ⁻¹ (i.e 90 g clomazon a.i. ha ⁻¹)
24-08-2017	Fertilisation - 34 N, kg ha ⁻¹
30-08-2017	BBCH stage 09 - emergence
15-09-2017	Ploughed - depth 23 cm - due to poor emergence - crust had formed on surface due to heavy rain -
16 00 0017	impedding the emergence
16-09-2017	Winter barley sown, CV Hejmdal, seeding rate 165 kg ha ⁻¹ , sowing depth 4 cm, row distance 13 cm.
16 00 2017	Final plantnumber 320 m ²
16-09-2017	Seed dressing Redigo Pro 170 FS (prothioconazol 12.38 g and 1.65 g tebuconazol a.i. ha ⁻¹)
23-09-2017	BBCH stage 9 - emergence
27-09-2017	BBCH stage 10 BBCH stage 11
02-10-2017 18-10-2017	BBCH stage 13
18-10-2017 18-10-2017	Lexus 50 WG (flupyrsulfuron) - weeds - 10 g ha ⁻¹ (i.e. 4.63 g flupyursulfuron)
09-11-2017	BBCH stage 20
09-11-2017	Biomass 31.8 g m ⁻² - 100% DM
09-04-2018	BBCH stage 24
09-04-2018	Fertilisation - 256.4 N, 36.6 P, 121 K, kg ha ⁻¹
01-05-2018	BBCH stage 32
18-05-2018	BBCH stage 50
18-05-2018	Biomass 520.4 g m ⁻² - 100% DM
18-05-2018	Irrigation 40 mm. Started 17/5 14:00. Ended 18/5 11:30
24-05-2018	Irrigation 25 mm. Started 23/5 16:00. Ended 24/5 07:00
05-06-2018	Irrigation 18 mm. Started 5/6 09:00. Ended 6/6 18:00
06-06-2018	BBCH stage 75

Date	Management practice and growth stages – Tylstrup
06-06-2018	Biomass 1027.4 g m ⁻² - 100% DM
09-06-2018	Irrigation 27 mm. Started 9/6 16:00. Ended 10/6 07:00
19-06-2018	BBCH stage 82

Management practice and growth stages - Jyndevad Date 30-03-2012 Ploughed. Depth 22 cm 02-04-2012 Rolled with concrete roller Fertilization 120 K, kg ha⁻¹ 30-04-2012 Fertilization 140 N, 17.7 P, 65.3 K, kg ha⁻¹ 30-04-2012 03-05-2012 Sowing maize - cultivare Atrium - seed distance 12 cm, row distance 75 cm, depth 6 cm. Seedrate 111,000 seeds ha-1, final plant number 12.8 m-2 03-05-2012 Fertilization 29.4 N, 14.7 P, kg ha⁻¹ 07-05-2012 Tracer (potasium bromide), 30.54 kg ha-1 BBCH stage 9 – emergence 17-05-2012 22-05-2012 BBCH stage 11 26-05-2012 BBCH stage 14-15 26-05-2012 Fighter 480 (bentazone) - weeds - 1.0 L ha⁻¹ BBCH stage 13 30-05-2012 30-05-2012 Biomass 41.7 g m⁻² - 100% DM 05-06-2012 BBCH stage 15 05-06-2012 Callisto (mesotrione) - weeds - 1.5 L ha⁻¹ 06-06-2012 BBCH stage 15 15-06-2012 BBCH stage 16 15-06-2012 Tomahawk 180 EC (fluroxypyr) + Catch (florasulam + 2,4 D) -1.5 L ha⁻¹ + 0.06 L ha⁻¹ - weeds - (none analysed) 18-06-2012 BBCH stage 17 BBCH stage 19 25-06-2012 02-07-2012 BBCH stage 31 10-07-2012 BBCH stage 35 BBCH stage 51 17-07-2012 Biomass 2182.3 g m⁻² - 100% DM 18-07-2012 23-07-2012 BBCH stage 53 30-07-2012 BBCH stage 59 05-08-2012 BBCH stage 63 14-08-2012 BBCH stage 66 17-08-2012 BBCH stage 67 Biomass 8241.8 g m⁻² - 100% DM 17-08-2012 20-08-2012 BBCH stage 68 27-08-2012 BBCH stage 72 03-09-2012 BBCH stage 74 13-09-2012 BBCH stage 82 19-09-2012 BBCH stage 83 24-09-2012 BBCH stage 84 24-09-2012 Dry matter content whole plants 25.4% 01-10-2012 BBCH stage 87 01-10-2012 Dry matter content whole plants 27.5% 08-10-2012 BBCH stage 88 Dry matter content whole plants 33.0% 08-10-2012 08-10-2012 Harvest of maize. Whole crop yield 151.41 hkg ha⁻¹ - 100% DM. Stubble height 25 cm Ploughing - 22 cm depth 06-04-2013 Rolled with concrete roller 12-04-2013 14-04-2013 Sowing pea cultivare Alvestra, depth 5 cm, row distance 12 cm, seed rate 235 kg ha⁻¹, using a combine drill, final plant number 92 m⁻² BBCH stage 9 – emergence 26-04-2013 03-05-2013 BBCH stage 12 07-05-2013 Fighter 480 (bentazone) + Stomp (pendimethalin) 0.4 L ha⁻¹ + 0.6 L ha⁻¹ - weeds (pendimethalin not analysed) 07-05-2013 BBCH stage 13-14 13-05-2013 BBCH stage 14 16-05-2013 BBCH stage 14-15 16-05-2013 Bentazon 480 (bentazone) + Stomp (pendimethalin) 0.5 L ha⁻¹ + 0.6 L ha⁻¹ - weeds (pendimethalin not analysed) 17-05-2013 Fertilization 16.0 P, 83.2 K, kg ha⁻¹ BBCH stage 25 21-05-2013 27-05-2013 BBCH stage 30 03-06-2013 BBCH stage 37 Biomass 105.7 g m⁻² - 100% DM 04-06-2013 06-06-2013 BBCH stage 38 Irrigation - 30 mm ha⁻¹. Started on eastside 06/06. Ended on westside 07/06 06-06-2013

Table A3.2. Management practice at **Jyndevad** during the 2012 to 2018 growing seasons. The active ingredients of the various pesticides are indicated in parentheses.

Date	Management practice and growth stages – Jyndevad
10-06-2013	BBCH stage 41
17-06-2013	BBCH stage 60
21-06-2013	Biomass 393.5 g m ⁻² - 100% DM
25-06-2013	BBCH stage 65
01-07-2013	BBCH stage 67
09-07-2013	BBCH stage 68
09-07-2013	Irrigation - 30 mm ha ⁻¹ . Started on eastside 09/07. Ended on westside 10/07
15-07-2013	BBCH stage 69
15-07-2013	Biomass 722.5 g m ⁻² - 100% DM
16-07-2013	Pirimor G (pirimicarb) - pests - 0.25 kg ha ⁻¹ (not analysed)
22-07-2013	BBCH stage 78
29-07-2013	BBCH stage 81
05-08-2013	Biomass 737.2 g m ⁻² - 100% DM
05-08-2013	BBCH stage 90
07-08-2013	Harvest of pea - western half of the field - interrupted by rain. Seed yield 38.8 hkg ha ⁻¹ - 86% DM
07-08-2013	Strawyield 30.1 hkg ha ⁻¹ - 100% DM, stubble height 10 cm. Straw shreddet at harvest
14 08 2013	Harvest of the eastern half of the field - straw shreddet at harvest
14-08-2013	
20-08-2013	Stuble cultivation - 8 cm depth
22-08-2013	Rotor harrowed - 7 cm depth
26-03-2014	Ploughing - 22 cm depth
09-04-2014	Rolled with concrete roller
10-04-2014	Fertilization 180.0 N, 38.6 P, 192.9 K kg ha ⁻¹
10-04-2014	Fertilization 19.7 N, kg ha ⁻¹
15-04-2014	Planting potatoes. Cv. Oleva, Rowdistance 75 cm plant distance 33 cm, depth 7 cm. Final plant numbe
	4 m ⁻²
15-04-2014	Maxim 100 FS (fludioxonil) - fungi - 625 mL ha ⁻¹ sprayed at potatoes when planting
30-04-2014	BBCH stage 05-08 (crop not emerged yet)
30-04-2014	Command CS (clomazon) + Glyphogan (glyphosate) - weeds - 0.25 L ha ⁻¹ + 1.5 L ha ⁻¹
06-05-2014	BBCH stage 08 (crop not emerged yet)
06-05-2014	Titus WSB (rimsulfuron) - weeds - 10 g ha ⁻¹ (not included in monitoring)
14-05-2014	BBCH stage 9 – emergence
26-05-2014	BBCH stage 22
27-05-2014	Titus WSB (rimsulfuron) - weeds - 20 g ha ⁻¹ (not included in monitoring)
02-06-2014	BBCH stage 29
10-06-2014	BBCH stage 38
12-06-2014	BBCH stage 39
12-06-2014	Dithane NT (mancozeb) - fungi - 2.0 L ha ⁻¹
14-06-2014	BBCH stage 47
14-06-2014	Irrigation - 20 mm ha ⁻¹ . Started on eastside 14/06. Ended on westside15/06
16-06-2014	BBCH stage 48
18-06-2014	BBCH stage 50
18-06-2014	Dithane NT (mancozeb) - fungi - 2.0 L ha ⁻¹ + Mospilan SG (acetamiprid) - pests - 150 g ha ⁻¹ (no
	included)
18-06-2014	Microcare - 1.0 L ha ⁻¹ - manganese 0.368 kg ha ⁻¹ + N 0.035 kg ha ⁻¹
19-06-2014	BBCH stage 50
19-06-2014	Irrigation - 25 mm ha ⁻¹ . Started on eastside 19/06. Ended on westside 20/06
20-06-2014	Biomass tubers 195.3 g m ⁻² - 100% DM. Top 299.5 g m ⁻² row - 100% DM
23-06-2014	BBCH stage 50
	Dithane NT (mancozeb) - fungi - 2.0 L ha ⁻¹ + Mospilan SG (acetamiprid) - pests - 150 g ha ⁻¹ (no
27-06-2014	included)
27-06-2014	BBCH stage 65
30-06-2014	BBCH stage 66
01-07-2014	Biomass knolde 91.3 g m ⁻² - 100% DM. Top 395.3 g m ⁻² row - 100% DM
04-07-2014	BBCH stage 69
04-07-2014	Dithane NT (mancozeb) - fungi - 2.0 L ha ⁻¹
08-07-2014	BBCH stage 69
12-07-2014	Dithane NT (mancozeb) - fungi - 2.0 L ha ⁻¹
12-07-2014	BBCH stage 70
18-07-2014	BBCH stage 72
18-07-2014	Dithane NT (mancozeb) - fungi - 2.0 L ha ⁻¹
18-07-2014	Microcare - 1.0 L ha ⁻¹ - manganese 0.368 kg ha ⁻¹ + N 0.035 kg ha ⁻¹
21-07-2014	BBCH stage 79
21-07-2014	Irrigation - 25 mm ha ⁻¹ . Started on eastside 21/07. Ended on westside 22/07
24-07-2014	BBCH stage 81
24-07-2014 29-07-2014	Dithane NT (mancozeb) - fungi - 2.0 L ha ⁻¹ BBCH stage 82

Date	Management practice and growth stages – Jyndevad
29-07-2014	Irrigation - 25 mm ha ⁻¹ . Started on eastside 29/07. Ended on westside 30/07
30-07-2014	Ranman (cyazofamid) - fungi - 0.2 L ha ⁻¹
30-07-2014	BBCH stage 85
04-08-2014	BBCH stage 86
04-08-2014	Irrigation - 25 mm ha ⁻¹ . Started on eastside 04/08. Ended on westside 05/08
07-08-2014	BBCH stage 86
07-08-2014	Ranman (cyazofamid) - fungi - 0.2 L ha ⁻¹
11-08-2014	BBCH stage 93
12-08-2014	Biomass tubers 1,881.1 g m ⁻² - 100% DM. Top 211.5 g m ⁻² row - 100% DM
14-08-2014	BBCH stage 93
14-08-2014	Dithane NT (mancozeb) - fungi - 2.0 L ha ⁻¹
	Rotor harrowed - 6 cm depth
01-09-2014	
16-09-2014	Harrowed diagonally - depth 6 cm.
18-09-2014	Winterwheat drilled directly in the potato stuble
26-09-2014	BBCH 09 – emergence
29-09-2014	BBCH 10
08-10-2014	BBCH 13
22-10-2014	BBCH 14
22-10-2014	Lexus 50 WG (flupyrsulfuron) - weeds - 10 g ha ⁻¹ (i.e. 4.6 g a.i. ha ⁻¹)
24-10-2014	BBCH 14
27-10-2014	BBCH 15
11-11-2014	BBCH 20
11-11-2014	Orius 200 EW (tebuconazole) - fungi -1.25 L ha ⁻¹ (i.e. 250 g a.i. ha ⁻¹)
17-11-2014	BBCH 20
27-11-2014	BBCH 21
09-03-2015	BBCH 22
17-03-2015	BBCH 22
	Fertilization 120.0 N, 15 P, 56 K, kg ha ⁻¹
18-03-2015	-
20-03-2015	BBCH 22
20-03-2015	Lexus 50 WG (flupyrsulfuron) - weeds - 10 g ha ⁻¹ (i.e. 4.6 g a.i. ha ⁻¹)
07-04-2015	BBCH 23
15-04-2015	BBCH 30
15-04-2015	Biomass 64.5 g m ⁻² - 100% DM
	Fertilization 4 P, 20 K, kg ha ⁻¹
16-04-2015	Fertilization 4 F, 20 K, kg na
17-04-2015	Fertilization 50.0 N, kg ha ⁻¹
20-04-2015	BBCH 31
28-04-2015	BBCH 32
04-05-2015	BBCH 33
08-05-2015	BBCH 34
08-05-2015	
	Opus + Comet (epoxiconazole+pyraclostrobin) - fungi - 1.0 L ha ⁻¹ +1.0 L ha ⁻¹ (i.e 125g a.i. ha ⁻¹ +250g
	a.i. ha ⁻¹)
13-05-2015	BBCH 35
18-05-2015	BBCH 37
26-05-2015	BBCH 43
01-06-2015	BBCH 47
09-06-2015	BBCH 55
09-06-2015	Biomass 949.1 g m ⁻² - 100% DM
11-06-2015	BBCH 57
11-06-2015	Irrigation - 27 mm ha ⁻¹ . Started on eastside 11/06. Ended on westside 12/06
16-06-2015	BBCH 59
17-06-2015	Proline 250 EC (prothioconazole) - fungi - 0.8 L ha ⁻¹ (i.e. 200 g a.i. ha ⁻¹)
23-06-2015	BBCH 60
29-06-2015	BBCH 65
30-06-2015	BBCH 65
30-06-2015	Irrigation - 30 mm ha ⁻¹ . Started on eastside 30/06. Ended on westside 01/07
06-07-2015	BBCH 75
08-07-2015	BBCH 75
08-07-2015	Biomass 1358.8 g m ⁻² - 100% DM
13-07-2015	BBCH 79
13-07-2015	Irrigation - 30 mm ha ⁻¹ started on eastside 13/7 ended on westside 14/7
14-07-2015	BBCH 79
21-07-2015	
	BBCH 81
03-08-2015	BBCH 83
10-08-2015	BBCH 87
20-08-2015	Harvest of winter wheat. Grain yield 79.7 hkg ha ⁻¹ 85% DM, straw yield 71.5 hkg ha ⁻¹ 100% DM,
	stubbleheight 15 cm. Straw shredded (left in field) at harvest.

Data	Management matrice and another tages. Indexed
Date 20-08-2015	Management practice and growth stages – Jyndevad Rotor harrowed, 5-6 cm depth
07-03/2016	Ploughing - 22 cm depth
21-03-2016	Sowing spring barley cv. KWS Irena, depth 4.0 cm, rowdistance 12 cm, seed rate 170 kg ha ⁻¹ , final
21 00 2010	plantnumber 345 m^2 - using a combine drill
21-03-2016	Rolled with concrete roller
21-03-2016	BBCH stage 0
30-03-2016	BBCH stage 9
04-04-2016	BBCH stage 10
05-04-2016	BBCH stage 11
05-04-2016	Fertilization 136.0 N, 17 P, 63 K, kg ha ⁻¹
20-04-2016	BBCH stage 12
20-04-2016	Sowing catch crop of grass and clover (Foragemax 42)
27-04-2016	BBCH stage 13
03-05-2016	BBCH stage 16 Fighter 480 (bentazone) - weeds - 1.5 L ha ⁻¹
03-05-2016 10-05-2015	BBCH stage 20
10-05-2015	Emergence of catch crop – BBCH stage 09
12-05-2016	Biomass 27.7 g m ⁻² - 100% DM
17-05-2016	BBCH stage 27
23-05-2016	BBCH stage 32
31-05-2016	BBCH stage 37
02-06-2016	BBCH stage 50
02-06-2016	Bumper 25 EC (propiconazole) -fungi - 0.5 L ha ⁻¹ (i.e. 125 g a.i. ha ⁻¹)
03-06-2016	Irrigation - 30 mm ha ⁻¹ started on eastside 4/6 ended on westside 3/6
03-06-2016	BBCH stage 50
03-06-2016	Biomass 721.7 g m ⁻² - 100% DM
06-06-2016	BBCH stage 53
08-06-2016	BBCH stage 56
08-06-2016	Irrigation - 30 mm ha ⁻¹ started on eastside 8/6 ended on westside 9/6 BBCH stage 57
13-06-2016 20-06-2016	BBCH stage 57 BBCH stage 58
27-06-2016	BBCH stage 67
06-07-2016	BBCH stage 72
12-07-2016	BBCH stage 75
12-07-2016	Biomass 1148.7 g m ⁻² - 100% DM
25-07-2016	BBCH stage 89
01-08-2016	BBCH stage 90
08-08-2016	BBCH stage 95
17-08-2016	Harvest of spring barley. Seed yield 48.3 hkg ha ⁻¹ 85% DM, stubble height 15 cm
30-08-2016	Removal of straw, straw yield 27.4 hkg ha ⁻¹ 100% DM
03-02-2017	Ploughing - 22 cm depth
20-02-2017	Rolled with concrete roller
15-03-2017	Fertilization 28 P, 147 K, kg ha ⁻¹ Sowing pea cultivare Mascara, depth 6.0 cm, rowdistance 12 cm, seed rate 235 kg ha ⁻¹ , using a combine
23-03-2017	drill, final plant number 74 m ⁻²
08-04-2017	BBCH stage 09 - emergence
08-04-2017	BBCH stage 10
17-04-2017	BBCH stage 11
23-04-2017	BBCH stage 12
09-05-2017	BBCH stage 33
09-05-2017	Stomp CS (pendimethalin) - weeds - 1.0 L ha ⁻¹ (ie.e. 455 gr a.i. ha ⁻¹) (not included)
09-05-2017	Fighter 480 (bentazone) - weeds - 1.0 L ha ⁻¹ (i.e. 480 gr a.i. ha ⁻¹)
19-05-2017	BBCH stage 52
19-05-2017	Biomass 335.1 g m ⁻² - 100% DM
19-05-2017	Focus Ultra (cycloxydim) - weeds - 5.0 L ha ⁻¹ (i.e. 500 g a.i. ha ⁻¹)
27-05-2017	BBCH stage 59
30 05 2017	Irrigation - 30 mm ha ⁻¹ BBCH store 60
30-05-2017 08-06-2017	BBCH stage 60 BBCH stage 64
08-06-2017	Biomass 64.8 g m^{-2} - 100% DM
16-06-2017	BBCH stage 69
22-06-2017	BBCH stage 70
	Irrigation - 30 mm ha ⁻¹
27-06-2017	BBCH stage 71
27-06-2017	Biomass 704.3 g m ⁻² - 100% DM

Date	Management practice and growth stages – Jyndevad
18-07-2017	BBCH stage 78
26-07-2017	BBCH stage 82
26-07-2017	Biomass 1003.3 g m ⁻² - 100% DM
28-07-2017	BBCH stage 82
07-08-2017	BBCH stage 85
10-08-2017	BBCH stage 89
18-08-2017	Harvest of pea. Seed yield 64.4 hkg ha ⁻¹ 86 % DM.Strawyield 38.9 hkg ha ⁻¹ 100% DM, stubble heigh
19 09 2017	10 cm. Straw shreddet at harvest
18-08-2017	Winter wheat
18-08-2017	Rotor harrowed - incorporation af the straw and stubble, 6 cm depth
08-09-2017	Ploughing - 22 cm depth Ballad with accounts rollar
10-09-2017	Rolled with concrete roller
21-09-2017	Sowing winter wheat cv. Sheriff (Redigo Pro 170FS as seed dressing) Depth 4.0 cm, seeding rate 168 kg ha ⁻¹ , row distance 12.5 cm. Final plant number 320m ⁻²
03-10-2017	BBCH stage 09 - emergence
16-10-2017	BBCH stage 12
16-10-2017	Lexus 50 WG (flupyrsulfuron) - weeds - 10 g ha ⁻¹ (i.e. 4,63 gr a.i ha ⁻¹)
27-03-2018	BBCH stage 20
03-04-2018	BBCH stage 23
04-04-2018	Fertilization 54 N, kg ha ⁻¹ BBCH stage 27
17-04-2018	Biomass 36.8 g m^{-2} - 100% DM
17-04-2018	BBCH stage 28
20-04-2018	Hussar Plus OD - weeds - 0.14 L ha ⁻¹ (i.e 7 g ai/ha iodosulfuron-methyl-Na and 1.05 g a.i
20-04-2018	mesosulfuron-methyl)
27-04-2018	Pig slurry (sow) application - trail hose applied at surface - 45 t/ha - 110.4 Total-N, 73.9 NH4-N, 27.5 P, 55.4K, kg ha ⁻¹ , DM of slurry 2.18 %
	BBCH stage 31
03-05-2018	Lexus 50 WG (flupyrsulfuron) - weeds - 10 g/ha (i.e. 4,63 gr a.i. ha ⁻¹)
03-05-2018	BBCH stage 32
05-05-2018	BBCH stage 33
08-05-2018	U46M (MCPA) - weeds - 1 L ha ⁻¹ (i.e. 750 g a.i. ha ⁻¹)
08-05-2018	BBCH stage 41
13-05-2018	Irrigation - 30 mm ha ⁻¹
13-05-2018	BBCH stage 41
14-05-2018	BBCH stage 45
20-05-2018	Irrigation - 30 mm ha ⁻¹
20-05-2018	BBCH stage 50
24-05-2018	Biomass 65.0 g m ⁻² - 100% DM
24-05-2018	BBCH stage 52
27-05-2018	Irrigation - 30 mm ha ⁻¹
27-05-2018	BBCH stage 65
02-06-2018	Irrigation - 30 mm ha ⁻¹
02-06-2018	BBCH stage 69
04-06-2018	BBCH stage 70
06-06-2018	Topsin WG (thiophanat-methyl) - fungi - 1.1 kg ha ⁻¹ (i.e. 770 g a.i ha ⁻¹)
06-06-2018	Irrigation - 30 mm ha ⁻¹
10-06-2018	BBCH stage 70
10-06-2018	Irrigation - 30 mm ha ⁻¹
13-06-2018	BBCH stage 72
22-06-2018	BBCH stage 73
26-06-2018	BBCH stage 74
26-06-2018	Irrigation - 30 mm ha ⁻¹
04-07-2018	BBCH stage 75
04-07-2018	Irrigation - 30 mm ha ⁻¹
09-07-2018	BBCH stage 75
09-07-2018	Biomass 3386.7 g m ⁻² - 100% DM
17-07-2018	BBCH stage 80
25-07-2018	BBCH stage 89
26-07-2018	Harvest of winter wheat. Grain yield 82.4 hkg ha ⁻¹ 85% DM, straw yield 44.8 hkg ha ⁻¹ 100% DM stubbleheight 14 cm. Straw removed at harvest.
22-08-2018	Glypfonova MAX HL (glyphosate) - weeds - 3.2 L ha ⁻¹ (i.e 1536 g a.i. ha ⁻¹)
18-10-2018 18-10-2018	Ploughing - 20 cm depth Sowing winter rye cv. Bono. Depth 4.0 cm, seeding rate 105 kg ha ⁻¹ , row distance 12.0 cm. Final plan
	number 220 m^{-2}
18-10-2018	Celeste Formula M - 210 mL ha ⁻¹ (5.25 g a.i. ha ⁻¹ fludioxonil) - seed dressing Emergence - BBCH 09
05-11-2018	

Date	Management practice and growth stages – Jyndevad
21-03-2019	BBCH stage 22
21-03-2019	Fertilization 136 N, 26 P, 65 K kg ha ⁻¹
28-03-2019	BBCH stage 25
08-04-2019	BBCH stage 27
11-04-2019	BBCH stage 28
11-04-2019	Irrigation - 30 mm ha ⁻¹
12-04-2019	BBCH stage 29
12-04-2019	Biomass 77.0 g m ⁻² - 100% DM
17-04-2019	BBCH 30
17-04-2019	Fertilization 63 N, 12 P, 30 K kg ha ⁻¹
	BBCH stage 30
22-04-2019	BBCH stage 30
22-04-2019	Irrigation - 30 mm ha ⁻¹
25-04-2019	
25-04-2019	Talius (proquinazid) - fungi - 0.25 L ha ⁻¹ (i.e. 50 g a.i. ha ⁻¹)
05-05-2019	BBCH stage 38
05-05-2019	Irrigation - 30 mm ha ⁻¹
08-05-2019	BBCH stage 40
08-05-2019	Cerone (ethephone) - plant growth regulation - 1.0 L ha ⁻¹ (i.e. 480 g a.i. ha ⁻¹) - not monitored
08-05-2019	U46M (MCPA) - weeds - 1.0 L ha ⁻¹ (i.e. 750 g a.i. ha ⁻¹) - not monitored
09-05-2019	BBCH stage 41
09-05-2019	Talius (proquinazid) - fungi - 0.25 L ha ⁻¹ (i.e. 50 g a.i. ha ⁻¹)
13-05-2019	BBCH stage 45
13-05-2019	Biomass 616.9 g m ⁻² - 100% DM
20-05-2019	BBCH stage 48
24-05-2019	BBCH stage 50
24-05-2019	Irrigation - 30 mm ha ⁻¹
27-05-2019	BBCH stage 51
08-06-2019	BBCH stage 57
08-06-2019	Irrigation - 30 mm ha ⁻¹
10-06-2019	BBCH stage 59
24-06-2019	BBCH stage 65
26-06-2019	BBCH stage 66
26-06-2019	Irrigation - 30 mm ha ⁻¹

various pestic	ides are indicated in parentheses.
Date	Management practice and growth stages – Silstrup
15-03-2012	Fertilization 60 N, 32 S kg ha ⁻¹
13-04-2012	DFF (diflufenican) - weeds - $0.15 \text{ L} \text{ ha}^{-1}$
13-04-2012	BBCH stage 25
13-04-2012	Biomass 176.5 g m ⁻² - 100% DM
19-04-2012	BBCH stage 25
19-04-2012	Fusilade Max (fluazifop-P-butyl) - weeds - 1.5 L ha ⁻¹
10-05-2012	BBCH stage 41
15-05-2012	BBCH stage 51
18-05-2012	BBCH stage 52
18-05-2012	Folicur (tebuconazole) - fungi - 1.0 L ha ⁻¹
22-05-2012	Biomass 441.9 g m ⁻² - 100% DM
22-05-2012	BBCH stage 57
07-06-2012	BBCH stage 60
22-06-2012	BBCH stage 67
03-07-2012	BBCH stage 85
05-07-2012	BBCH stage 85
05-07-2012	Biomass 915.3 g m ⁻² - 100% DM
25-07-2012	Harvest of grass seed. Yield 14.16 hkg ha ⁻¹ - 87% DM
25-07-2012	Straw removed - straw yield 48.3 hkg ha ⁻¹ - 100% DM, stubble height 12 cm
25-07-2012	BBCH stage 89
10-09-2012	Tracer (potasium bromide) 30.0 kg ha ⁻¹
10-09-2012	Glyfonova 450 Plus (glyphosate) - weeds (killing the red fescue) - 4.8 L ha ⁻¹ Ploughed - depth 24 cm – packed
08-10-2012 09-10-2012	Sowing winter wheat cv. Hereford. Depth 2.4 cm, seeding rate 200 kg ha ⁻¹ , row distance 15.0 cm using
09-10-2012	a Horch Pronto 6 DC
17-10-2012	BBCH stage 5
24-10-2012	BBCH stage 9
24-10-2012	BBCH stage 9
31-10-2012	BBCH stage 10
09-11-2012	BBCH stage 10
09-11-2012	DFF (diflufenican) + Oxitril CM(ioxynil+bromoxynil - not analysed) - weeds - 0.12 g ha ⁻¹ +0.2 Lha ⁻¹
14-11-2012	BBCH stage 11
28-11-2012	BBCH stage 12
08-01-2013	BBCH stage 12
22-02-2013	BBCH stage 12
22-02-2013	Fertilization 52.5 N, 7.5 P, 25.0 K kg ha ⁻¹
03-05-2013	Sowing spring barlye cv. Quenc, replacing winter wheat injured by frost. Depth 3.8 cm, seeding rate
	175 kg ha ⁻¹ , row distance 15 cm, Horch Pronto 6 DC, final plant number 303 m ⁻²
03-05-2013	The remaining winter wheat plants incorporated at the sowing of spring barley
04-05-2013	Fertilization 67.2 N, 9.6 P, 32.0 K kg ha ⁻¹
14-05-2013	BBCH stage 8
16-05-2013	BBCH stage 9
22-05-2013	BBCH stage 12
29-05-2013	BBCH stage 22
29-05-2013	Biomass 23.3 g m ⁻² - 100% DM
30-05-2013	BBCH stage 22 Ductril 400 EC (ionumil+bromonumil) woods 0.6 L ho-l
30-05-2013	Duotril 400 EC (ioxynil+bromoxynil) - weeds - 0.6 L ha ⁻¹
11-06-2013	BBCH stage 30 BBCH stage 47
25-06-2013 25-06-2013	BBCH stage 47 Amistar (azoxystrobin) - fungi - 1.0 L ha ⁻¹
01-07-2013	Folicur 250 EC (tebuconazole) - fungi - 1.0 L ha ⁻¹
01-07-2013	BBCH stage 50
01-07-2013	Biomass 537.0 g m ⁻² - 100% DM
09-07-2013	BBCH stage 58
19-07-2013	BBCH stage 70
06-08-2013	BBCH stage 80
06-08-2013	Biomass 1332.1 g m ⁻² - 100% DM
14-08-2013	BBCH stage 86
20-08-2013	Glyfonova 450 Plus (glyphosate) - weeds (killing the grass) - 2.4 L ha ⁻¹
20-08-2013	BBCH stage 87
30-08-2013	BBCH stage 89
06-09-2013	Harvest of spring barley. Grain yield 59.8 hkg ha ⁻¹ - 85% DM, straw yield 46.0 hkg ha ⁻¹ - 100% DM,
	stubbleheight 14 cm. Straw shredded at harvest
20-09-2013	Liming 3.2 t ha ⁻¹
	1/0

Table A3.3. Management practice at **Silstrup** during the 2012 to 2019 growing seasons. The active ingredients of the various pesticides are indicated in parentheses.

Date	Management practice and growth stages – Silstrup
23-09-2013	Ploughed - depth 24 cm – packed
25-09-2013	Sowing winter wheat cv. Hereford. Depth 4 cm, seeding rate 190 kg ha ⁻¹ , final plant number 346 m ⁻² ,
	row distance 15.0 cm using a Horch Pronto 6 DC
01-10-2013	BBCH stage 6
07-10-2013	BBCH stage 9 – emergence
16-10-2013	BBCH stage 10
16-10-2013	Oxitril CM (bromoxynil + ioxynil) + DFF (diflufenican) - weeds – 0.08 L ha ⁻¹ + 0.2 L ha ⁻¹ (bromoxynil
	and ioxynil not included)
30-10-2013	BBCH stage 12
05-11-2013	BBCH stage 13 DDCH store 12
20-11-2013	BBCH stage 13
04-12-2013 07-04-2014	BBCH stage 13 Fertilization 170.5 N, 23.3 P, 77.5 K kg ha ⁻¹
07-04-2014	BBCH stage 13
15-04-2014	BBCH stage 20
25-04-2014	BBCH stage 30
25-04-2014	Biomass 94.0 g m ⁻² - 100% DM
30-04-2014	BBCH stage 30
15-05-2014	BBCH stage 32
21-05-2014	BBCH stage 34
27-05-2014	BBCH stage 41
02-06-2014	Biomass 962.0 g m ⁻² - 100% DM
02-06-2014	BBCH stage 51
03-06-2014	BBCH stage 53
04-06-2014 18-06-2014	Amistar (azoxystrobin) - fungi - 1.0 L ha ⁻¹ BBCH stage 63
23-06-2014	BBCH stage 68
02-07-2014	Biomass 1776.5 g m ⁻² - 100% DM
02-07-2014	BBCH stage 75
08-07-2014	BBCH stage 76
16-07-2014	BBCH stage 79
22-07-2014	BBCH stage 83
25-07-2014	BBCH stage 87
25-07-2014	Glyfonova 450 Plus (glyphosate) - weeds - 2.4 L ha ⁻¹
15-08-2014	BBCH stage 90
16-08-2014	Harvest of winter wheat. Grain yield 83.5 hkg ha ⁻¹ - 85% DM, straw yield 113.8 hkg ha ⁻¹ - 100% DM,
10.00.2014	stubbleheight 14 cm. Straw shredded (left in field) at harvest
19-09-2014	Stubble harrowed, disk harrow (Heva Disc Roller) - depth 5-8 cm (incorporation of straw) Pig slurry application - accidified at application - hose applied at surface - 28.3 t ha ⁻¹ – 126.2 Total-N,
28-04-2015	$75.6 \text{ NH4-N}, 44.2 \text{ P}, 46.7 \text{ K}, \text{kg} \text{ ha}^{-1}, \text{DM of slurry } 5.33\%$
28-04-2015	Ploughed - 24 cm depth
30-04-2015	
30-04-2015	Seedbed preparation, 5-8 cm depth
02-05-2015	Sowing maiz cv. Ambition, depth 3.5 cm, rowdistance 75 cm, seed distance 14 cm seeding rate 10 m ² .
	final plantnumber 7.4 m ² (seeds werer coated with thirame, fludioxonil and metalaxyl-M)
02-05-2015	Fertilization 30 N, 12.9 P, kg ha ⁻¹ (placed at sowing)
03-05-2015	BBCH 1
12-05-2015	BBCH 5
19-05-2015	BBCH 7
27-05-2015	BBCH 9
27-05-2015	Callisto (mesotrione) + Harmony SX (thifensulfuron-methyl) - weeds - $(0.75 \text{ L ha}^{-1} + 5.625 \text{ g ha}^{-1})$ (i.e.
06-06-2015	75 g a.i. ha ⁻¹ + 2.813 g a.i. ha ⁻¹ BBCH 12
09-06-2015	BBCH 12 BBCH 12
09-06-2015	Callisto (mesotrione) + MaisTer (foramsulfuron+iodosulfuron) - weeds - $(0.75 \text{ L ha}^{-1} + 100 \text{ g ha}^{-1})$ (i.e.
07-00-2015	75 g a.i. $ha^{-1} + 30$ g a.i. $ha^{-1} + 1$ g a.i. ha^{-1})
18-06-2015	BBCH 14
23-06-2015	BBCH 15
23-06-2015	MaisTer (foramsulfuron+iodosulfuron) - weeds - (50 g ha ⁻¹) (i.e. 15 g a.i. ha ⁻¹ + 0,5 g a.i. ha ⁻¹)
03-07-2015	BBCH 17-18
03-07-2015	Biomass 5.8 g m ⁻² - 100% DM
14-07-2015	BBCH 19
22-07-2015	BBCH 31
12-08-2015	BBCH 51
13-08-2015	BBCH 51
13-08-2015	Biomass 303.8 g m ⁻² - 100% DM
	161

Date	Management practice and growth stages – Silstrup
19-08-2015	BBCH 54
26-08-2015	BBCH 65
09-09-2015	BBCH 70
23-09-2015	BBCH 72
30-09-2015	BBCH 73
05-10-2015	BBCH 74
05-10-2015	Biomass 1086.2 g m ⁻² - 100% DM
21-10-2015	BBCH 77
28-10-2015	BBCH 80
31-10-2015	Harvest of maiz. Stubble height 25 cm. Total harvested yield 64.98 hkg ha ⁻¹ 100% DM.
05-11-2015	Maiz stubble chrushed with a cutter
28-04-2016	Stuble cultivated - depth 6 cm
09-05-2016	Pig slurry application – acidified at application – trail hose applied at surface – 34 t ha ⁻¹ - 150.6 Total- N, 85.0 NH4-N, 70.7 P, 73.4 K, kg ha ⁻¹ , DM of slurry 4.79%
10-05-2016	Ploughed - 24 cm depth - packed with a ring roller
11-05-2016	Fertilization 89.6 K kg ha ⁻¹
12-05-2016	Rotary cultivated - depth 5.0 cm
13-05-2016	Fertilization 33.4 N, 17.5 P, kg ha ⁻¹ (placed at sowing)
13-05-2016	Sowing maiz cv. Activate, depth 3.5 cm, rowdistance 75 cm, seeddistance 14.7 cm seeding rate 10 m ² . final plantnumber 8 m ² (seeds werer coated Mesurol FS 500 - thirame, fludioxonil and metalaxyl-M)
13-05-2016	BBCH stage 01
25-05-2016 30-05-2016	BBCH stage 07 BBCH stage 09 – emergence
02-06-2016	BBCH stage 12
02-00-2010	BBCH stage 13-14
06/06/2016	Callisto (mesotrion) + Harmony SX (thifensulfuron-methyl) - weeds - $(0.75 \text{ L ha}^{-1} + 5.625 \text{ g ha}^{-1})$ (i.e.
08-06-2016	75 g a.i. $ha^{-1} + 2.813$ g a.i. ha^{-1} BBCH stage 14
08-06-2016	Biomass 3.3 g m^{-2} - 100% DM
22-06-2016	BBCH stage 16-17
22/06/2016	Callisto (mesotrion) + MaisTer (foramsulfuron+iodosulfuron) - weeds - $(0.75 \text{ L ha}^{-1} + 150 \text{ g ha}^{-1})$ (i.e. 75 g a.i. ha ⁻¹ + 45 g a.i. ha ⁻¹ + 1,5 g a.i. ha ⁻¹)
27-06-2016	BBCH stage 17-18
29-06-2016	BBCH stage 19-21
06-07-2016	BBCH stage 31
13-07-2016	BBCH stage 32-33
20-07-2016	BBCH stage 34-50
25-07-2016	BBCH stage 51
25-07-2016	Biomass 428.1 g m ⁻² - 100% DM
15-08-2016	BBCH stage 67
15-08-2016	Biomass 925.8 g m ⁻² - 100% DM
15-09-2016	BBCH stage 75
20-09-2016	Dry matter determination - 27.25% Dry matter determination - 29,74%
29-09-2016	Dry matter determination - 31.2%
05-10-2016 11-10-2016	Harvest of maize. Stubble height 33 cm. Total harvested yield 120.86 hkg ha ⁻¹ 100% DM.
13-10-2016	Maize stubble chrushed with a cutter
13-10-2016	Stuble cultivated - depth 6 cm
12-11-2016	Ploughed - 24 cm depth
28-04-2017	Seedbed preparation - depth 5 cm
28-04-2017	Fertilization 30.5 N, 4.4 P, 14.5 K, kg ha ⁻¹
29-04-2017	BBCH stage 0
29-04-2017	Spring barley sown, cv. KWS Irina, seeding rate 160 kg ha ⁻¹ , sowing depth 3.4 cm, row distance 12.5 cm. Final plant number not determined.
29-04-2017	Seed dressing Redigo Pro 170 FS (12.0 g prothioconazol and 1.60 g tebuconazol g a.i. ha ⁻¹)
11-05-2017	BBCH stage 9
15-05-2017	BBCH stage 12
29-05-2017	BBCH stage 21-22
29-05-2017	Pig slurry application - accidified at application - trail hose applied at surface - 30 t ha ⁻¹ - 110.4 Total- N, 69.3 NH4-N, 44.4 P, 51.9 K, kg ha ⁻¹ , DM of slurry 4.88 %
29-05-2017	Biomass 50.7 g m ⁻² - 100% DM
12-06-2017	BBCH stage 32
15-06-2017	BBCH stage 33
15-06-2017	Zypar (halauxifen-methyl + florasulam (not monitored)) - weeds - $1.0 L ha^{-1}$ (6.25 g a.i. ha^{-1} halauxifen-methyl + 5 g florasulam)
27-06-2017	BBCH stage 50

27-06-2017 BBCH stage 50

D (
Date	Management practice and growth stages – Silstrup
27-06-2017	Biomass 526.1 g m ⁻² - 100% DM
27-06-2017	Bumper 25 EC (propiconazol) - fungi - 0.5 L ha ⁻¹ (125 g a.i. ha ⁻¹ propiconazol)
04-07-2017	BBCH stage 57
10-07-2017	BBCH stage 64
10-07-2017	Bumper 25 EC (propiconazol) - fungi - 0.5 l ha ⁻¹ (125 g a.i. ha ⁻¹ propiconazol)
19-07-2017	BBCH stage 70
26-07-2017	BBCH stage 75 BBCH stage 80
01-08-2017 29-08-2017	BBCH stage 89
02-09-2017	Harvest of spring barley. Stuble height 15 cm, grainyield 61.2 hkg ha ⁻¹ - 85% DM,
02-09-2017	Straw remowed, strawyield 13.19 hkg ha ⁻¹ - 100% DM
26-09-2017	Winter Barley
26-09-2017	Ploughed - 25 cm depth
28-09-2017	Seedbed preparation - depth 10 cm
28-09-2017	Fertilization 12.6 N, 14.0 P, kg ha ⁻¹ (placed at sowing)
28-09-2017	BBCH stage 0
28-09-2017	Winter barley sown, cv Kosmos, seeding rate 190 kg ha ⁻¹ , sowing depth 3.0 cm, row distance 13 cm,
	final plant number 216
28-09-2017	Seed dressing Redigo Pro 170 FS (prothioconazol 14.25 g and tebuconazol 1.9 g a.i. ha ⁻¹)
09-10-2017	BBCH stage 9 - emergence
18-10-2017	BBCH stage 11
18-10-2017	Lexus (flupyrsulfuron) - weeds - 10 g ha ⁻¹ (i.e. 4.63 g a.i. ha ⁻¹) PDCU store $12/12$
27-10-2017	BBCH stage 12/13 BBCH stage 20
10-04-2018 10-04-2018	BBCH stage 20 Fertilization 171.7 N, 24.5 P, 81.8 K,kg ha ⁻¹
18-04-2018	BBCH stage 22
18-04-2018	Biomass 461.8 g m ⁻² - 100% DM
19-04-2018	BBCH stage 22
19-04-2018	Hussar Plus OD - weeds - 0.05 L ha ⁻¹ (i.e 2.5 g ai ha ⁻¹ iodosulfuron-methyl-Na and 0.375 g a.i. ha ⁻¹
	mesosulfuron-methyl)
23-05-2018	Biomass 691.8 g m ⁻² - 100% DM
23-05-2018	BBCH stage 53
23-05-2018	Proline 250 EC (prothioconazol) - fungi - 0.8 L ha ⁻¹ (i.e. 200 g a.i. ha ⁻¹)
01-06-2018	BBCH stage 65
01-06-2018	Proline 250 EC (prothioconazol) - fungi - 0.8 L ha ⁻¹ (i.e. 200 g a.i. ha ⁻¹)
06-06-2018 06-06-2018	BBCH stage 77 Biomass 1165.3 g m ⁻² - 100% DM
21-06-2018	BBCH stage 83
20-07-2018	BBCH stage 89
20-07-2018	Harvest of winter barley. Stuble height 10 cm, grainyield 71.9 hkg ha ⁻¹ . Total N 1.65% and total C
24-07-2018	43.48% - 85% DM
23-08-2018	Straw remowed, strawyield 10.3 hkg ha ⁻¹ . Total-N 0.37% and total-C 42.45% - 100% DM
17-08-2018	Liming - 3.0 t ha ⁻¹
17-08-2018	Sowing winter rape cv. DK Exclaim, , sowing depth 2-3 CM cm, seeding rate 3.3 kg ha ⁻¹ , row distance
	45 cm, final plantnumber 33 m ⁻²
17-08-2018	Seed dressing Thiram
23-08-2018	BBCH stage 09 – emergence
29-08-2018	BBCH stage 10 BBCH stage 13 – 14
17-09-2018 17-09-2018	Focus Ultra (cycloxydim) - weeds - 1.8 L ha ⁻¹ - weeds - (i.e. 180 g a.i. ha ⁻¹)
26-09-2018	BBCH stage 15
10-10-2018	BBCH stage 15
17-10-2018	BBCH stage 16
24-10-2018	BBCH stage 16
24-10-2018	Biomass 71.8 g m ⁻² - 100% DM
09-11-2018	BBCH stage 18
09-11-2018	Kerb 400 SC (propyzamid) - weeds - 1.25 L ha ⁻¹ (i.e. 500 g a.i. ha ⁻¹)
01-03-2018	BBCH stage 30
01-03-2018	Fertilization 81.0 N, kg ha ⁻¹
02-04-2019	BBCH stage 52
02-04-2019	Pig slurry application - accidified at application 2 L 96% H2SO4 (ton slurry) ⁻¹ - trail hose applied at
04 04 2010	surface - 22.7 T ha ⁻¹ - 92.8 Total-N, 57.2 NH4-N, 21.6 P, 37.0 K, kg ha ⁻¹ , DM of slurry 4.19 %
04-04-2019 04-04-2019	BBCH stage 53 Biomass 271.4 g m ⁻² - 100% DM
04-04-2019	BBCH stage 54
09-04-2019	Agil 100 EC (propaquizifop) - weeds - 1.2 L ha ⁻¹ (i.e. 120 g a.i. ha ⁻¹)
57 01 2017	The root of the propagate to provide the prime the part in the part in the part of the prime the

Management practice and growth stages – Silstrup
BBCH stage 55
BBCH stage 60
BBCH stage 63
BBCH stage 66
BBCH stage 68
BBCH stage 76
BBCH stage 79

various pestici	des are indicated in parentheses.
Date	Management practice and growth stages – Estrup
09-11-2012	Ploughed - depth 20 cm - packed with a Dalbo ring roller
22-03-2012	Fertilization 117 N, 15 P, 55 K, kg ha ⁻¹
29-03-2012	Rotor harrowed - depth 4 cm
30-03-2012	Spring barley sown, cv. Keops, seeding rate 159 kg ha ⁻¹ , sowing depth 4.3 cm, row distance 12 cn
	Final plantnumber 330 m ⁻²
03-04-2012	Rolled with a Cambridge roller
22-04-2012	BBCH 9 – emergence
23-04-2012	BBCH stage 10
26-04-2012	BBCH stage 11
01-05-2012	BBCH stage 12 BBCH stage 22
15-05-2012 15-05-2012	BBCH stage 22 Biomass 30.5 g m ⁻² - 100% DM
15-05-2012	For 480 SC (bifenox) - weeds - $1.2 \text{ L} \text{ ha}^{-1}$
18-05-2012	BBCH stage 23
18-05-2012	Mustang forte (aminopyralid/florasulam/2,4-D) - weeds - 0.75 L ha ⁻¹
21-05-2012	BBCH stage 30
21-05-2012	Fertilization manganes nitrate (23,5%) - 2.0 L ha ⁻¹
29-05-2012	BBCH stage 37
29-05-2012	Fertilization manganes nitrate (23,5%) - 2.0 L ha ⁻¹
06-06-2012	BBCH stage 40
13-06-2012	BBCH stage 50
13-06-2012	Amistar (azoxystrobin) - fungi - 1.0 L ha ⁻¹
14-06-2012	BBCH stage 50
14-06-2012	Biomass 528.5 g m ⁻² - 100% DM
20-06-2012	BBCH stage 56
27-06-2012	BBCH stage 61
02-07-2012	BBCH stage 70 P_{1}^{1} Biometry 014 (r_{1} r_{2}^{2} 1000 (PM
02-07-2012 11-07-2012	Biomass 914.6 g m ⁻² - 100% DM BBCH stage 73
18-07-2012	BBCH stage 77
25-07-2012	BBCH stage 83
01-08-2012	BBCH stage 86
13-08-2012	BBCH stage 89
13-08-2012	Harvest of spring barley. Stuble height 12 cm, grain yield 62.9 hkg ha ⁻¹ 85% DM.
13-08-2012	Straw shredded at harvest - 41.0 hkg ha ⁻¹ 100% DM
26-09-2012	Tracer (potasium bromide) - 30 kg ha ⁻¹
08-03-2013	Ploughed - depth 20 cm - packed with a Dalbo ring roller
05-04-2013	Fertilization 16 P, 84 K, kg ha ⁻¹
23-04-2013	Seedbed preparation - depth 5 cm
23-04-2013	Sowing peas - cultivare Alvesta - depth 5 cm, row distance 12 cm, seeding rate 230 kg ha ⁻¹ . Final
22 04 2012	plant number 82 m ⁻²
23-04-2013	Rolled with a Cambridge roller
25-04-2013	BBCH stage 0
25-04-2013	Command CS (clomazone) - weeds - 0.25 L ha ⁻¹
04-05-2013 16-05-2013	BBCH 9 – emergence BBCH stage 12
16-05-2013	Fighter 480 (bentazone) - weeds - 1.0 L ha ⁻¹
16-05-2013	Cyperb (cypermethrin) - pests - 0.3 L ha ⁻¹ (not analysed)
22-05-2013	BBCH stage 31
27-05-2013	BBCH stage 33
27-05-2013	Biomass 42.3 g m ⁻² - 100% DM
06-06-2013	BBCH stage 37
12-06-2013	BBCH stage 40
21-06-2013	BBCH stage 60
21-06-2013	Biomass 357.7 g m ⁻² - 100% DM
26-06-2013	BBCH stage 62
09-07-2013	BBCH stage 66
12-07-2013	BBCH stage 68
12-07-2013	Biomass 718.1 g m ⁻² - 100% DM
13-07-2013	BBCH stage 68
13-07-2013	Pirimor G (pirimicarb) - pests - 0.25 kg ha ⁻¹
17-07-2013	BBCH stage 79 BBCH stage 82
31-07-2013	BBCH stage 83 BBCH stage 83
05-08-2013	BBCH stage 83

Table A3.4. Management practice at **Estrup** during the 2012 to 2019 growing seasons. The active ingredients of the various pesticides are indicated in parentheses.

Date	Management practice and growth stages – Estrup
05-08-2013	Biomass 985.3 g m ⁻² - 100% DM
13-08-2013	BBCH stage 87
20-08-2013	BBCH stage 90
21-08-2013	Glyphonova 450 Plus (glyphosate) - weeds - 2.4 L ha ⁻¹
27-08-2013	BBCH stage 93
06-09-2013 06-09-2013	Harvest of peas. Stubble height 10 cm, seed yield 49.8 hkg ha ⁻¹ - 86% dry matter. Straw shedded at harvest - 24.38 hkg ha ⁻¹ 100% DM
13-09-2013	Winter wheat sown cv. Herford. Depth 4.0 cm, rowdistance 12 cm, seeding rate 180 kg ha ⁻¹ . Final
21-09-2013	plantnumber 365 m ⁻² using a combined powerharrow sowing equipment BBCH 9 – emergence
25-09-2013	BBCH stage 11
09-10-2013	BBCH stage 12
14-10-2013	BBCH stage 20
14-10-2013	Fertilization manganes nitrate (23.5%) - 2.0 kg ha ⁻¹
30-10-2013	BBCH stage 21
11-11-2013	BBCH stage 24
11-11-2013	Oxitril CM (bromoxynil + ioxynil) + DFF (diflufenican) - weeds - 0.2 L ha ⁻¹ + 0.24 L ha ⁻¹
	(bromoxynil and ioxynil not included)
13-11-2013	BBCH stage 24
02-04-2014	BBCH stage 30
04-04-2014	BBCH stage 30 $E_{\rm eff}$ (i) $E_{\rm eff}$ (i) $E_{\rm eff}$ (ii) $E_{\rm eff}$ (iii) $E_{\rm eff}$ (i
04-04-2014	Fertilization 150 N, 16 P, 60 K, kg ha ⁻¹ (liquid fertilizer - applied 1000 L ha ⁻¹ with a sprayer)
22-04-2014 22-04-2014	BBCH stage 32 Fluxyr 200 EC - (fluroxypyr) - weeds - 0.7 L ha ⁻¹ (not included)
22-04-2014	Futilization manganes nitrate $(23,5\%) - 2.0 \text{ kg ha}^{-1}$
07-05-2014	BBCH stage 34
07-05-2014	Biomass 54.0 g m ⁻² - 100% DM
15-05-2014	BBCH stage 36
15-05-2014	Primus (florasulam) - weeds - 50 mL ha ⁻¹
20-05-2014	BBCH stage 38
20-05-2014	Folicur 250 EC (tebuconazole) - fungi - 1.0 L ha ⁻¹
27-05-2014	BBCH stage 50
02-06-2014	BBCH stage 59
02-06-2014	Biomass 497.3 g m^{-2} - 100% DM
02-06-2014	Amistar (azoxystrobin) - fungi - 1.0 L ha ⁻¹
11-06-2014 18-06-2014	BBCH stage 67 BBCH stage 71
24-06-2014	BBCH stage 72
24-06-2014	Cyperb (cypermethrin) - pests - 0.25 L ha ⁻¹ (not analysed)
02-07-2014	BBCH stage 74
07-07-2014	BBCH stage 75
07-07-2014	Biomass 1557.7 g m ⁻² - 100% DM
16-07-2014	BBCH stage 82
26-07-2014	BBCH stage 87
26-07-2014	Glyphonova 450 Plus (glyphosate) - weeds – 2.4 L ha ⁻¹
06-08-2014	BBCH stage 90
06-08-2014	Harvest of winter wheat. Stubleheight 11 cm, grain yield 69.3 hkg ha ⁻¹ 85% DM
12-08-2014 06-08-2014	Harrowed to 5 cm depth and sown a catch crop of oilseed radish 12 kg ha ⁻¹ seed on soil surface Straw shredded at harvest - 48.7 hkg ha ⁻¹ , 100% DM
12-08-2014	Liming 3.5 t ha ⁻¹ magnesium limestone
29-04-2015	Pig slurry application - accidified at application from pH 7,15 til 6,82- hose applied at surface -
29 01 2015	28.0 t ha ⁻¹ - 117.3 Total-N, 76.44 NH4-N, 39.2 P, 47.9 K, kg ha ⁻¹ , DM of slurry 5.43%
29-04-2015	Ploughed - depth 20 cm
11-05-2015	Seedbed preparation - depth 5 cm using a Rabewerke rotary cultivator
11-05-2015	Fertilization 30.8 N, 4.7 P, 19.0 K, kg ha ⁻¹ (placed at sowing)
11-05-2015	Sowing maize cv. Ambition, depth 4 cm, row distance 75 cm, seed distance 12.1 cm seeding rate 11 m^2 . Final plant number 10.5 m ²
13-05-2015	Fertilization 55.3 N, 8.5 P, 34.0 K, kg ha ⁻¹ (applied with a field sprayer - liquid fertilizer
27-05-2015	BBCH 09
27-05-2015	Callisto (mesotrione) + Harmony SX (thifensulfuron-methyl) - weeds - (0.75 L ha ⁻¹ + 5.625 g ha ⁻¹) (i.e. 75 g a.i. ha ⁻¹ + 2.813 g a.i. ha ⁻¹
03-06-2015	BBCH 12
06-06-2015	BBCH 13
06-06-2015	Callisto (mesotrione) + MaisTer (foramsulfuron+iodosulfuron) - weeds - $(0.75 \text{ L ha}^{-1} + 100 \text{ g ha}^{-1})$
08-06 2015	(i.e. 75 g a.i. ha ⁻¹ + 30 g a.i. ha ⁻¹ + 1 g a.i. ha ⁻¹) BBCH 13
08-06-2015	

Date	Management practice and growth stages – Estrup
08-06-2015	Biomass 0.4 g m ⁻² - 100% DM
18-06-2015	BBCH 14
23-06-2005	BBCH 16
30-06-2015	BBCH 18 Militar (for monthered index) + Ledia 200 EC (for monthered a control + 1.0 L
30-06-2015	MaisTer (foramsulfuron+iodosulfuron) + Lodin 200 EC (fluroxypyr) - weeds - $(50 \text{ g ha}^{-1} + 1.0 \text{ L} \text{ ha}^{-1})$ (i.e. 15 g a.i. ha ⁻¹ + 0,5 g a.i. ha ⁻¹ + 180 g a.i. ha ⁻¹)
01-07-2015	BBCH 19 BBCH 19
09-07-2015	BBCH 22
16-07-2015	BBCH 33
23-07-2015	BBCH 43
30-07-2015	BBCH 51
04-08-2015	BBCH 51
04-08-2015	Biomass 1794 g m ⁻² - 100% DM
05-08-2015	BBCH 60
13-08-2015	BBCH 65
08-06-2015	Biomass 4159 g m ⁻² - 100% DM
20-08-2015	BBCH 69
01-09-2015 15-09-2015	BBCH 72 BBCH 73
22-09-2015	BBCH 75 BBCH 74
06-10-2015	BBCH 75
13-10-2015	BBCH 78
23-10-2015	BBCH 81
23-10-2015	Harvest of maize. Stubble height 25 cm. Total harvested yield 105.98 hkg ha ⁻¹ 100% DM.
04-05-2016	Pig slurry application - acidified at application trail hose applied at surface - 21.0 t ha ⁻¹ - 86.5 Total-
	N, 56.3 NH4-N, 11.6 P, 29.6 K, kg ha ⁻¹ , DM of slurry 3.58 %
05-05-2016	Ploughed - depth 20 cm
06-05-2016	Seedbed preparation - depth 5 cm using a Rabewerke rotary cultivator
06-05-2016	Fertilization 150 N, 20 P, 60 K, kg ha ⁻¹ (20% thereof placed at sowing and 80% harrowed into the
06-05-2016	soil before the sowing) Sowing maize cv. Ambition, depth 4 cm, row distance 75 cm, seed distance 12.1 cm, seeding rate
00-03-2010	11 m^2 . Final plant number 10.5 m ²
14-05-2016	BBXH stage 09
14-05-2016	BBCH stage 11
14-05-2016	BBCH stage 13
01-06-2016	BBCH stage 14
01-06-2016	Callisto (mesotrion) + Harmony SX (thifensulfuron-methyl) - weeds - (0.75 l ha ⁻¹ + 5.625 g ha ⁻¹)
	$(i.e. 75 g a.i. ha^{-1} + 2.813 g a.i. ha^{-1})$
05-06-2016	BBCH stage 14
05-06-2015	Biomass 288.5 g m ⁻² - 100% DM
08-06-2016 11-06-2016	BBCH stage 16 BBCH stage 17
11-06-2016	BBCH stage 17 Callisto (mesotrion) + MaisTer (foramsulfuron+iodosulfuron) - weeds - (0.75 l ha ⁻¹ + 100 g ha ⁻¹)
11-00-2010	(i.e. $75 \text{ g a.i. } ha^{-1} + 30 \text{ g a.i. } ha^{-1} + 1 \text{ g a.i. } ha^{-1}$)
15-06-2016	BBCH stage 18
16-06-2016	BBCH stage 18
16-06-2016	MaisTer (foramsulfuron+iodosulfuron) - weeds - (50 g ha ⁻¹) (i.e. 15 g a.i. ha ⁻¹ + 0,5 g a.i. ha ⁻¹)
22-06-2016	BBCH stage 25-26
29-06-2016	BBCH stage 46-47
13-07-2016	BBCH stage 51
13-07-2016	Biomass 3069.0 g m ⁻² - 100% DM
27-07-2016	BBCH stage 57 BBCH stage 55
09-08-2016 09-08-2016	BBCH stage 65 Biomass 8118.8 g m ⁻² - 100% DM
10-08-2016	BBCH stage 65
24-08-2016	BBCH stage 71
07-09-2016	BBCH stage 80
21-09-2016	BBCH stage 86
30-09-2016	Harvest of maize. Stubble height 43 cm. Total harvested yield 184.76 hkg ha ⁻¹ 100% DM.
04-04-2017	Fertilization 28 P, 147 K, kg ha ⁻¹
08-04-2017	Sowing peas - cv. Mascara - depth 7 cm, row distance 13 cm seeding rate 220 kg ha ⁻¹ . Final plant
14.04.001-	number 72 m^{-2}
14-04-2017	BBCH 09 - emergence
15-04-2017	BBCH stage 12 Stomp CS (pendimethalin) - weeds - 1.0 L ha ⁻¹ (i.e. 455 g a.i. ha ⁻¹) - not included in monitoring
15-04-2017 15-04-2017	Fighter 480 (bentazone) - weeds - 1.0 L ha ⁻¹ (i.e. 480 g a.i. ha ⁻¹) - not included in monitoring
10 01 2017	

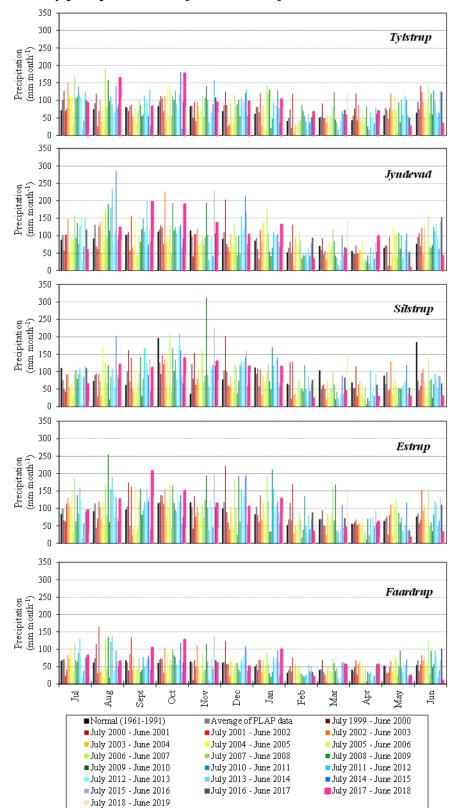
15-04-2017 Fighter 480 (bentazone) - weeds - 1.0 L ha⁻¹ (i.e. 480 g a.i. ha⁻¹)

Date	Management practice and growth stages – Estrup
08-05-2017	BBCH stage 12
15-05-2017	BBCH stage 32
22-05-2017	BBCH stage 35
22-05-2017	Biomass 26.7 g m ⁻² - 100% DM
08-06-2017	BBCH stage 51
12-06-2017	BBCH stage 60
12-06-2017	Biomass 162.8 g m ⁻² - 100% DM
22-06-2017	BBCH stage 62
29-06-2017	BBCH stage 64
07-07-2017	BBCH stage 65
10-07-2017	BBCH stage 70
10-07-2017	Biomass 484.4 g/m2 - 100% DM
19-07-2017	BBCH stage 70
04-08-2017	BBCH stage 82
04-08-2017	Biomass 613.2 g/m2 - 100% DM
07-08-2017	BBCH stage 90
07-08-2017	Glyphomax HL (glyphosate) - weeds - 2.5 L ha ⁻¹ (i.e. 1152 g a.i./ha)
10-08-2017	BBCH stage 90
15-08-2017	Harvest of peas. Stubble height 10 cm, seed yield 24.2 hkg ha ⁻¹ - 86% dry matter.
15-08-2017	Straw shedded at harvest - 18.85 hkg ha ⁻¹ 100 % DM
22-09-2017	Winter wheat
22-09-2017	Ploughed - depth 20 cm
22-09-2017	Winter wheat sown cv. Sheriff coated with Redigo Pro 170 FS, depth 4.0 cm rowdistance 12 cm
	seeding rate 168 kg ha ⁻¹ . final plantnumber 320 m ⁻² using a combined powerharrow sowing
	equipment
22-09-2017	Seed dressing Redigo Pro 170 FS (12.6 g prothioconazol ai ha ⁻¹ and 1.68 g ai ha ⁻¹)
05-10-2017	BBCH stage 09 - emergence
16-10-2017	BBCH stage 12
16-10-2017	Lexus 50 WG (flupyrsulfuron) - weeds - 10 g ha ⁻¹ (i.e. 4.63 g ai ha ⁻¹ flupyursulfuron)
27-03-2018	BBCH stage 20
03-04-2018	BBCH stage 21
06-04-2018	BBCH stage 24
06-04-2018	Fertilization 52.0 N kg ha ⁻¹
18-04-2018	BBCH stage 25
18-04-2018	Biomass 60.1 g m ⁻² - 100% DM
20-04-2018	BBCH stage 28
20-04-2018	Hussar Plus OD - weeds - 0.14 L ha ⁻¹ (i.e 7.0 g ai ha ⁻¹ iodosulfuron-methyl-Na and 1.05 g ai ha ⁻¹
20-04-2010	mesosulfuron-methyl)
30-04-2018	BBCH stage 30
30-04-2018	Pig slurry application (sow) - trail hose applied at surface - 41.7 t ha ⁻¹ - 93.4 Total-N, 78.8 NH4-N,
50 01 2010	5.4 P, 135.5 K, kg ha ⁻¹ , DM of slurry 1.0 %
03-05-2018	BBCH stage 31
03-05-2018	Lexus 50 WG (flupyrsulfuron) - weeds - 10 g ha ⁻¹ (i.e. 4.63 g ai ha ⁻¹ flupyursulfuron)
14-05-2018	BBCH stage 41
24-05-2018	BBCH stage 50
30-05-2018	BBCH stage 52
30-05-2018	Biomass 2581.7 g m ⁻² - 100% DM
04-06-2018	BBCH stage 68-69
06-06-2018	BBCH stage 68-69
06-06-2018	Topsin WG (thiophanat-methyl) - fungi - 1.1 kg ha ⁻¹ (i.e. 770 g a.i. ha ⁻¹)
13-05-2018	BBCH stage 71
21-06-2018	BBCH stage 73
21-06-2018	Karate 2.5 WG (lambda-cyhalothrin - (pests) - 0.2 kg ha ⁻¹ (i.e. 10 g a.i. ha ⁻¹)
22-06-2018	BBCH stage 73
09-07-2018	BBCH stage 75
10-07-2018	BBCH stage 75
10-07-2018	Biomass 2836.3 g m ⁻² - 100% DM
17-07-2018	BBCH stage 80
25-07-2018	BBCH stage 89
27-07-2018	Harvest of winter wheat. Stubleheight 13 cm, grainyield 75.2 hkg ha ⁻¹ 85% DM,
27-07-2018	Straw shredded at harvest - 37.9 hkg i ha ⁻¹ 100% DM
05-11-2018	Ploughed - depth 20 cm
08-04-2019	137 N, 26 P, 65 K, kg ha ⁻¹
08-04-2019	Spring barley sown cv. Flair. Depth 4 cm, seeding rate 165 kg ha ⁻¹ , row distance 12.0 cm. Final
00 01 2017	plant number 360 m ⁻² . Sown with combine seed drill (Amazone Drill-Star RP-AD 302)
08-04-2019	Redigo Pro 170 FS (12.38 g ai ha ⁻¹ prothiconazole + 1.65 g a.i ha ⁻¹ tebuconazole) - seed dressing

Date	Management practice and growth stages – Estrup
08-04-2019	BBCH stage 0
17-04-2019	BBCH stage 09
02-05-2019	BBCH stage 17
15-05-2019	BBCH stage 23
15-05-2019	Biomass 194.9 g m ⁻² - 100% DM
22-05-2019	BBCH stage 31
22-05-2019	Pixxaro EC (fluroxypyr + halauxifen-methyl) - weeds - 0.35 L ha ⁻¹ (i.e. 98 g ai ha ⁻¹ fluroxypyr and
	4.375 g ai ha ⁻¹ halauxifen-methyl)
22-05-2019	Juventus 90 (metconazole) - fungi - 1.0 L ha ⁻¹ (90 g metconazole ai ha ⁻¹)
05-06-2019	BBCH stage 41
12-06-2019	BBCH stage 50
12-06-2019	Biomass 420.8 g m ⁻² - 100% DM
13-06-2019	BBCH stage 50
13-06-2019	Juventus 90 (metconazole) - fungi - 1.0 L ha ⁻¹ (90 g metconazole ai ha ⁻¹)
26-06-2019	BBCH stage 62

the various pes	sticides are indicated in parentheses.
Date	Management practice and growth stages – Faardrup
26-03-2012	Fertilization 112 N, 9 P, 30 K, kg ha ⁻¹
04-04-2012	Seed bed preparation - depth 7 cm
04-04-2012	Sowing spring barley using a mixture of varieties. Depth 3-4 cm, row distance 13 cm, seeding rate
	98 kg ha ⁻¹ . Final plant number 200 m ⁻² . Undersown white clover cv. Liflex, seeding rate 2.0 kg ha ⁻¹ ,
	depth 2-3 cm, row distance 13 cm
04-04-2012	Tracer (potasium bromide) 30 kg ha ⁻¹
19-04-2012	BBCH 9 - emergence of spring barley
23-04-2012	BBCH stage 10
24-04-2012	BBCH 9 - emergence of white clover
03-05-2012	BBCH stage 13-21
16-05-2012	BBCH stage 23-27
18-05-2012 18-05-2012	BBCH stage 24-29 Fighter 480 (bentazone) - weeds - 1.25 L ha ⁻¹
23-05-2012	BBCH stage 29-31
23-05-2012	Biomass 112.7 g m ⁻² - 100% DM
01-06-2012	BBCH stage 33-37
06-06-2012	BBCH stage 39
06-06-2012	Flexity (metrafenon) - fungi - 0.5 L ha ⁻¹
11-06-2012	BBCH stage 45-51
11-06-2012	Biomass 592.5 g m ⁻² - 100% DM
21-06-2012	BBCH stage 55-57
05-07-2012	BBCH stage 71
23-07-2012	BBCH stage 83
23-07-2012	Biomass 1321.7 g m ⁻² - 100% DM
30-07-2012	BBCH stage 85
12-08-2012	Harvest of spring barley stubble height 15 cm. Grain yield 67.51 hkg ha ⁻¹ - 85% DM
12-08-2012	Straw removed. Straw yield 27.62 hkg ha ⁻¹ - 100% DM
27-08-2012 29-08-2012	BBCH stage 22-29 clover vegative growth - formation of side shots Trimming of stubble
26-01-2012	Kerb 400 SC (propyzamid) - fungi - 1.0 L ha ⁻¹
13-05-2013	Biomass 298.2 g m ⁻² - 100% DM
14-05-2013	Fighter 480 (bentazone) - weeds - 3.0 L ha ⁻¹
22-05-2013	Rolled with a concrete roller
29-05-2013	Biomass 402.9 g m ⁻² - 100% DM
31-05-2013	Karate (Lambda-cyhalothrin) - pest - 0.3 L ha ⁻¹ (not analysed)
12-06-2013	Karate (Lambda-cyhalothrin) - pest - 0.3 L ha ⁻¹ (not analysed)
25-06-2013	Biomass 698.3 g m ⁻² - 100% DM
22-07-2013	Windrowing. Stubble height 8.0 cm
28-07-2013	Threshing of white clover. Seed yield fresh 1,560 hkg ha ⁻¹ . Straw yield fresh 0.96 hkg ha ⁻¹
07-10-2013	Ploughed and packed - depth 14 cm
07-10-2013	Rotor harrowed at the time of sowing the winter wheat, cv. Mariboss - depth 4 cm, row distance 11
18-10-2013	cm, seeding rate 200 kg ha ⁻¹ - final plant number 320 m ⁻² BBCH 09 – emergence
13-03-2014	BBCH 23
13-03-2014	Fertilization 81 N, 16 P, 61 K, kg ha ⁻¹
09-04-2014	Fertilization 81 N, 16 P, 61 K, kg ha ⁻¹
09-04-2014	BBCH 25
15-04-2014	BBCH 24
28-04-2014	Briotril (ioxynil+ bromoxynil) - weeds - 0.6 L ha ⁻¹ + Tomahawk 180 EC (fluroxypyr) - weeds - 0.8
	L ha ⁻¹ (neither included)
28-04-2014	BBCH 24
30-04-2014	BBCH 30
15-05-2014	BBCH 32
15-05-2014	Amistar (azoxystrobin) - fungi - 1.0 L ha ⁻¹ (not included)
04-06-2014	Biomass 1321 g m ⁻² - 100% DM
04-06-2014	BBCH 55
12-06-2014	BBCH 59
20-07-2014 20-07-2014	BBCH 83 Biomass 1995 g m ⁻² - 100% DM
20-07-2014 25-07-2014	BIOMASS 1995 g m ² - 100% DM BBCH 87
30-07-2014	Harvest of winter wheat. Grain yield 56.6 hkg - 85% DM. Stubble height 12 cm
26-08-2014	Glyfonova Plus (glyphosate) - weeds - $4.0 \text{ L} \text{ ha}^{-1}$ (not included)
23-09-2014	
	Ploughing - 14 cm depth - straw 70 hkg ha ⁻¹ (fresh weight) incorporated

Table A3.5. Management practice at **Faardrup** during the 2012 to 2019 growing seasons. The active ingredients of the various pesticides are indicated in parentheses.


Date	Management practice and growth stages – Faardrup
23-09-2014	Sowing winter wheat cv. Mariboss. Depth 3.5 cm, seeding rate 180 kg ha ⁻¹ , row distance 13.0 cm.
	Final plant number 375 m ⁻²
01-10-2014	BBCH 09 – emergence
20-11-2014	BBCH 23
20-11-2014 30-11-2014	Folicur 250 (tebuconazole) - fungi - 1.0 L ha ⁻¹ (i.e. 250g a.i. ha ⁻¹) BBCH 23
30-11-2014	Lexus 50 WG (flupyrsulfuron) - weeds - 10 g ha ⁻¹ (i.e. 4.6 g a.i. ha ⁻¹)
30-11-2014	Boxer (prosulfocarb) - weeds - $3.0 \text{ L} \text{ ha}^{-1}$ (i.e. 2400 g a.i. ha ⁻¹)
10-03-2015	BBCH 25
10-03-2015	Biomass 44 g m ⁻² - 100% DM
13-03-2015	BBCH 25
13-03-2015	Fertilization 80 N, 18 P, 63 K, kg ha ⁻¹
21-04-2015	BBCH 30
21-04-2015	Fertilization 94 N, 21 P, 74 K, kg ha ⁻¹
22-04-2015	BBCH 30
22-04-2015	Lexus 50 WG (flupyrsulfuron) - weeds - 10 g ha ⁻¹ (i.e. 4.6 g a.i. ha ⁻¹)
08-05-2015	BBCH 37
12-05-2015	BBCH 37 Sterring XI (flurgering) floregright) words 12 L herl (in 120 and herl + 2 and herl)
12-05-2015 12-05-2015	Starane XL (fluroxypur+ florasulam) - weeds - 1.2 L ha ⁻¹ (i.e. 120 g a.i. ha ⁻¹ + 3 g a.i. ha ⁻¹) Proline 250 EC (prothioconazole) - fungi - 0.8 L ha ⁻¹ (i.e. 200 g a.i. ha ⁻¹)
12-06-2015	BBCH 53
23-06-2015	BBCH 55
23-06-2015	Biomass 356.5 g m ⁻² - 100% DM
12-08-2015	BBCH 55
12-08-2015	Biomass 443.7 g m ⁻² – 100 % DM
28-08-2015	BBCH 89
02-09-2015	Harvest of winter wheat. Grain yield 79.7 hkg ha ⁻¹ 85% DM, straw yield 71.5 hkg ha ⁻¹ 100% DM,
	stubbleheight 15 cm. Straw shredded (left in field) at harvest.
11-04-2016	Rotor harrowed at the time of sowing the spring barley. Mixture of varieties. Depth 4 cm, seeding
11.04.0016	rate 155 kg ha ⁻¹ , row distance 12.0 cm. Final plant number 315 m ⁻²
11-04-2016	BBCH stage 0
11-04-2016 20-04-2016	Fertilization 130 N, 26 P, 98 K, kg ha ⁻¹ BBCH stage 09 – emergence
02-05-2106	BBCH stage 15
13-05-2016	BBCH stage 16-21
13-05-2016	Biomass 60.7 g $m^{-2} - 100\%$ DM
27-05-2016	BBCH stage 27
27-05-2016	Starane 180 S + Oxitril (fluroxypyr + bromoxynil and ioxynil) - weeds - 0.8 L ha ⁻¹ + 0.2 L ha ⁻¹ (i.e.
	144 + 48 + 32 g a.i ha ⁻¹ - not included)
01-06-2016	BBCH stage 31
08-06-2016	BBCH stage 39
16-06-2016	BBCH stage 47
16-06-2016	Bumber 25 EC (propiconazole) - fungi - 0.5 L ha ⁻¹ (i.e. 125 g a.i. ha ⁻¹)
28-06-2016	BBCH stage 65
04-07-2016	BBCH stage 69 PDCU stage 71
22-07-2016 22-07-2016	BBCH stage 71 Biomass 391.2 g m ⁻² - 100% DM
11-08-2016	BBCH stage 87
11-08-2016	Roundup PowerMax (glyphosate) - weeds - 2.0 kg ha ⁻¹ (i.e. 1440 g a.i. ha ⁻¹ - not included in
11 00 2010	monitoring)
22-08-2016	BBCH stage 87
26-08-2016	Harvest of spring barley. Grain yield 57.7 hkg ha ⁻¹ 85% DM – stubble height 13 cm.
26-08-2016	Biomass 369.3 g m ⁻² - 100% DM
27-08-2016	Straw removed from the field - yield 54.0 hkg ha ⁻¹ fresh weight.
20-12-2016	Ploughing - depth 24 cm
07-04-2017	Fertilization 132 N, 17 P, 61 K, kg ha ⁻¹
02-05-2017	BBCH stage 0
02-05-2017	Rotor harrowed at the time of sowing the spring barley. CV Quench. Depth 4 cm, seeding rate 180
10.05.2017	kg ha ⁻¹ , row distance 13.0 cm. Final plant number 365 m ⁻² . Seed coated with Fungazil A (imazalil)
10-05-2017	BBCH stage 09 - emergence
11-05-2017	BBCH stage 10-11 BBCH stage 12-13
18-05-2017 02-06-2017	BBCH stage 22
02-06-2017	Hussar Plus OD (iodosulfuron-methyl-Na and mesulfuron-methyl) - weeds - 0.035 L ha ⁻¹ (ie 1.75 g
52 00 2017	
	a.i. ha^{-1} iodosulfuron-methyl-Na and 0.27 g a.i. ha^{-1} mesulfuron-methyl)

Date	Management practice and growth stages – Faardrup
19-06-2017	BBCH stage 45
19-06-2017	Biomass 115.8 g m ⁻² - 100% DM
19-06-2017	Bumper 25 EC (propiconazol) - fungi - 0.5 L ha ⁻¹ (i.e. 125 g ai ha ⁻¹)
19-06-2017	Zypar (haluuxifen-methyl + florasulam) - weeds - 0.5 L ha ⁻¹ (i.e 3.125 g ai ha ⁻¹ halauxifen-methyl
07-07-2017	and 2.5 g ai ha ⁻¹ florasulam)
07-07-2017	BBCH stage 65
15-08-2017	Bumper 25 EC (propiconazol) - fungi - 0,5 L ha ⁻¹ (i.e. 125 g ai ha ⁻¹)
15-08-2017	BBCH stage 85
22-08-2017	Biomass 317.2 g m ⁻² - 100% DM
	Harvest of spring barley. Grain yield 62.3 hkg ha ⁻¹ fresh weight and 35.5 khg ha ⁻¹ straw fresh weight
20-10-2017	– stubble height 9 cm.
03-12-2017	Glyphomax (glyphosate) - weeds - 2.5 L ha ⁻¹ (ie 900 g a.i ha ⁻¹)
20-04-2018	Ploughing - depth 22 cm
20-04-2018	Seed bed preparation - depth 10 cm
	Sowing sugar beet cv. SMART JANNINKA KWS. depth 2.0 cm row distance 50.0 cm plant distance
20-04-2018	25cm. seeding rate 100.000 seeds ha ⁻¹ , seed bed rather uneven, Final plant number 9 m ⁻²
	Seed dressing Gaucho WS70 (60 g ai ha ⁻¹ imidacloprid) and Tachigaren WP (14-18 g ai ha ⁻¹
20-04-2018	hymexazol)
07-05-2018	Fertilization 140 N, 24.5 P, 65.3 K, kg ha ⁻¹ , done at together with sowing
18-05-2018	BBCH stage 09
22-05-2018	BBCH stage 11
25-05-2018	BBCH stage 11
29-05-2018	BBCH stage 12
29-05-2018	BBCH stage 12
	2.0 L ha ⁻¹ Betanal (phenmedipham) - weeds (ie 320 g ai ha ⁻¹ phenmedipham) (not monitored)
	1.0 L ha ⁻¹ Goltix (metamitron) - weeds (ie 700 g ai ha ⁻¹)
	$0.16 \text{ L} \text{ ha}^{-1}$ Conviso One (foramsulfuron + thiencarbazone-methyl) - weeds (i.e. 4.8 g ai ha ⁻¹
08-06-2018	foramsulfuron and 8.0 g ai ha ⁻¹ thiencarbazone-methyl)
08-06-2018	$0.07 \text{ L} \text{ ha}^{-1} \text{ Nortron SC (ethofumesat) - weeds (ie 35 g ai ha^{-1}) (not monitored)}$
12-06-2018	BBCH stage 15
12-06-2018	Mecanical weeding between rows - depth 3 cm
12 00 2010	BBCH stage 15
	2.0 L ha ⁻¹ Betanal (phenmedipham) - weeds (ie 320 g ai ha ⁻¹ phenmedipham) (not monitored)
27-06-2018	1.0 L ha ⁻¹ Goltix (metamitron) - weeds (ie 700 g ai ha ⁻¹)
27-06-2018	0.07 L ha^{-1} Nortron SC (ethofumesat) - weeds (ie 35 g ai ha ⁻¹) (not monitored)
27 00 2010	BBCH stage 15
	2.0 L ha ⁻¹ Betanal (phenmedipham) - weeds (ie 320 g ai ha ⁻¹ phenmedipham) (not monitored)
	1.0 L ha ⁻¹ Goltix (metamitron) - weeds (ie 700 g ai ha ⁻¹)
01-07-	0.07 L ha^{-1} Nortron SC (ethofumesat) - weeds (ie 35 g ai ha ⁻¹) (not monitored)
201809-07-	0.2 kg ha ⁻¹ Karate 2,5 WG (lambda-cyhalothrin) - pests (ie 10 g ai ha ⁻¹) (not monitored)
201809-07-	BBCH stage 15
09-07-2018	BBCH stage 19 BBCH stage 19
	Biomass 1248.1 g m ⁻² - sugarbeet top only - 100% DM
28-09-2018	
28-09-2018	BBCH stage 49 Herewat of super boots 70.8 blcs here root 100% DM Terr 22.0 blcs here 100% DM
18-12-2018	Harvest of sugar beets 79.8 hkg ha ⁻¹ root 100% DM Top 32.0 hkg ha ⁻¹ 100% DM
05-04-2019	Ploughing - depth 22 cm
08-04-2019	Seed bed preparation, depth 3 cm
08-04-2019	Sowing spring barley cv. IKWS Irina - seed coated with Redigo Pro. Depth 3 cm, seeding rate 170
00.04.0010	kg ha ⁻¹ , row distance 12.5 cm. Final plant number 365 m ⁻²
09-04-2019	Redigo Pro 170 FS (12.75 g ai ha ⁻¹ prothiconazole + 1.70 g ai ha ⁻¹ tebuconazole) - seed dressing
09-04-2019	BBCH stage 00
11-04-2019	Fertilization 113. 3 N, 19.8 P, 52.8 K, kg ha ⁻¹
15-04-2019	Roled with a ring roler
23-04-2019	BBCH stage 09
26-04-2019	BBCH stage 10
26-04-2019	BBCH stage 12
29-04-2019	DFF (diflufenican) - weeds - 0.15 L ha ⁻¹ (75 g ai ha ⁻¹) (not monitored)
15-05-2019	BBCH stage 20
15-05-2019	BBCH stage 20
03-06-2019	Biomass 50.1 g m ⁻² - 100% DM
03-06-2019	BBCH stage 32
07-06-2019	Talius (proquinazid) - fungi - 0.125 L ha ⁻¹ (25 g ai ha ⁻¹)
07-06-2019	BBCH stage 45
	Talius (proquinazid) - fungi - 0.125 L ha ⁻¹ (25 g ai ha ⁻¹)

various pestici	des are indicated in parentheses.
Date	Management practice and growth stages – Lund
22-03-2017	Ploughing - 25 cm depth
02-04-2017	Fertilization 123.6 N, 15.6 P, 57.6 K, kg ha ⁻¹
03-04-2017	Seed bed preparation - 8 cm depth
03-04-2017	Sowing spring barley cv. Irina. Depth 3.5 cm, seeding rate 175 kg ha ⁻¹ , row distance 12 cm, final
03-04-2017	plant number 245 m ⁻²
03-04-2017	Seed dressing Fungazil A (87.5 g ai ha ⁻¹)
20-04-2017	Clover grass sown (white clover and smooth meadow-grass). Depth 1.5 cm, seeding rate 28 kg ha ⁻¹
08-05-2017	BBCH 09 - emergence BBCH 12 til 14
09-05-2017	BBCH 12 til 14 BBCH 20
09-05-2017 09-05-2017	Fighter 480 (bentazone) - weeds - 1.5 L ha ⁻¹ (i.e. 720 g a.i. ha ⁻¹)
17-05-2017	Stomp CS (pendimethalin) - weeds - $0.9 \text{ L} \text{ ha}^{-1}$ (i.e. 410 g a.i. ha ⁻¹) - not included in monitoring
17-05-2017	BBCH 22
07-06-2017	Biomass 14.6 g m ⁻² - 100% DM
15-06-2017	BBCH 39
15-06-2017	BBCH 51
04-07-2017	Amistar (azoxystrobin) - fungi - 1.0 L ha ⁻¹ (i.e. 250 g a.i. ha ⁻¹)
04-07-2017	BBCH 59
11-08-2017	Biomass 329.9 g m ⁻² - 100% DM
11-08-2017	BBCH 85
13-08-2017	Biomass 359 g m ⁻² - 100% DM
	Harvest of spring barley. Grain yield 71.0 hkg ha ⁻¹ 85% DM, straw yield 85.2 hkg ha ⁻¹ fresh weight,
06-10-2017	stubble heigth 8 cm
19-10-2017	Biomass 54.5 g m ⁻² - 100% DM (catch crop of clover and grass)
31-10-2017	Glyphomax HL (glyphosate) - weeds - 3.2 L ha ⁻¹ (i.e. 1536 g a.i. ha ⁻¹) (killing of the clover grass)
04-01-2018	Tracer (potasium bromide), 30 kg ha ⁻¹
12-04-2018	Ploughing - 25 cm depth
19-04-2018	Seed bed preparation - 3 cm depth Pig slurry application - trail hose applied and subsequent harrowed - 50.0 t ha ⁻¹ - 131.5 Total-N,
20-04-2018	113.5 NH4-N, 3.0 P, 72.5 K, 1.5 Mg and 0.1 Cu, kg ha ⁻¹ , (VAP nr. 70795) Sowing spring barley cv. Quench Depth 3.5 cm, seeding rate 170 kg ha ⁻¹ , row distance 12 cm, final
20-04-2018	plant number 325 m ⁻²
01-05-2018	Seed dressing Redigo Pro 170 FS (12.75 g prothioconazole ai ha ⁻¹ and 1.70 g tebuconazole ai ha ⁻¹)
30-05-2018	BBCH stage 09 - emergence
30-05-2018	BBCH stage 20
30-05-2018	BBCH stage 31
30-05-2018	Proline 250 EC (prothioconazol) - fungi - 0.8 L ha ⁻¹ (i.e. 200 g a.i. ha ⁻¹)
	Zypar (halauxifen-methyl + florasulam) - weeds - 1.0 L ha ⁻¹ (i.e. 6.25 g halauxifen-methyl and 5.0
12-06-2018	g florasulam a.i. ha ⁻¹)
12-06-2018	BBCH stage 42
06-08-2018	Proline 250 EC (prothioconazol) - fungi - 0.8 L ha ⁻¹ (i.e. 200 g a.i. ha ⁻¹)
06-08-2018	BBCH stage 89
10.00.0010	Harvest of spring barley. Grain yield 55.5 hkg ha ⁻¹ . Total-N 1.87% and total-C 43.83% - 85 % DM-
19-09-2018	Straw yield 22.35 hkg ha ⁻¹ , Total-N 0.69% and total-C 43.78% - 100% DM, stubble height 10 cm.
19-09-2018	Ploughing - 25 cm depth
19-09-2018	Seed bed preparation - 5 cm depth Sowing winter barley cv. Menento Depth 3.0 cm, seeding rate 160 kg ha ⁻¹ , row distance 12.5 cm,
19-09-2018	sowing winter barrey ev. Menento Depti 5.0 cm, seeding rate 100 kg na , 10w distance 12.5 cm, final plant number 300 m^{-2}
19-09-2018	Redigo Pro 170 FS (12.00 g ai ha ⁻¹ prothioconazol + 1.60 g ai ha ⁻¹ tebuconazol) - seed dressing
28-09-2018	Rolled with a ring roller
15-10-2018	BBCH stage 09 – emergence
08-11-2018	BBCH stage 12
08-11-2018	BBCH stage 20
05-04-2019	DFF + Boxer (diflufenican + prosulfocarb) - weeds - 0.15 L ha ⁻¹ + 1,0 L ha ⁻¹ (75 g + 800 g a.i. ha ⁻¹)
05-04-2019	BBCH stage 20-23
25-04-2019	Biomass 168.0 g m ⁻² - 100% DM
30-04-2019	BBCH stage 30
02-05-2019	BBCH stage 32
02-05-2019	BBCH stage32
04-05-2019	Fertilization 150 N 26,3 P 70 K, kg ha ⁻¹
09-05-2019	BBCH stage 49
09-05-2019	BBCH stage 49
11-05-2019	BBCH stage 49
11-05-2019	Flurostar 180 (fluroxypyr) - weeds - 0.8 L ha ⁻¹ (144 g a.i. ha ⁻¹)

Table A3.6. Management practice at **Lund** during the 2017 to 2019 growing seasons. The active ingredients of the various pesticides are indicated in parentheses.

Date	Management practice and growth stages – Lund
	Zypar (halauxifen-methyl + florasulam) - weeds - 1.0 L ha ⁻¹ (i.e. 6.25 g halauxifen-methyl and 5.0 g florasulam a.i. ha ⁻¹)
	BBCH stage 50
13-05-2019	Biomass 247.6 g m ⁻² - 100% DM
13-05-2019	BBCH stage 51
27-05-2019	

Monthly precipitation data for the PLAP fields

Figure A4.1. Monthly precipitation at all fields except Lund for the monitoring period July 2000–June 2019. Regional normal values (1961–1990) are included for comparison.

Pesticide detections in samples from drains, suction cups and groundwater screens

Table A5.1. Number of samples, where pesticides were not detected (nd), detected in concentrations below 0.1 μ g L⁻¹ (\leq 0.1 μ g L⁻¹) or detected in concentrations above 0.1 μ g L⁻¹ (>0.1 μ g L⁻¹) at **Tylstrup**. Numbers are accumulated for the monitoring period up to July 2019. All samples included.

Tylstrup		Horizontal screens			Ver	Suction cups				
Parent	Compound	nd	≤ 0.1	>0.1	nd	≤0.1	>0.1	nd	≤0.1	> 0.1
Aclonifen	Aclonifen	4	-	-	123	-	-	68	-	-
Aminopyralid	Aminopyralid	27	-	-	183	2	-	91	-	-
Azoxystrobin	Azoxystrobin				216	-	-	95	-	-
	CyPM				216	-	-	95	-	-
Bentazone	2-amino-N-isopropyl-				191	-	-	72	-	-
	benzamide									
	6-hydroxy-bentazone	24	-	-	156	-	-	65	-	-
	8-hydroxy-bentazone	24	-	-	156	-	-	65	-	-
	Bentazone	24			486	-	-	198	4	-
	N-methyl-bentazone	24	-	-	156	-	-	65	-	-
Bifenox	Bifenox	8	-	-	41	-	-	22	-	-
	Bifenox acid	8	-	-	41	-	-	22	-	-
	Nitrofen	8	-	-	41	-	-	22	-	-
Boscalid	Boscalid	9	-	-	102	-	-	56	-	-
Bromoxynil	Bromoxynil				192	-	-	72	-	-
Clomazone	Clomazone				230	-	-	82	-	-
	FMC 65317				208	-	-	74	-	-
Clopyralid	Clopyralid				83	-	-	81	-	-
Cyazofamid	Cyazofamid	4	-	-	123	-	-	68	-	-
Dimethoate	Dimethoate				176	-	-	65	-	-
Epoxiconazole	Epoxiconazole				199	-	-	74	-	-
Fenpropimorph	Fenpropimorph				313	-	-	89	-	-
	Fenpropimorph acid				276	-	-	75	-	-
Flamprop-M-	Flamprop				176	-	-	65	-	-
isopropyl	Flamprop-M-isopropyl				176	-	-	65	-	-
Fluazifop-P-butyl	Fluazifop-P TFMP				178 3	-	-	65	-	-
Fludioxonil	CGA 192155	22			160	-	-	65		
Flucioxolili	CGA 339833	22	-	-	160	-	-	65	-	-
Fluroxypyr	Fluroxypyr	22	-	-	194	-	-	70	-	-
Ioxynil	Ioxynil				194	-	-	72	-	-
Linuron	Linuron				271	-	-	67	-	-
Mancozeb	EBIS	8	_	_	70	-	-	27	-	-
WallCozeo	ETU	0	-	-	198	2	-	37	7	-
Mesosulfuron-	AE-F099095	16	-	-	128	-	-	54	-	-
methyl	AE-F160459	16	_	_	128	_	-	54	_	_
Metalaxyl-M	CGA 108906	3	25	-	61	216	47	25	93	35
Wednaxy1 WI	CGA 62826	27	1	-	308	16	-	119	30	5
	Metalaxyl-M	28	-	-	303	21	-	152	4	-
Metribuzin	Desamino-diketo-	20			289	231	5	168	30	51
	metribuzin						-			
	Desamino-metribuzin				366	-	-	87	-	-
	Diketo-metribuzin				72	138	315	81	192	61
	Metribuzin				387	1	-	89	2	-
Pendimethalin	Pendimethalin				436	-	-	144	-	-
Pirimicarb	Pirimicarb				301	-	-	82	-	-
	Pirimicarb-desmethyl				301	-	-	81	-	-
	Pirimicarb-desmethyl-				173	-	-	52	-	-
	formamido									
Propiconazole	Propiconazole				313	-	-	89	-	-
Propyzamide	Propyzamide				221	-	-	82	-	-
1.	RH-24580				221	-	-	82	-	-
	RH-24644				221	-	-	82	-	-
	RH-24655				157	-	-	58	-	-

Tylstrup		Hor	izontal s	creens	Vertical screens			Suction cups		
Parent	Compound	nd	≤ 0.1	>0.1	nd	≤0.1	>0.1	nd	≤0.1	> 0.1
Prosulfocarb	Prosulfocarb	20	-	-	144	4	-	73	1	-
Rimsulfuron	PPU	9	-	-	589	58	-	74	191	3
	PPU-desamino	9	-	-	638	9	-	205	63	-
	Rimsulfuron				178	-	-	65	-	-
Tebuconazole	1,2,4-triazole	6	30	-	149	81	-	78	18	2
	Tebuconazole				195	1	-	77	-	-
Terbuthylazine	2-hydroxy-desethyl-				190	1	-	67	5	-
	terbuthylazine									
	Desethyl-terbuthylazine				191	-	-	70	2	-
	Desisopropylatrazine				190	1	-	55	17	-
	Hydroxy-terbuthylazine				191	-	-	71	1	-
	Terbuthylazine				179	-	-	72	-	-
Thiamethoxam	CGA 322704				175	-	-	64	-	-
	Thiamethoxam				175	-	-	64	-	-
Triasulfuron	Triasulfuron				301	-	-	82	-	-
	Triazinamin				291	-	-	76	-	-
Tribenuron-methyl	Triazinamin-methyl				446	-	-	138	-	-

Jyndevad		Horiz	ontal scr	reens	Vert	ical sc	reens	Su	ction c	ups
Parent	Compound	nd	≤0.1	>0.1	nd	≤0.1	>0.1	nd	≤0.1	>0.
Aclonifen	Aclonifen	9		_	162	-	_	43	_	-
Amidosulfuron	Amidosulfuron				88	-	_	20	2	1
Annuosunuion	Desmethyl-amidosulfuron				88	-	-	20	-	-
Azoxystrobin	Azoxystrobin				233	-	-	65	-	-
AZOXYSUODIII	CyPM				233	-	-	65	-	-
Bentazone	2-amino-N-isopropyl-				178	_	_	45	2	_
Demazone	benzamide				170				2	
	6-hydroxy-bentazone	22	-	-	207	-	-	43	_	-
	8-hydroxy-bentazone	22	-	-	207	-	-	43	_	_
	Bentazone	50	2	-	849	1	_	121	92	17
	N-methyl-bentazone	22	-	-	207	-	_	43	-	-
Bifenox	Bifenox	4	-	-	216	2	_	54	2	-
	Bifenox acid	4	-	-	166	-	-	52	1	-
	Nitrofen	4	-	-	218	_	_	56	_	-
Bromoxynil	Bromoxynil				218	-	-	61	-	-
Chlormequat	Chlormequat				14	-	-	28	-	-
Clomazone	Clomazone	13	-	-	91	-	-	23	-	-
	FMC 65317	13	-	-	92	-	-	23	-	-
Cyazofamid	Cyazofamid	4	-	-	131	-	-	32	-	-
Cycloxydim	BH 517-T2SO2	12	-	-	188	-	-	39	-	-
	E/Z BH 517-TSO	10	2	-	188	-	-	28	8	3
Diflufenican	AE-05422291	12	-	-	140	-	-	38	-	-
	AE-B107137	12	-	-	140	-	-	52	-	-
	Diflufenican	12	-	-	140	-	-	38	-	-
Dimethoate	Dimethoate				190	-	-	52	-	-
Epoxiconazole	Epoxiconazole				323	1	-	90	-	-
Fenpropimorph	Fenpropimorph				257	1	-	78	1	-
	Fenpropimorph acid				264	-	-	79	-	-
Florasulam	Florasulam				191	-	-	54	-	-
	Florasulam-desmethyl							28	-	-
Fluazifop-P-butyl	Fluazifop-P				190	-	-	51	-	-
	TFMP				3	-	-			
Fludioxonil	CGA 192155	28	-	-	203	1	-	34	-	-
	CGA 339833	28	-	-	192	-	1	34	-	-
Flupyrsulfuron-	Flupyrsulfuron-methyl	28	-	-	201	-	-	30	-	-
methyl										
	IN-JE127	8	-	-	142	-	-	31	-	-
	IN-JV460	28	-	-	201	-	-	30	-	-
	IN-KC576	28	-	-	201	-	-	30	-	-
	IN-KF311	8	-	-	142	-	-	31	-	-
	IN-KY374	28	-	-	201	-	-	26	1	3
Fluroxypyr	Fluroxypyr	1			193	-	-	55 2	-	-
Foramsulfuron	AE-F092944	1	-	-	6 221	-	-	71	-	-
Glyphosate	AMPA Clamba anta				221	2	-	72	1	-
Lourmil	Glyphosate				223	-	-	61	-	-
Ioxynil MCPA	Ioxynil 2-methyl-4-chlorophenol				218		-	56	-	
MCPA	· · ·				210	-	-	56	-	-
Mancozeb	MCPA EBIS	12		_	87	-	-	10	-	-
Mesosulfuron-	AE-F099095	5	-	-	117	-	-	25	-	-
methyl	AE-1099093	5	-	-	11/	-	-	25	-	-
	AE-F147447	5	-	-	117	_	_	28	-	_
	AE-F160459	5	-	-	117	-	-	28	-	-
	Mesosulfuron		-	-	12	-	-	45	-	-
	Mesosulfuron-methyl				285	-	-	78	-	-
Mesotrione	AMBA	30	-	-	283	-	-	67	-	-
11050010110	MNBA	30	-	-	207	-	-	67	-	-
	MinBA Mesotrione	30	-	-	207	-	-	67	-	-
Metalaxyl-M	CGA 108906	2	- 23	- 6	113	- 171	- 78	37	- 34	- 34
ivicialaxy1-1VI	CGA 108906 CGA 62826	$\begin{bmatrix} 2\\ 2 \end{bmatrix}$	23 20	6 9	217	1/1	/8	37	54 53	20 20
	Metalaxyl-M	18	20 8	5	217	145 57	- 18	84	55 11	- 20
	1VIG1a1aAy1-1VI	10	o	5	∠00	51	10	04	11	-

Table A5.2. Number of samples where pesticides were either not detected (nd), detected in concentrations below 0.1 μ g L⁻¹ (<=0.1 μ g L⁻¹) or detected in concentrations above 0.1 μ g L⁻¹ (>0.1 μ g L⁻¹) at **Jyndevad**. Numbers are accumulated for the monitoring period up to July 2019. All samples included.

Jyndevad		Horiz	ontal scr	eens	Vert	ical sci	reens	Su	ction c	ups
Parent	Compound	nd	≤0.1	>0.1	nd	≤0.1	>0.1	nd	≤0.1	>0.1
Metribuzin	Desamino-diketo-				6	7	13	6	-	-
	metribuzin									
	Desamino-metribuzin				26	-	-	4	-	-
	Diketo-metribuzin				-	7	19	3	3	-
	Metribuzin				26	-	-	6	-	-
Pendimethalin	Pendimethalin				257	-	-	71	-	-
Picolinafen	CL 153815				35	-	-	36	-	-
	Picolinafen				35	-	-	35	1	-
Pirimicarb	Pirimicarb				251	-	-	69	-	-
	Pirimicarb-desmethyl				251	-	-	68	1	-
	Pirimicarb-desmethyl-				251	-	-	69	-	-
	formamido									
Propiconazole	Propiconazole				291	-	-	87	-	-
Pyridate	PHCP				184	-	-	59	-	-
	Pyridate				116	-	-	39	-	-
Rimsulfuron	PPU	-	1	6	489	361	6	39	130	64
	PPU-desamino	-	7	-	765	91	-	110	117	6
	Rimsulfuron				189	-	-	52	-	-
Tebuconazole	1,2,4-triazole	19	30	-	169	293	3	33	57	9
	Tebuconazole				213	1	-	58	-	-
Terbuthylazine	Desethyl-terbuthylazine				490	27	-	130	20	-
-	Terbuthylazine				260	-	-	79	-	-
Tribenuron-methyl	Triazinamin-methyl				252	-	-	77	-	-

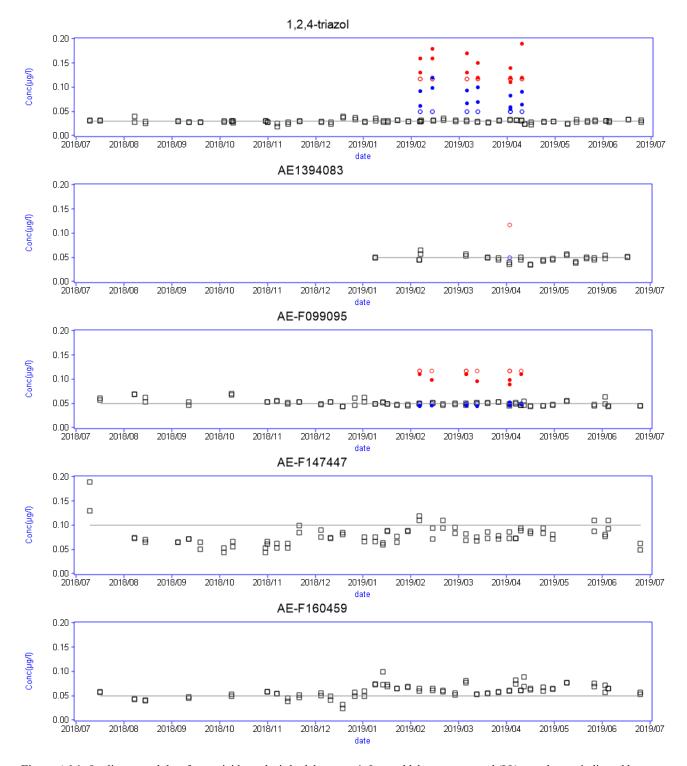
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Drainag	e		orizont			/ertica		Si	uction	cups	
Anniolosulfuron Amidosulfuron 1 - - - - Anniolosulfuron 1 -		C 1	nd	< 0.1	>0.1							nd	≤0.1	>0.1	
Desmethyl- amidosulfuron 1 - - - V V V Azoxystrobin 165 22 1 231 3 - 405 5 - Barlazone 2-amino-N- isopropyl-benzamide 55 7 - 73 8 1 244 6 103 3 14 Bifenox 36 2 18 52 4 6 103 3 14 Bifenox 36 2 18 52 4 6 103 3 14 Clorrequat 20 1 - 66 - 124 - - Clorrequat Clorrequat 20 1 - 13 - 124 - - 130 - 130 - 130 - 148 - - 140 - 140 - 140 - 140 - 140 - 140 - 140		-		-		nu		- 0.1	nu	0.1	- 0.1	nu	0.1	- 0.1	
amidosulfuron rss rss < <th>rss rss rss</th>	rss rss														
Azoxystrobin CyPM 165 22 1 231 3 - 405 5 - Bentazone 2-amino-N- isopropyl-benzamide 59 128 24 224 41 6 432 47 6 Bifenox 65 - 74 - - 116 5 - - 116 5 - - 116 5 - - 116 5 - - 116 5 - - 116 5 - - 116 5 - - 116 5 - - 116 5 - - 116 - - 11 - - 121 - - - - - 121 - - - 121 - - - 117 - 121 - - 13 - - 117 - 1 - 118 - - 118 - - 118 - - 118 - - 118 - <td></td> <td></td> <td>1</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			1	-	-										
CyPM 59 128 24 224 41 6 432 47 6 Bentazone 2-amino-N- isopropyl-benzamide 65 - - 74 - - 131 - - Bifenox 63 3 2 133 8 1 244 18 2 Bifenox 63 3 2 3 62 - - 116 5 - Bromoxynil Bromoxynil 48 - - 66 - - 30 - - Clopyralid Clopyralid Clopyralid 44 - - 66 - - 30 - - Cycloxydim BH 517-T2SO2 9 - - 107 1 - 148 - - 26 Diffufenican 55 10 1 83 - 118 - - 17 - 148 - 27			165	22	1	221	2		105	5					
Bentazone 2-amino-N- isopropyl-benzamide Bertazone 65 - 74 - 131 - - Bifenox Bifenox acid 36 2 133 8 1 244 18 2 Bifenox Bifenox acid 36 2 18 52 4 6 103 3 14 Bromoxynil Bromoxynil 48 - - 66 - - 121 - - Clopyralid Chornequat 20 1 - 67 - 124 - - Clopyralid Choyralid 44 - - 67 - 12 18 - - 124 - - 58 Cycloydim BH 517-TSO 1 7 1 2 11 - 118 - - 118 - - 148 - 27 Difutenican AE-10542291 66 - - 83											-				
Bifenox 65 10 11 1 244 18 2 Bifenox 63 3 2 62 - - 116 5 - Bifenox 63 2 18 52 4 6 103 3 14 Nitrofen 63 2 18 52 4 6 103 3 14 Chormequat Chormequat 20 1 - 36 - - 66 - 93 - - Chormequat Cloyratid 44 - - 67 - 13 - - 30 - - 58 Cycloxydim BH 517-T2SO2 9 - - 107 1 - 118 - - 188 - 185 Diffufenican 55 10 1 73 1 - 148 - - 27 Epoxiconazole															
Beitrazone 75 40 5 133 8 1 244 18 2 Bifenox 63 3 2 62 - - 116 5 - Bifenox acid 63 2 18 52 4 6 103 3 14 Nitrofen 63 2 3 62 - - 121 - - Bomoxynil Bromoxynil 44 - - 66 - - 13 - 107 1 - 124 - - Cycloxydim BH 517-TSO 1 7 1 2 11 - 12 18 - 1 7 1 2 11 - 18 - - 139 - - 5 8 - 14 18 - 117 - 1 - 139 - - 14 14 169 -			05	-	-	/4	-	-	151	-	-				
Bifenox 63 3 2 62 - - 116 5 - Bifenox acid 36 2 18 52 4 6 103 3 14 Nitrofen 63 2 3 62 - - 121 - - Bromoxynil Bromoxynil 48 - - 66 - 93 - - Clopyralid Clopyralid Clopyralid 44 - 67 - 124 - - Cycloxydim BH 517-T2SO2 9 - - 107 1 - 210 - 121 18 - - 28 Dismedipham Desmedipham 101 - - 107 1 2 118 - - 27 Difufucnican 55 10 1 83 - - 1148 - - 27 Epoxiconazole Epoxiconazole 36 - - 74 - - 148 - 27 <td></td> <td></td> <td>75</td> <td>40</td> <td>5</td> <td>122</td> <td>0</td> <td>1</td> <td>244</td> <td>19</td> <td>r</td> <td></td> <td></td> <td></td>			75	40	5	122	0	1	244	19	r				
Bifenox acid Nitrofen 36 2 18 52 4 6 103 3 14 Bromoxynil Chlormequat Bromoxynil Chlormequat 20 1 - 36 - - 66 - - 93 - - Clopyralid Clopyralid Clopyralid Clopyralid 20 1 - 36 - - 124 - - 58 Desmedipham Desmedipham Desmedipham Desmedipham 101 - 107 1 - 124 - - 58 Diflufenican AE-B107137 56 4 1 82 - 118 - - 27 Epoxiconazole Epoxiconazole 36 - - 62 - - 148 - 2 27 Epoxiconazole Epoxiconazole 36 - - 74 - - 148 - - 27 Fenpropimorph Fenpropimorph </td <td></td>															
Nitrofen632362121BromoxynilChormequatC01-3666ClopyralidChormequat201-3666ClopyralidChormequat201-361248-CycloxydimBH 517-TSO2913-1218DesmediphamDesmedipham1011071-240-58DiffufenicanAE-054222916683118DiffufenicanAE-054222916662-117-12DiffufenicanS51018314827Epoxiconazole3662148-27ElofumesateEthofumesate127141169-148-27Flamprop-M- isopropylFamprop-M- isopropyl70111731-148-27Fluazifop-PFluazifop-P1161401-5990FuezytopryFluazifop-P1161401-50Fluazifop-PFluazifop-P116	-														
Bromoxynil Bromoxynil 48 - - 66 - - 93 - - Chlormequat Cloyralid 20 1 - 36 - - 66 - - Cloyralid Cloyralid Cloyralid 44 - - 13 - - 30 - - Cycloxydim BH \$17-T2SO2 9 - - 13 - - 30 - - 58 Desmedipham Desmedipham Desmedipham Desmedipham 101 - - 107 1 240 - - 58 Diflufenican AE-B107137 56 4 1 83 - 117 - 1 Ebofumesate Bit - 1 73 1 - 148 - 27 Epoxiconazole Epoxiconazole 81 1 - 74 - - 148 - 27 Flamprop-M- Fenpropimorph acid 81 1 - 74															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-								
E/Z BH 517-TSO 1 7 1 2 11 - 12 18 - 58 Desmedipham Desmedipham 101 - - 107 1 - 24 - 58 - - 139 - - 26 Diflufenican AE-05422291 66 - - 83 - - 118 - - 27 Diflufenican 55 10 1 83 - - 148 - - 27 Epoxiconazole Epoxiconazole Epoxiconazole 36 - - 62 - - 148 - - 27 Forsoimorph Fenpropimorph 82 - - 74 - - 148 - - 27 Flamprop-M- 70 11 1 73 1 - 148 - - 27 Flamprop-M- 50 -							-								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												6			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													-	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												26	-	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-					27	-	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1													
Fenpropimorph acid Flamprop-M- isopropylFenpropimorph acid Flamprop 81 1- 74 148 27 Flamprop-M- isopropylFlamprop-M- isopropyl 70 11 1 73 1 - 148 27 Florasulam butylTSA 50 42 100 27 Fluzifop-P- butylFluzifop-P 116 42 100 59 furme fluzifop-P 79 30 23 137 23 2 211 48 14 Fluzifop-P- butylIN-KF311 42 311 - 74 60 Foramsulfuron GlyphosateR-F092944 75 - 75 - 75 - 146 Glyphosate methylAMPA 47 185 18 227 144 - 380 26 - 8 Halauxifen- methylX-757 49 85 165 Mesotrione MesotrioneAMBA 76 76 - 122 Mesotrione MetamitronAMBA 76 76 - 123 MetamitronDesamino- metamitron 97 42 3 161 10 - 339 17 <										-			3	2	
Flamprop-M- isopropyl Flamprop-M- isopropyl 74 7 74 7 74 7 148 7 27 Florasulam TSA 50 - - 42 - - 100 - - 27 Florasulam TSA 50 - - 42 - - 100 - - 59 butyl TFMP 79 30 23 137 23 2 211 48 14 - - 59 butyl TFMP 79 30 23 137 23 2 211 48 14 - - 60 - - - 60 - - - 60 - - - 60 - - - 60 - - 60 - - 60 - - 60 - - 142 - - 60 - 140 3 - - 60 - - 145 14 2 - -													-	-	
isopropyl Flamprop-M- isopropyl Florasulam TSA 70 11 1 73 1 - 148 - 27 Florasulam TSA 50 - 42 - 100 - 59 Fluazifop-P Fluazifop-P 79 30 23 137 23 2 211 48 14 Flupyrsulfuron- methyl IN-KF311 42 - 31 - 74 - 74 Fluroxypyr Fluroxypyr 50 - 74 - 142 - 142 - 7 Foramsulfuron AE-F092944 75 - 74 - 142 - 146 - 7 AE-F130619 64 10 - 66 6 - 140 3 - 74 AE-F130619 65 8 2 69 3 - 141 2 - 8 Glyphosate 141 86 22 236 5 - 371 35 - 8 Glyphosate 141 86 22 236 5 - 371 35 - 8 Halauxifen- McPA 2-methyl 60 - 85 - 165 - 7 MCPA 2-methyl-4- chlorophenol MCPA 51 - 67 - 123 - 7 Metamitron 111 28 3 161 10 - 339 17 2 40						· ·							-	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-M- I	Flamprop	74	7	-	74	-	-	148	-	-	27	-	-	
isopropyl FlorasulamTSA50-42100Fluazifop-P butylFluazifop-P1161401-30159butylTFMP7930231372322114814Flupyrsulfuron- methylIN-JE127412660methylIN-KF311423174ForamsulfuronAE-F0929447575-146ForamsulfuronAE-F1306196410-666-1403-Foramsulfuron6582693-1412GlyphosateAMPA471851822714-38026-8Halauxifen- methylX-7574942165Iodosulfuron-methyl6085165McPA2-methyl-4- chlorophenol5167-123MCPA5167-147MesotrioneAMBA76-76-147MCPA5167-147	_														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			70	11	1	73	1	-	148	-	-	27	-	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
butyl TFMP 79 30 23 137 23 2 211 48 14 Flupyrsulfuron- IN-JE127 41 - 2 6 - 60 - 7 methyl IN-KF311 42 - 31 - 74 - 1 Fluroxypyr Fluroxypyr 50 - 75 - 146 - 7 AE-F02944 75 - 75 - 146 - 7 AE-F130619 64 10 - 66 6 - 140 3 - 7 Foramsulfuron 65 8 2 69 3 - 141 2 - 8 Glyphosate AMPA 47 185 18 227 14 - 380 26 - 8 Glyphosate 141 86 22 236 5 - 371 35 - 8 Halauxifen- X-757 49 - 7 42 - 99 - 7 methyl Iodosulfuron-methyl 60 - 85 - 165 - 7 Metsulfuron 60 - 85 - 165 - 7 MCPA 2-methyl-4- 51 - 67 - 124 - 7 MCPA 2-methyl-4- 51 - 7 MCPA 51 - 76 - 147 - 7 Mesotrione AMBA 76 - 76 - 147 - 7 Mesotrione AMBA 68 8 - 76 - 147 - 7 Mesotrione AMBA 68 8 - 76 - 147 - 7 Mesotrione 63 6 7 76 - 147 - 7 Metamitron 77 42 3 165 3 3 334 23 1 40 metamitron 111 28 3 161 10 - 339 17 2 40				-	-			-		-	-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-P- I	Fluazifop-P	116	-	-	140	1	-	301	-	-	59	-	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			79	30	23	137	23	2	211	48	14				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	furon- I	IN-JE127		-	-		-	-		-	-				
ForamsulfuronAE-F032944 AE-F130619 Foramsulfuron75 6475 6475 6675 66146 7575 75GlyphosateAMPA Glyphosate65 14182 8269 2371 75141 752 7671 7574 7575 7575 7575 7575 7575 7575 7575 7575 7575 7575 7575 7575 7575 7575 7575 7575 7576 7576 7576 7577 7576 7577 7576 7577 7576 7576 76 7676 76 7676 76 7676 76 7676 76 7676 76 7676 76 7676 76 7676 76 7676 76 7676 76 7676 76 7676 76 7676 76 7676 76 7676 76 76 7676 76 76 7676 76 76 7676 76 7676 76 76 7676 76 76 7676 76 76 7676 76 76 7676 76 76 7676 76 76 76 7676 		IN-KF311	42	-	-		-	-	74	-	-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	r I	Fluroxypyr	50	-	-	74	-	-	142	-	-				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	uron A	AE-F092944	75	-	-	75	-	-	146	-	-				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I	AE-F130619	64		-	66	6	-	140		-				
Glyphosate14186222365-37135-8Halauxifen- methylX-757494299Iodosulfuron- methylIodosulfuron-methyl6085165Metsulfuron-methyl6085165IoxynilIoxynil4866-93MCPA2-methyl-4- chlorophenol MCPA5167-124MesotrioneAMBA Mesotrione7676-147MetamitronDesamino- metamitron974231653333423140	I	Foramsulfuron	65	8	2	69	3	-	141	2	-				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e A	AMPA	47	185	18	227	14	-	380	26	-		-	-	
Initial methyl Iodosulfuron- methylIodosulfuron-methyl 60 $ 85$ $ 165$ $-$ Iodosulfuron- methylMetsulfuron-methyl 60 $ 85$ $ 165$ $-$ IoxynilIoxynil 48 $ 66$ $ 93$ $ -$ MCPA 2 -methyl-4- chlorophenol MCPA 51 $ 67$ $ 123$ $ -$ MesotrioneAMBA Mesotrione 76 $ 76$ $ 147$ $ -$ MetamitronDesamino- metamitron 97 42 3 161 10 $ 339$ 17 2 40	(Glyphosate	141	86	22	236	5	-	371	35	-	8	-	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n- 2	X-757	49	-	-	42	-	-	99	-	-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	on- I	Iodosulfuron-methyl	60	-	-	85	-	-	165	-	-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ľ	Metsulfuron-methyl	60	-	-	85	-	-	165	-	-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	-		-	-		-	_				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	-	-		-	-		-	-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
MesotrioneAMBA MNBA 76 68 8 63 metamitron 76 63 76 776 76 776 76 776			51	-	-	67	-	-	123	-	-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-			-								
Mesotrione Desamino- metamitron															
Metamitron Desamino- metamitron 97 42 3 165 3 3 334 23 1 40 Metamitron 111 28 3 161 10 - 339 17 2 40															
metamitron Metamitron 111 28 3 161 10 - 339 17 2 40												40	15	4	
Metamitron 111 28 3 161 10 - 339 17 2 40				⊤ ∠	5	105	5	5	554	25	1	10	15	+	
			111	28	2	161	10	_	330	17	2	40	10	8	
$1 \in [1, 1] = [1, 1]$												+0	10	0	
												52			
1 1													-	-	
MHPC 101 108 240 59 Phenmedipham 101 108 240 59							-				-		-	-	

Table A5.3. Number of samples where pesticides were either not detected (nd), detected in concentrations below 0.1 μ g L⁻¹ (<0.1 μ g L⁻¹) or detected in concentrations above 0.1 μ g L⁻¹ (>=0.1 μ g L⁻¹) at **Silstrup**. Numbers are accumulated for the monitoring period up to July 2019. All samples included.

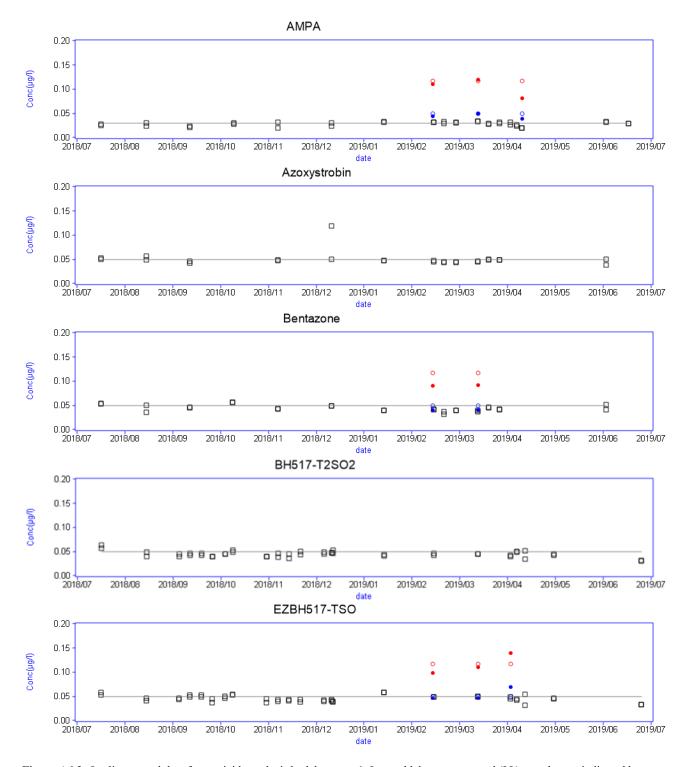
PirimicarbPiPirimicarbPiPidePropiconazolePrPropyzamidePrRRRRProsulfocarbPrPyridatePIRimsulfuronPI	Compound Pirimicarb Pirimicarb-desmethyl Pirimicarb- lesmethyl- ormamido Propiconazole Propyzamide RH-24580	nd 160 173 141 76	≤0.1 14 1 -	>0.1	nd 210 210 160	screens ≤ 0.1	>0.1	nd 433 436	≤ 0.1	s >0.1	nd 59	≤0.1	>0.1
Pirimicarb Pi Pi Pi de fo Propiconazole Pr Propyzamide Pr R Prosulfocarb Pr Pyridate PI Rimsulfuron PI	Pirimicarb Pirimicarb-desmethyl Pirimicarb- lesmethyl- ormamido Propiconazole Propyzamide	160 173 141	14	-	210 210		-	433	3				
Propiconazole Pr Propyzamide Pr R Prosulfocarb Pr Pyridate PI Rimsulfuron PI	Pirimicarb-desmethyl Pirimicarb- lesmethyl- ormamido Propiconazole Propyzamide	173 141		-	210	-			-	-	59	-	_
Pi de fo Propiconazole Pr Propyzamide Pr R R Prosulfocarb Pr Pyridate PI Rimsulfuron PI	Pirimicarb- lesmethyl- ormamido Propiconazole Propyzamide	141	1 -			-	-	126					-
de fo Propiconazole Pr Propyzamide Pr R R Prosulfocarb Pr Pyridate PI Rimsulfuron PI	esmethyl- ormamido Propiconazole Propyzamide		-	-	160				-	-	59	-	-
Propiconazole Pr Propyzamide Pr R R Prosulfocarb Pr Pyridate PI Rimsulfuron PI	ormamido Propiconazole Propyzamide	76			100	-	-	308	-	-	20	-	-
Propiconazole Pr Propyzamide Pr R R Prosulfocarb Pr Pyridate PI Rimsulfuron PI	Propiconazole Propyzamide	76											
Propyzamide Pr R R Prosulfocarb Pr Pyridate Pl Rimsulfuron Pl	ropyzamide	76											
R R Prosulfocarb Pyridate Rimsulfuron			6	-	74	-	-	148	-	-	27	-	-
R R Prosulfocarb Pr Pyridate Pl Rimsulfuron Pl	RH-24580	46	25	12	82	10	1	168	10	5			
R Prosulfocarb Pr Pyridate Pl Rimsulfuron Pl		64	2	-	78	-	-	149	-	-			
Prosulfocarb Pr Pyridate Pl Rimsulfuron Pl	RH-24644	51	15	-	77	1	-	148	1	-			
Pyridate PI Rimsulfuron PI	RH-24655	66	-	-	78	-	-	149	-	-			
Rimsulfuron Pl	rosulfocarb	69	4	1	78	1	-	147	-	-			
	PHCP	62	-	4	66	2	-	109	8	4			
DI	PPU	1	-	-									
PI	PU-desamino	1	-	-									
Tebuconazole 1,	,2,4-triazole	-	45	6	12	31	1	61	45	2			
Te	Tebuconazole	17	2	-	15	-	-	23	-	-			
Terbuthylazine 2-	-hydroxy-desethyl-	43	27	1	84	-	-	151	1	-			
te	erbuthylazine												
D	Desethyl-	8	64	44	101	32	-	113	127	2			
te	erbuthylazine												
D	Desisopropylatrazine	28	43	-	84	-	-	148	4	-			
H	Iydroxy-	45	26	-	84	-	-	152	-	-			
te	erbuthylazine												
Te	erbuthylazine	31	51	9	107	5	-	173	30	1			
	riazinamin	88	-	-	113	-	-	228	-	-			
Tribenuron- Tr	riazinamin-methyl	82	-	-	74	-	-	148	-	-	27	-	-
methyl													
Triflusulfuron- IN	N-D8526	32	-	-	56	-	-	102	-	-			
methyl IN	N-E7710	27	5	-	56	-	-	102	-	-			
IN		32	-										
Tı m	N-M7222	52	-	-	55	1	-	102	-	-			

Estrup		1	Drainag	e	H	lorizont	al	'	Vertica		Sı	uction	cups
Parent	Compound	nd	≤ 0.1	>0.1	nd	≤ 0.1	>0.1	nd	<u>≤0</u> .1	>0.1	nd	≤0.1	>0.1
Amidosulfuron	Amidosulfuron	100	-	-	34	-	-	109	-	-			
Aminopyralid	Aminopyralid	96	-	-	66	-	-	86	-	-			
Azoxystrobin	Azoxystrobin	274	126	15	240	1	-	523	2	-			
-	CyPM	39	226	150	207	29	5	518	7	-			
Bentazone	2-amino-N-	237	1	-	79	1	-	271	-	-	5	-	-
	isopropyl-benzamide												
	Bentazone	211	208	14	175	42	-	525	2	-	3	2	2
Bifenox	Bifenox	91	3	1	61	-	-	132	-	-			
	Bifenox acid	89	6	10	63	-	-	133	-	1			
	Nitrofen	95	-	-	61	-	-	132	-	-			
Bromoxynil	Bromoxynil	136	1	2	41	-	-	125	-	-	3	-	-
Carbendazim	Carbendazim	19	3	-	12	-	-	21	-	-			
Chlormequat	Chlormequat	45	1	-	18	-	-	56	-	-			
lomazone	Clomazone	60	-	-	47	-	-	51	-	-			
	FMC 65317	60	-	-	47	-	-	51	-	-			
Clopyralid	Clopyralid	1	-	-									
Diflufenican	AE-05422291	57	-	-	26	-	-	45	-	-			
	AE-B107137	40	18	-	38	2	-	49	-	-			
	Diflufenican	30	15	12	26	-	-	45	-	-			
Dimethoate	Dimethoate	88	-	-	42	-	-	158	-	-	23	-	-
poxiconazole	Epoxiconazole	35	12	2	19	-	-	69	-	-			
thofumesate	Ethofumesate	91	27	8	46	-	_	158	-	-			
enpropimorph	Fenpropimorph	82	1	-	39	-	-	150	-	-	23	-	-
	Fenpropimorph acid	83	_	_	34	-	_	124	-	-	20	-	-
lamprop-M-	Flamprop	119	13	_	55	-	-	208	-	-	23	-	-
sopropyl	Flamprop-M-	112	20	_	55	-	_	208	-	-	23	-	-
opropji	isopropyl												
lorasulam	Florasulam	92	-	-	35	-	-	125	-	-			
Iorubululli	Florasulam-	81	-	-	30	-	-	100	-	-			
	desmethyl	01			50			100					
Flupyrsulfuron-	IN-JE127				1	-	-	3	-	-			
nethyl	IN-KF311				1	-	-	3	-	-			
Fluroxypyr	Fluroxypyr	87	1	2	34	-	-	120	1	-			
Foramsulfuron	AE-F092944	90	1	-	65	-	-	88	-	-	1		
oranisanaron	AE-F130619	85	6	_	65	_	_	88	_	_	1		
	Foramsulfuron	71	17	3	65	_	_	88	_	_	1		
Glyphosate	AMPA	79	379	120	291	1	-	719	7	-	23	_	_
Jiyphosate	Glyphosate	235	234	109	284	6	1	680	41	5	$\frac{23}{23}$	-	-
Halauxifen-	X-729	1	-	-	4	-	-	10	-	-	25		
nethyl	$X^{-}/2$	1	_	_	- T	_	_	10	_	_			
odosulfuron-	Metsulfuron-methyl	131	_	_	55	_	-	208	_	_	22	1	_
nethyl	Wietsulfuloii-meuryi	151	-	-	55	-	-	200	-	-		1	-
oxynil	Ioxynil	119	15	5	41		-	125		_	3		
исра	2-methyl-4-	102	15	-	34	-	-	123	-	-	5	-	-
NCFA		102	1	-	54	-	-	112	-	-			
	chlorophenol MCPA	91	10	2	34			111	1				
Aesosulfuron-		91 19	-		21	-	-	30		-			
	AE-F099095			-		-	-		-	-	1		
nethyl	AE-F147447	19	-	-	16	-	-	19	-	-	1	-	-
	AE-F160459	19	-	-	21	-	-	30	-	-			
	Mesosulfuron	74	-	-	24	-	-	83	-	-			
	Mesosulfuron-	62	13	-	27	-	-	99	-	-			
<i>.</i>	methyl	00	4										
Aesotrione	AMBA	88	4	-	67	-	-	90	1		1		
	MNBA	81	10	1	67	-	-	87	1	-	1		
	Mesotrione	52	30	10	64	2	1	88	2	-	1		
Aetamitron	Desamino-	76	38	11	46	-	-	157	-	-			
	metamitron	_	_										
_	Metamitron	81	27	15	46	-	-	158	-	-			
Aetconazole	Metconazole	1	-	-	4	-	-	10	-	-			
Metrafenone	Metrafenone	100	20	-	69	-	-	119	1	-			
Pendimethalin	Pendimethalin	119	4	-	41	-	-	147	-	-	7	-	-
Picolinafen	CL 153815	50	20	11	40	-	-	118	-	-	L		

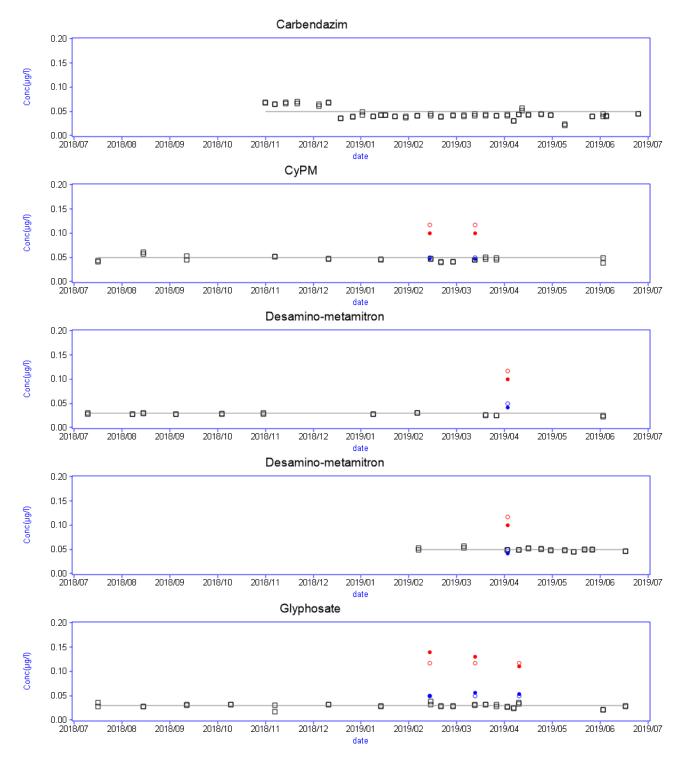
Table A5.4. Number of samples where pesticides were either not detected (nd), detected in concentrations below 0.1 μ g L⁻¹ (<0.1 μ g L⁻¹) or detected in concentrations above 0.1 μ g L⁻¹ (>=0.1 μ g L⁻¹) at **Estrup**. Numbers are accumulated for the monitoring period up to July 2019. All samples included.

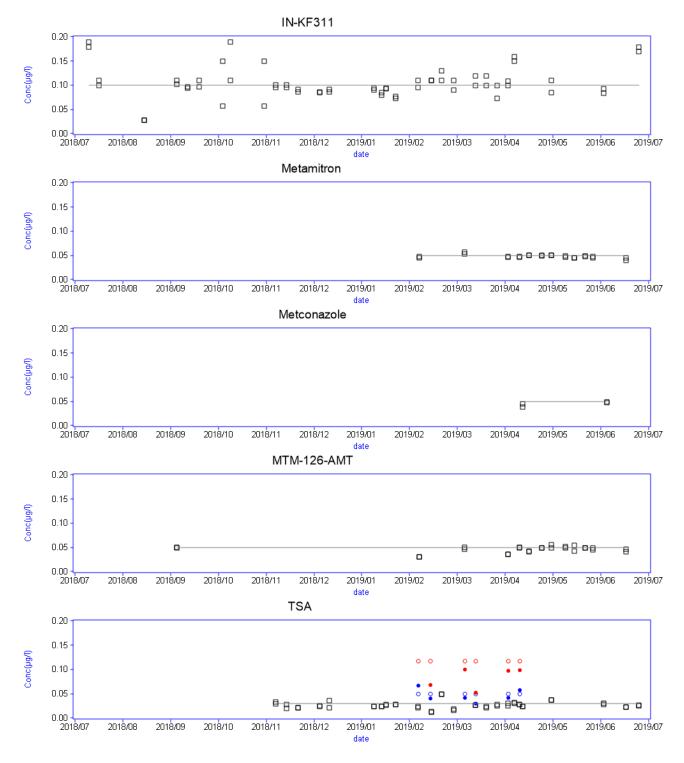

Estrup		Ι	Drainag	e	H	lorizon	tal	1	Vertica	ıl	Su	ction of	cups
Parent	Compound	nd	≤ 0.1	>0.1	nd	≤ 0.1	>0.1	nd	≤0.1	>0.1	nd	≤0.1	>0.1
	Picolinafen	64	17	-	40	-	-	118	-	-			
Pirimicarb	Pirimicarb	159	40	-	67	-	-	225	1	-	6	-	-
	Pirimicarb-	192	-	-	66	-	-	223	-	-	6	-	-
	desmethyl												
	Pirimicarb-	199	13	13	76	-	-	261	-	-	5	-	-
	desmethyl-												
	formamido												
Propiconazole	Propiconazole	192	23	3	86	-	-	309	2	-	23	-	-
Propyzamide	Propyzamide	5	-	-	4	-	-	3	-	-			
Tebuconazole	1,2,4-triazole	-	7	150	-	97	12	28	67	53			
	Tebuconazole	40	24	17	39	-	-	118	3	2			
Terbuthylazine	2-hydroxy-desethyl-	44	63	24	50	-	-	180	-	-			
	terbuthylazine												
	Desethyl-	18	111	35	59	7	-	232	-	-			
	terbuthylazine												
	Desisopropylatrazine	90	70	1	62	1	-	197	26	-			
	Hydroxy-	43	72	16	50	-	-	180	-	-			
	terbuthylazine												
	Terbuthylazine	49	78	34	63	-	-	222	1	-			
Thiacloprid	M34	55	-	-	34	-	-	66	-	-			
	Thiacloprid	47	-	-	34	-	-	66	-	-			
	Thiacloprid sulfonic	56	-	-	34	-	-	66	-	-			
	acid												
	Thiacloprid-amide	46	1	-	34	-	-	66	-	-			
Triasulfuron	Triazinamin	188	-	-	90	-	-	255	1	-	22	-	-
Tribenuron- methyl	Triazinamin-methyl	52	2	-	37	-	-	70	-	-	1	-	-

Faardrup]	Drainag	-		lorizon		`	Vertica			iction	
Parent	Compound	nd	≤ 0.1	>0.1	nd	≤ 0.1	>0.1	nd	≤ 0.1	>0.1	nd	≤ 0.1	>0.
Azoxystrobin	Azoxystrobin	106	-	-	92	-	-	194	-	-			
5	CyPM	102	4	-	92	-	-	194	-	-			
Bentazone	2-amino-N-isopropyl-	67	1	-	61	-	-	132	-	-			
	benzamide												
	Bentazone	174	22	6	152	13	1	354	4	3			
Bifenox	Bifenox	56	6	-	30	-	-	74	-	-			
	Bifenox acid	24	1	17	30	-	1	73	_	-			
	Nitrofen	56	5	1	30	-	-	74	-	-			
Bromoxynil	Bromoxynil	101	-	-	81	-	-	225	-	-	73	_	-
Clomazone	Clomazone	84	-	1	69	_	_	166	_	_	'5		
Ciomazone	FMC 65317	84	_	1	69	_	_	166	_	_			
Desmedipham	Desmedipham	99	_	-	66	_	_	166	_	_	29	_	_
Desineuiphani	EHPC	83	-	-	52	-	-	124	-	-	16	-	-
Dimethoate	Dimethoate	83 77	-	-	58	-	-	149	-	-	10	-	-
Epoxiconazole	Epoxiconazole	81	-	-	66	-	-	143	-				
•	-		- 7						25	-	27	2	
Ethofumesate	Ethofumesate	150		6	104	-	-	227		6	27	2	-
Fenpropimorph	Fenpropimorph	101	-	-	80	1	-	225	-	-	73	-	-
	Fenpropimorph acid	101	-	-	81	-	-	225	-	-	73	-	-
Flamprop-M-	Flamprop	76	1	-	58	-	-	149	-	-			
isopropyl	Flamprop-M-isopropyl	70	1	-	56	-	-	143	-	-	1		
Floramsulam	TSA	34	-	-	25	-	-	112	-	-			
Fluazifop-P-	Fluazifop-P	123	5	3	87	-	-	206	5	1	26	3	-
butyl	Fluazifop-P-butyl	99	-	-	66	-	-	166	-	-	29	-	-
	TFMP	91	-	-	76	-	-	162	-	-			
Flupyrsulfuron- methyl	Flupyrsulfuron-methyl	36	-	-	51	-	-	123	-	-			
methyl	IN-JV460	36	_	-	51	-	-	123	-	_			
	IN-57400 IN-KC576	36	-		51	-		123	-				
	IN-KC370 IN-KY374	36	-	-	51	-	-	123	-	-			
Elinearcar		182		-	146	-		368			73		
Fluroxypyr	Fluroxypyr		-				-		-	-	15	-	-
	Fluroxypyr.methoxypyridine	29	-	-	31	-	-	115	-	-			
C1 1 (Fluroxypyr-pyridinol	29	-	-	31	-	-	115	-	-	50	-	
Glyphosate	AMPA	163	9	1	128	-	-	321	2	-	58	5	-
	Glyphosate	169	4	-	127	1	-	319	4	-	62	1	-
Halauxifen-	X-757	34	-	-	25	-	-	11	-	-			
methyl													
Ioxynil	Ioxynil	99	1	-	81	-	-	224	1	-	73	-	-
MCPA	2-methyl-4-chlorophenol	142	-	1	109	-	-	256	-	-			
	MCPA	141	1	1	109	-	-	256	-	-			
Mesosulfuron-	AE-F099095							1	-	-			
methyl	AE-F160459							1	-	-			
Metamitron	Desamino-metamitron	164	12	4	115	-	-	269	36	12	29	-	-
	MTM-126-AMT	14	-	-	11	-	-	55	-	-			
	Metamitron	168	10	2	115	-	-	293	20	4	29	-	-
Metrafenone	Metrafenone	59	-	-	54	-	-	114	-	-			
Pendimethalin	Pendimethalin	55	2	-	55	-	-	125	-	-			
Phenmedipham	MHPC	97	1	1	66	-	-	165	1	-	29	-	-
1	Phenmedipham	99	-	_	66	-	-	164	2	-	29	-	-
Pirimicarb	Pirimicarb	148	7	-	116	-	-	319	2	-	73	-	_
i inini cu ro	Pirimicarb-desmethyl	94	6	-	66	_	-	163	3	_	29	_	_
	Pirimicarb-desmethyl-	97	3	-	66	_	-	164	2	_	29	_	_
	formamido	11	5	-	00	-	-	104	-	-	[-	2
Propiconazole	Propiconazole	178	_	_	138	-	-	372	1	-	73	_	
	1		- 2	- 2		-			-		1'3	-	-
Propyzamide	Propyzamide	120	2	2	113		-	246		-			
	RH-24580	124	-	-	114	-	-	246	-	-	1		
	RH-24644	120	4	-	114	-	-	246	-	-	1		
	RH-24655	123	1	-	114	-	-	246	-	-			
Prosulfocarb	Prosulfocarb	78	-	-	61	-	-	126	-	-	1		
Tebuconazole	1,2,4-triazole	2	73	4	62	16	-	254	14	-	1		
	Tebuconazole	50	4	-	53	-	-	120	1	-			
Terbuthylazine	2-hydroxy-desethyl-	60	7	1	60	1	-	126	6	-	1		
-	terbuthylazine										1		


Table A5.5. Number of samples where pesticides were either not detected (nd), detected in concentrations below 0.1 μ g L⁻¹ (<0.1 μ g L⁻¹) or detected in concentrations above 0.1 μ g L⁻¹ (>=0.1 μ g L⁻¹) at **Faardrup**. Numbers are accumulated for the monitoring period up to July 2018. All samples included.

Faardrup]	Drainag	ge	H	Iorizon	tal		Vertic	al	Sı	iction	cups
Parent	Compound	nd	≤ 0.1	>0.1	nd	≤ 0.1	>0.1	nd	≤0.1	>0.1	nd	≤ 0.1	>0.1
	Desethyl-terbuthylazine	21	82	7	68	21	-	149	15	30			
	Desisopropylatrazine	85	24	1	57	32	-	166	28	-			
	Hydroxy-terbuthylazine	89	20	1	85	4	-	164	30	-			
	Terbuthylazine	69	30	11	83	5	1	149	25	20			
Thiamethoxam	CGA 322704	68	-	-	58	-	-	126	-	-			
	Thiamethoxam	68	-	-	58	-	-	126	-	-			
Tribenuron- methyl	Triazinamin-methyl	77	-	-	57	-	-	148	-	-			
Triflusulfuron-	IN-D8526	63	-	-	38	-	-	92	-	-			
methyl	IN-E7710	63	-	-	38	-	-	92	-	-			
-	IN-M7222	63	-	-	38	-	-	92	-	-			
	Triflusulfuron-methyl	63	-	-	38	-	-	92	-	-			


Laboratory internal control cards and external control sample results


Figure A6.1. Quality control data for pesticide analysis by laboratory 1. <u>Internal laboratory control (IQ)</u> samples are indicated by square symbols and the nominal level is indicated by the solid grey line (\Box IQ measured, — IQ nominal concentration). <u>External control (EQ)</u> samples are indicated by circles. Open circles indicate the nominal level (\bigcirc EQ nominal low, \bigcirc EQ nominal high), and closed circles the measured concentration (\blacklozenge EQ measured low, \blacklozenge EQ measured high).

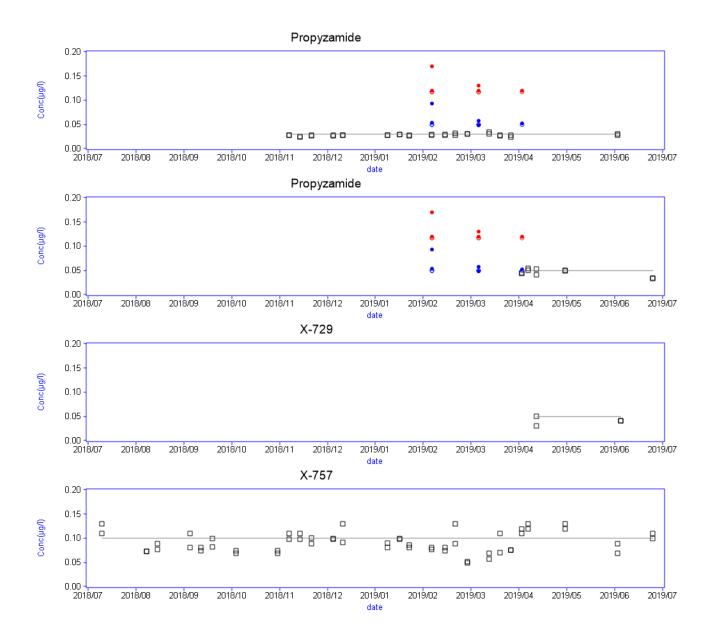

Figure A6.2. Quality control data for pesticide analysis by laboratory 1. <u>Internal laboratory control (IQ)</u> samples are indicated by square symbols and the nominal level is indicated by the solid grey line (\Box IQ measured, — IQ nominal concentration). <u>External control (EQ)</u> samples are indicated by circles. Open circles indicate the nominal level (\bigcirc EQ nominal low, \bigcirc EQ nominal high), and closed circles the measured concentration (\blacklozenge EQ measured low, \blacklozenge EQ measured high).

Figure A6.3. Quality control data for pesticide analysis by laboratory 1. <u>Internal laboratory control (IQ)</u> samples are indicated by square symbols and the nominal level is indicated by the solid grey line (\Box IQ measured, — IQ nominal concentration). <u>External control (EQ)</u> samples are indicated by circles. Open circles indicate the nominal level (\bigcirc EQ nominal low, \bigcirc EQ nominal high), and closed circles the measured concentration (\bullet EQ measured low, \bullet EQ measured high). During the reporting period, the control concentration of desamino-metamitron was changed from 0.03 µgL⁻¹(upper graph) to 0.05 µgL⁻¹(lower graph).

Figure A6.4. Quality control data for pesticide analysis by laboratory 1. <u>Internal laboratory control (IQ)</u> samples are indicated by square symbols and the nominal level is indicated by the solid grey line (\Box IQ measured, — IQ nominal concentration). <u>External control (EQ)</u> samples are indicated by circles. Open circles indicate the nominal level (\bigcirc EQ nominal low, \bigcirc EQ nominal high), and closed circles the measured concentration (\bullet EQ measured low, \bullet EQ measured high).

Figure A6.5. Quality control data for pesticide analysis by laboratory 1. <u>Internal laboratory control (IQ)</u> samples are indicated by square symbols and the nominal level is indicated by the solid grey line (\Box IQ measured, — IQ nominal concentration). <u>External control (EQ)</u> samples are indicated by circles. Open circles indicate the nominal level (\bigcirc EQ nominal low, \bigcirc EQ nominal high), and closed circles the measured concentration (\bullet EQ measured low, \bullet EQ measured high). During the reporting period, the control concentration of propyzamide was changed from 0.03 µgL⁻¹(upper graph) to 0.05 µgL⁻¹(lower graph).

Pesticides analysed at five PLAP fields in the period up to 2009/2010/2011

Table A7.1A. Pesticides analysed at Tylstrup with the products used shown in parentheses. Degradation products are in italics. Precipitation (prec.) and percolation (perc.) are accumulated from the date of first application until the end of monitoring. 1st month perc. refers to accumulated percolation within the first month after the application. Cmean refers to average leachate concentration at 1 m b.g.s. the first year after application. (See Appendix 2 for calculation method).

Crop and analysed pesticides	Application	End of	Prec.	Perc.	1 st month	C _{mean}
1 7 1	date	monitoring	(mm)	(mm)	perc. (mm)	(µg L ⁻¹)
Potatoes 1999						
Linuron (Afalon)	May 99	Jul 01	2550	1253	87	< 0.01
- ETU^{l} (Dithane DG)	Jun 99	Oct 01	2381	1169	73	< 0.01
Metribuzine (Sencor WG)	Jun 99	Jul 03	4223	2097	85	< 0.01
- metribuzine-diketo	Juli))	Jul 10 [†]	11142	5387	85	0.05-0.36
- metribuzine-desamino		Jul 10 Jul 03	4223	2097	85	<0.02
- metribuzine-desamino-diketo		Apr 08	8689	4192	85	0.14-0.97
		Apr 00	0007	7172	05	0.14-0.97
Spring barley 2000						
Triasulfuron (Logran 20 WG)	May 00	Apr 03	2740	1283	13	< 0.02
- triazinamin						< 0.02
Propiconazole (Tilt Top)	Jun 00	Jul 03	2948	1341	11	< 0.01
Fenpropimorph (Tilt Top)	Jun 00	Jul 03	2948	1341	11	< 0.01
- fenpropimorphic acid						< 0.02
Pirimicarb (Pirimor G)	Jun 00	Apr 03	2622	1263	17	< 0.01
- pirimicarb-desmethyl						< 0.02
- pirimicarb-desmethyl-formamido						< 0.02
Winton was 2001						
Winter rye 2001 Pendimethalin (Stomp SC)	Nov 00	A mm 02	2271	1219	109	< 0.01
		Apr 03				
<i>Triazinamin-methyl</i> ²⁾ (Express)	Nov 00 Mary 01	Apr 03	2271 2948	1219	109	< 0.02
Propiconazole (Tilt Top)	May 01	Jul 03		1341	11	< 0.01
Fenpropimorph (Tilt Top)	May 01	Jul 03	2948	1341	11	< 0.01
- fenpropimorphic acid						< 0.01
Winter rape 2002						
Clomazone (Command CS)	Sep 01	Jul 04	2534	1194	9	< 0.01
- FMC 65317 (propanamide-cloma-						< 0.02
zone)						
Winter wheat 2003						
Bromoxynil (Oxitril CM)	Oct 02	Apr 05	2082	995	53	< 0.01
Ioxynil (Oxitril CM)	Oct 02	Apr 05	2082	995	53	< 0.01
Fluroxypyr (Starane 180)	May 03	Jul 05	1867	787	50	< 0.02
Flamprop-M-isopropyl (Barnon Plus		Jul 05	2635	1031	42	< 0.01
3)						
- Flamprop-M (free acid)						
Dimethoate (Perfekthion 500 S)	Jul 03	Jul 05	1629	722	14	< 0.01
	041 00	0 ul 00	1022	/==		0101
Potatoes 2004		* 1.07				0.01
-Fluazifop-P (free acid) ³⁾	May 04	Jul 06	1754	704	16	< 0.01
(Fusilade X-tra)	*	* 1.07	(011	2000	10	0.00
Rimsulfuron (Titus)	Jun 04	Jul 06	6211	3008	13	< 0.02
- PPU^{4} (Titus)	Jun 04	Jul 10 [†]	6211	3008	13	< 0.01 ⁵⁾
- PPU-desamino ⁴⁾ (Titus)	Jun 04	Jul 10 [†]	6211	3008	13	< 0.015)
Maize 2005						
Terbuthylazine (Inter-Terbutylazine)	May 05	Jul 07	2145	933	16	< 0.01
-desethyl-terbuthylazine	2					< 0.01
-2-hydroxy-terbuthylazine						< 0.01
-desisopropyl-atrazine						< 0.016)
-2-hydroxy-desethyl-terbuthylazine						< 0.01
Bentazone (Laddok TE)	Jun 05	Jul 07	2061	927	33	< 0.01
-AIBA						< 0.01
Spring barley 2006	hun 06	1.1.09	2240	1104	40	<0.02
<i>-triazinamin-methyl</i> ⁷ (Express ST)	Jun 06	Jul 08	2349	1184	43	< 0.02
Epoxiconazole (Opus)	Jun 06	Jul 08	2233	1148	24	< 0.01

Systematic chemical nomenclature for the analysed pesticides is given in Appendix 1.

¹⁾ Degradation product of mancozeb. The parent compound degrades too rapidly to be detected by monitoring.
 ²⁾ Degradation product of tribenuron-methyl. The parent compound degrades too rapidly to be detected by monitoring.

³⁾ Degradation product of fluazifop-P-butyl. The parent compound degrades too rapidly to be detected by monitoring.

⁴⁾ Degradation product of rimsulfuron. The parent compound degrades too rapidly to be detected by monitoring.

⁵⁾ Leaching increased the second and third year after application.

⁶⁾ Leaching increased during the second year after application but measured concentrations did not exceed $0.042 \mu g L^{-1}$ (see Kjær et al., 2008).

 7 Degradation product of tribenuron-methyl. The parent compound degrades too rapidly to be detected by monitoring.

Table A7.1B. Pesticides analysed at **Tylstrup**. For each pesticide (P) and degradation product (M) the application date (appl. date) as well as end of monitoring period (End mon.) is listed. Precipitation and percolation are accumulated within the first year (Y 1st Precip, Y 1st Percol) and first month (M 1st Precip, M 1st Percol) after the first application. C_{mean} refers to average leachate concentration [μ g L⁻¹] at 1 m b.g.s. the first year after application. See Appendix 2 for calculation method and Appendix 8 (Table A8.1) for previous applications of pesticides.

Crop	Applied	Analysed	Appl.	End	Y 1 st	Y 1 st	M 1st	M 1st	C_{mean}
	product	pesticide	date	mon.	precip.	percol.	precip.	percol.	
Winter Rape 2007	CruiserRAPS	Thiamethoxam(P)	Aug 06	Apr 08	1250	700	87	57	< 0.01
		CGA 322704(M)	Aug 06	Apr 08	1250	700	87	57	< 0.02
	Kerb 500 SC	Propyzamide(P)	Feb 07	Apr 09	1052	472	48	40	< 0.01
		RH-24580(M)	Feb 07	Apr 09	1052	472	48	40	< 0.01
		RH-24644(M)	Feb 07	Apr 09	1052	472	48	40	< 0.01
		RH-24655(M)	Feb 07	Apr 09	1052	472	48	40	< 0.01
	Matrigon	Clopyralid(P)	Mar 07	Apr 09	1055	488	30	24	< 0.02
Winter wheat 2008	Amistar	Azoxystrobin(P)	Jun 08	Jun 11	1316	662	141	0	< 0.01
		CyPM(M)	Jun 08	Jun 11	1316	662	141	0	< 0.01
	Folicur EC 250	Tebuconazole(P)	Nov 07	Mar 10	1133	461	69	43	< 0.01
	Stomp	Pendimethalin(P)	Oct 07	Dec 09	1032	415	36	26	< 0.01
Spring barley 2009	Amistar	Azoxystrobin(P)	Jun 09	Jun 11	909	475	138	11	< 0.01
		CyPM(M)	Jun 09	Jun 11	909	475	138	11	< 0.01
	Basagran M75	Bentazone(P)	May 09	Jun 12	996	488	133	22	< 0.01

Crop and analysed pes	ticides	Application date	End of monitoring	Prec. (mm)	Perc. (mm)	1 st month perc. (mm)	C _{mean} (µg L ⁻¹)
Winter rye 2000							
·	Glyphosate (Roundup 2000) - AMPA	Sep 99	Apr 02	2759	1607	139	<0.01 <0.01
	- AMFA Triazinamin-methyl ¹⁾ (Express)	Nov 99	Apr 02	2534	1451	86	< 0.01
	Propiconazole (Tilt Top)	Apr 00	Jul 02		1061	3	< 0.02
	Fenpropimorph (Tilt Top) - fenpropimorphic acid	Apr 00	Apr 02		1029	3	<0.01 <0.01
Maize 2001							
	Terbuthylazine (Lido 410 SC)	May 01	Apr 04	3118	1809	4	< 0.01
	- desethyl-terbuthylazine	May 01	Apr 07	6742	3826	4	< 0.01-
	PHCP ²⁾ (Lido 410 SC)	May 01	Jul 03	2413	1366	4	0.02
Potatoes 2002							
	- PPU (Titus) ³⁾	May 02	Jul 10 [†]	9389	5126	11	0.06^{4} -
	- PPU-desamino (Titus) ³⁾	5	Jul 10 [†]	9389	5126	11	0.13
Spring barley 2003							
1 8 7	MCPA (Metaxon)	Jun 03	Jul 05	2340	1233	0	< 0.01
	-4-chlor,2-methylphenol						< 0.01
	Dimethoate (Perfekthion 500 S)	Jun 03	Jul 05	2278	1232	1	< 0.01
Pea 2004							
	Bentazone (Basagran 480) - <i>AIBA</i>	May 04	Jul 07	3888	2044	4	0.02-0.13 <0.01
	Pendimethalin (Stomp SC)	May 04	Apr 07	3557	1996	4	< 0.01
	Pirimicarb (Pirimor G) - Pirimicarb-desmethyl -Pirimicarb-desmethyl-formamido	Jun 04	Apr 07	3493	1993	27	<0.01 <0.01 <0.02
	- <i>fluazifop-P(free acid)</i> ⁵⁾ (Fusilade X-tra)	Jun 04	Jul 06	2395	1233	27	< 0.01
Winter wheat 2005							
	Ioxynil (Oxitril CM)	Oct 04	Apr 07	2955	1791	81	< 0.01
	Bromoxynil (Oxitril CM)	Oct 04	Apr 07	2955	1791	81	< 0.01
	Amidosulfuron (Gratil 75 WG)	Apr 05	Jul 07	1070	515	33	< 0.01
	Fluroxypyr (Starane 180 S)	May 05	Jul 07	2683	1360	37	< 0.02
	Azoxystrobin (Amistar) - CyPM	May 05	Apr 07	2274	1283	49	<0.01 <0.02
Spring barley 2006							
-	Florasulam (Primus)	May 06	Jul 08	2779	1487	34	< 0.01
	- florasulam-desmethyl						< 0.03
	Epoxiconazole (Opus)	Jun 06	Dec 09	4698	2592	31	< 0.01

Table A7.2A. Pesticides analysed at Jyndevad with the product used shown in parentheses. Degradation products are in italics. Precipitation (prec.) and percolation (perc.) are accumulated from date of first application until end of monitoring. 1st month perc. refers to accumulated percolation within the first month after application. Cmean refers to average leachate concentration 1 m b.g.s.the first year after application. (See Appendix 2 for calculation method).

Systematic chemical nomenclature for the analysed pesticides is given in Appendix 1. ¹⁾ Degradation product of tribenuron-methyl. The parent compound degrades too rapidly to be detected by monitoring.

²⁾ Degradation product of pyridate. The parent compound degrades too rapidly to be detected by monitoring.

³⁾ Degradation product of rimsulfuron. The parent compound degrades too rapidly to be detected by monitoring.

⁴⁾ Leaching increased the second year after application.

⁵⁾ Degradation product of fluazifop-P-butyl. The parent compound degrades too rapidly to be detected by monitoring.

Table A7.2B. Pesticides analysed at **Jyndevad**. For each compound it is listed whether it is a pesticide (P) or degradation product (M), as well as the application date (Appl. date) and end of monitoring period (End. mon.). Precipitation (precip. in mm) and percolation (percol. in mm) are accumulated within the first year (Y 1st Precip, Y 1st Percol) and first month (M 1st Precip, M 1st Percol) after the first application. C_{mean} refers to average leachate concentration [μ g L⁻¹] at 1 m b.g.s. the first year after application. See Appendix 2 for calculation method and Appendix 8 (Table A8.2) for previous applications of pesticides.

Crop	Applied	Analysed	Appl.	End	Y 1 st	Y 1 st	M 1 st	M 1 st	C_{mean}
T 141 1 2005	product	pesticide	date	mon.	precip.		precip.	percol.	
Triticale 2007	Atlantis WG	Mesosulfuron- methyl(P)	Oct 06	Dec 09	1346	809	95	73	< 0.01
		Mesosulfuron(M)	Oct 06	Dec 09	1346	809	95	73	< 0.02
	Cycocel 750	Chlormequat(P)	Apr 07	Jun 08	1223	638	79	1	< 0.01
	Opus	Epoxiconazole(P)	May 07	Dec 09	1193	644	123	6	< 0.01
Winter wheat 2008	Folicur EC 250	Tebuconazole(P)	Dec 07	Mar 10	1396	827	60	97	< 0.01
	Pico 750 WG	Picolinafen(P)	Oct 07	Mar 10	1418	777	77	55	< 0.01
	Pico 750 WG	CL 153815(M)	Oct 07	Mar 10	1418	777	77	55	< 0.01
Spring barley 2009	Basagran M75	Bentazone(P)	May 09	Jun 12	1178	630	144	13	<0.01- 0.04*
	Bell	Epoxiconazole(P)	May 09	Dec 09	1181	630	164	42	< 0.01
	Fox 480 SC	Bifenox(P)	Apr 09	Jun 12	1206	630	106	3	< 0.02
	Fox 480 SC	Bifenox acid(M)	Apr 09	Jun 12	1206	630	106	3	< 0.05
	Fox 480 SC	Nitrofen(M)	Apr 09	Jun 12	1206	630	106	3	< 0.01
Potatoes 2010	Fenix	Aclonifen(P)	May 10	Jun 13	1149	567	123	10	< 0.01
	Ranman	Cyazofamid(P)	Jun 10	Jun 12	1188	627	125	16	< 0.01
	Titus WSB	PPU(M)	Jun 10	Jun 12	1160	592	137	13	0.02
		PPU-desamino(M)	Jun 10	Jun 12	1160	592	137	13	< 0.01
	Ridomil Gold	Metalaxyl-M(P)	Jul 10	Mar 15	1073	613	161	41	0.02
	MZ Pepite	CGA 108906(M)	Jul 10	Mar 15	1073	613	161	41	0.37- 0.6 ^{**}
		CGA 62826(M)	Jul 10	Mar 15	1073	613	161	41	0.16- 0.19 ^{**}
Spring barley 2011	DFF	Diflufenican(P)	Apr 11	Jun 13	1315	742	126	3	< 0.01
		AE-05422291(M)	Apr 11	Jun 13	1315	742	126	3	< 0.01
		AE-B107137(M)	Apr 11	Jun 13	1315	742	126	3	< 0.01

Table A7.3A. Pesticides analysed at **Silstrup** with the product used shown in parentheses. Degradation products are in italics. Precipitation (prec.) and percolation (perc.) are accumulated from date of first application until end of monitoring. 1^{st} month perc. refers to accumulated percolation within the first month after application. C_{mean} refers to average leachate concentration in the drainage water within the first drainage season after application. (See Appendix 2 for calculation methods).

Crop and analysed pesticides	Application date	End of monitoring	Prec. (mm)	Perc. (mm)	1 st month perc. (mm)	C _{mean} (µg L ⁻¹)
Eadday bast 2000	uaic	monitoring	(mm)	(mm)	pere. (mm)	(µg L)
Fodder beet 2000	May 00	A mm () ?	2624	1220	52	0.05
Metamitron (Goltix WG)	May 00	Apr 03	2634	1328	53	0.05
- metamitron-desamino	Mary 00	A 02	2634	1220	52	0.06
Ethofumesate (Betanal Optima) Desmedipham (Betanal Optima)	May 00	Apr 03		1328	53	0.03 <0.01
	May 00	Apr 03	2634	1328	53	
- EHPC Phanmadinham (Patanal Ontima)	May 00	A mm 02	2624	1220	52	< 0.02
Phenmedipham (Betanal Optima) - <i>MHPC</i>	May 00	Apr 03	2634	1328	53	< 0.01
						<0.02
- 3-aminophenol Elugrifora D huttel (Eugila de X tra)	Ium 00	L-1 02	1052	1010	5	< 0.02
Fluazifop-P-butyl (Fusilade X-tra)	Jun 00	Jul 02	1953	1019	5	< 0.01
- fluazifop (free acid)	1 1 0 0	1 1 0 7	(150	2025	1	< 0.02
Pirimicarb (Pirimor G)	Jul 00	Jul 07	6452	2825	1	< 0.01
- pirimicarb-desmethyl						< 0.01
- pirimicarb-desmethyl-formamido						< 0.02
Spring barley 2001						
Triazinamin-methyl ¹⁾ (Express)	May 01	Jul 03	1941	951	10	< 0.02
Flamprop-M-isopropyl (Barnon Plus 3)	Jun 01	Jul 03	1928	944	3	< 0.01
- flamprop (free acid)						< 0.01
Propiconazole (Tilt Top)	Jun 01	Jul 03	1928	944	3	< 0.01
Fenpropimorph (Tilt Top)	Jun 01	Jul 03	1928	944	3	< 0.01
- fenpropimorphic acid						< 0.01
Dimethoate (Perfekthion 500 S)	Jul 01	Jul 03	1882	937	3	0.02
Maize 2002						
Glyphosate (Roundup Bio)	Oct 01	Apr 06	3802	1694	44	0.13
- AMPA	00001	ripi 00	5002	1071		0.15
$PHCP^{2}$ (Lido 410 SC)	May 02	Jul 04	1764	738	6	0.06
Terbuthylazine (Lido 410 SC)	May 02	Apr 06	3320	1327	6	0.00
- desethyl-terbuthylazine	Widy 02	Apr 05	3520	1527	0	0.07
- 2- hydroxy-terbuthylazine		Apr 05 Apr 05				3)
- 2- hydroxy-terbulhyld2ine - 2-hydroxy-desethyl-terbuthylazine		Apr 05 Apr 05				3)
- desisopropyl-atrazine		Apr 05 Apr 05				3)
		Api 05				
Peas 2003		* * * * *				
Bentazone (Basagran 480)	May 03	Jul 06	2634	1055	44	0.26
- AIBA						< 0.01
Pendimethalin (Storm SC)	May 03	Apr 06	2634	1055	44	< 0.01
Glyphosate (Roundup Bio)	Sep 03	Apr 06	2207	971	0	< 0.01
- AMBA						0.02
Winter wheat 2004						
Prosulfocarb (Boxer EC)	Oct 03	Apr 06	2125	974	37	0.01
MCPA (Metaxon)	May 04	Jul 06	1797	710	4	< 0.01
- 4-chlor,2-methylphenol	-					< 0.01
Azoxystrobin (Amistar)	Jun 04	Jul 06	1781	706	0	0.01
- CvPM		Jul 07	2931	1202	0	0.09
Pirimicarb (Pirimor G)	Jul 04	Jul 07	2818	1205	Ő	< 0.01
- Pirimicarb-desmethyl					-	< 0.01
- Pirimicarb-desmethyl-formamido						< 0.02
Spring barley 2005	May 05	Jul 07	2012	020	11	<0.02
Fluroxypyr (Starane 180 S)	May 05	Jul 07	2012	830	11	< 0.02
Azoxystrobin (Amistar)	Jun 05	Jul 06	862	332	10	0.01
- CyPM	Jun 05	Jul 07	2012	828	10	0.02
Pirimicarb (Pirimor G)	Jul 05	Jul 07	1933	818	0	< 0.01
- Pirimicarb-desmethyl						< 0.01
- Pirimicarb-desmethyl-formamido						< 0.01

Table A7.3A continued. Pesticides analysed at **Silstrup** with the product used shown in parentheses. Degradation products are in italics. Precipitation (prec.) and percolation (perc.) are accumulated from date of first application until end of monitoring. 1st month perc. refers to accumulated percolation within the first month after application. C_{mean} refers to average leachate concentration in the drainage water within the first drainage season after application. (See Appendix 2 for calculation methods).

Crop and analysed pesticides	Application		Prec.	Perc.	1^{st} month	Cmean
	date	monitoring	(mm)	(mm)	perc.	(µg L ⁻¹)
Winter rape 2006						
Propyzamide (Kerb 500 SC)	Nov 05	Apr 08	2345	1115	75	0.224)
- RH-24644						0.014)
- RH-24580						< 0.014)
- RH-24655						< 0.014)
Clopyralid (Matrigon)	Apr 06	Apr 08	2009	859	8	< 0.01
Winter wheat 2007						
Chlormequat (Cycocel 750)	Apr 07	Jun 08	966	382	3	< 0.01
Iodosulfuron-methyl (Hussar OD)	Apr 07	Oct 10	966	382	3	< 0.01
Metsulfuron-methyl (Hussar OD)	Apr 07	Oct 10	966	382	3	< 0.01
Epoxiconazole (Opus)	Jun 07	Apr 09	947	407	0	< 0.01
Pendimethalin (Stomp Pentagon)	Sep 06	Apr 08	1166	508	0	0.04
Fodder beet 2008						
- Fluazifop-P (Fusilade Max)	Jul 08	Jun 12	985	494	21	< 0.01
- TFMP (Fusilade Max)	Jul 08	Jun 12	985	494	21	0.24
Metamitron (Goliath)	May 08	Dec 10	969	498	4	0.01
- Desamino-metamitron	May 08	Dec 10	969	498	4	0.02
Triflusulfuron-methyl (Safari)	May 08	Jun 10	969	498	4	< 0.01
- IN-D8526	May 08	Jun 10	969	498	4	< 0.01
- IN-E7710	May 08	Jun 10	969	498	4	< 0.01
- IN-M7222	May 08	Jun 10	969	498	4	< 0.02
Ethofumesate (Tramat 500 SC)	May 08	May 10	969	497	3	< 0.01

¹⁾ Degradation product of tribenuron-methyl. The parent compound degrades too rapidly to be detected by monitoring.

²⁾ Degradation product of pyridate. The parent compound degrades too rapidly to be detected by monitoring.

³⁾Average leachate concentration within the first drainage season after application could not be calculated, as monitoring started January 2003 (7 months after application). See Kjær et al. (2007) for further information.

⁴⁾ Drainage runoff commenced two weeks prior to the application of propyzamide, and the weighted concentrations refer to the period from the date of application until 1 July 2007.

Table A7.4B. Pesticides analysed at **Silstrup**. For each compound it is listed whether it is a pesticide (P) or degradation product (M), as well as the application date (Appl. date) and end of monitoring period (End. mon.). Precipitation (precip. in mm) and percolation (percol. in mm) are accumulated within the first year (Y 1st Precip, Y 1st Percol) and first month (M 1st Precip, M 1st Percol) after the first application. C_{mean} refers to average leachate concentration [μ g L⁻¹] at 1 m b.g.s. the first year after application. See Appendix 2 for calculation method and Appendix 8 (Table A8.3) for previous applications of pesticides.

Crop	Applied product	Analysed pesticide	Appl. date	End mon.	Y 1 st Precip.	Y 1 st Percol	M 1 st Precip	M 1 st Percol	C _{mean}
Spring barley 2009	Amistar	Azoxystrobin(P)	Jun 09	Mar 12	835	390	61	0	0.01
		CyPM(M)	Jun 09	Mar 12	835	390	61	0	0.06
	Fighter 480	Bentazone(P)	May 09	Jun 11	876	391	85	1	0.03
Red fescue 2010	Fox 480 SC	Bifenox(P)	Sep 09	Jun 12	888	390	56	0	< 0.02
		Bifenox acid(M)	Sep 09	Jun 12	888	390	56	0	2.26
		Nitrofen(M)	Sep 09	Jun 12	888	390	56	0	< 0.01
	Fusilade Max	Fluazifop-P(M)	May 10	Jun 12	1027	520	53	2	< 0.01
		TFMP(M)	May 10	Jun 12	1027	520	53	2	< 0.02
	Hussar OD	Iodosulfuron-methyl(P)	Aug 09	Dec 10	898	390	27	0	< 0.01
		Metsulfuron-methyl(M)	Aug 09	Dec 10	898	390	27	0	< 0.01
		Triazinamin(M)	Aug 09	Dec 10	898	390	27	0	< 0.01
	Hussar OD	Iodosulfuron-methyl(P)	May 10	Dec 10	1024	520	49	1	< 0.01
		Metsulfuron-methyl(M)	May 10	Dec 10	1024	520	49	1	< 0.01
Red fescue 2011	Fusilade Max	TFMP(M)	May 11	Jun 12	1043	550	26	4	0.003
	Fox 480 SC	Bifenox(P)	Sep 11	Dec 12	989	493	101	68	0.014
		Bifenox acid(M)	Sep 11	Dec 12	989	493	101	68	0.25
		Nitrofen(M)	Sep 11	Dec 12	989	493	101	68	0.03

Table A7.4A. Pesticides analysed at **Estrup** with the product used shown in parentheses. Degradation products are in italics. Precipitation (prec.) and percolation (perc.) are accumulated from the date of first application until the end of monitoring. 1^{st} month perc. refers to accumulated percolation within the first month after application. C_{mean} refers to average leachate concentration in the drainage water within the first drainage season after application. (See Appendix 2 for calculation methods).

Crop and analysed pesticides	Application	End of	Prec.	Perc.	1 st month	Cmean
	date	monitoring	(mm)	(mm)	perc. (mm)	(µg L ⁻¹)
Spring barley 2000					•	
Metsulfuron-methyl (Ally)	May 00	Apr 03	2990	1456	29	< 0.01
- triazinamin						< 0.02
Flamprop-M-isopropyl (Barnon Plus 3)	May 00	Apr 03	2914	1434	2	0.02
- flamprop (free acid)						0.01
Propiconazole (Tilt Top)	Jun 00	Apr 05	4938	2294	0	0.01
Fenpropimorph (Tilt Top)	Jun 00	Jul 02	2211	1048	0	< 0.01
- fenpropimorphic acid						< 0.02
Dimethoate (Perfekthion 500 S)	Jun 00	Jul 02	2211	1048	0	< 0.01
Pea 2001						
Glyphosate (Roundup Bio)	Oct 00	Jul 14†	10484	4977	123	0.54
- AMPA						0.17
Bentazone (Basagran 480)	May 01	Jul 08	7629	3621	9	0.03
- AIBA						< 0.01
Pendimethalin (Stomp SC)	May 01	Jul 03	2208	1096	9	< 0.01
Pirimicarb (Pirimor G)	Jun 01	Jul 05	4251	1995	10	0.01
- pirimicarb-desmethyl						< 0.02
- pirimicarb-desmethyl-formamido						< 0.02
Winter wheat 2002						
Ioxynil (Oxitril CM)	Nov 01	Jul 03	1580	860	52	0.041)
Bromoxynil (Oxitril CM)	Nov 01	Jul 03	1580	860	52	0.011)
Amidosulfuron (Gratil 75 WG)	Apr 02	Jul 04	2148	928	8	< 0.01
MCPA (Metaxon)	May 02	Jul 04	2091	928	0	< 0.01
- 4-chlor,2-methylphenol					-	< 0.01
Propiconazole (Tilt 250 EC)	May 02	Apr 05	2920	1336	39	0.02
Pirimicarb (Pirimor G)	Jun 02	Jul 05	2982	1403	58	0.01
- pirimicarb-desmethyl	5 dil 62	bul 05	2702	1105	50	< 0.02
- pirimicarb-desmethyl-formamido		Apr 06				< 0.02
Fodder beet 2003		ripi oo				-0.02
Glyphosate (Roundup Bio)	Sep 02	Jul 14	8289	3900	0	0.43
- AMPA	5 c p 02	Jul 14	0207	5700	0	0.45
Ethofumesate (Betanal Optima)	May 03	Apr 06	2901	1371	50	0.11
Metamitron (Goltix WG)	May 03	Apr 06	2901	1371	50	1.1
- metamitron-desamino	Way 05	Api 00	2901	13/1	50	0.21
	Jul 03	Jul 05	2071	939	0	< 0.01
Pirimicarb (Pirimor G)	Jul 05	Jul 05 Jul 05	2071	939	0	< 0.01
- pirimicarb-desmethyl						
- pirimicarb-desmethyl-formamido		Apr 06				0.12
Spring barley 2004	Mov 04	Jul 06	2072	1020	0	<0.02
Fluroxypyr (Starane 180)	May 04 Jun 04		2073 4452	1030	38	< 0.02
Azoxystrobin (Amistar)	Jun 04	Jul 08	4432	2209	38	0.12 0.23
- CyPM						0.23
Maize 2005	Mary 05	A	42.47	20.42	22	0.40
Terbuthylazine (Inter-Terbuthylazin)	May 05	Apr 09	4247	2042	32	0.48
- desethyl-terbuthylazine		Jul 09	4406	2051	32	0.31
- 2-hydroxy-terbuthylazine		Jul 08	3338	1628	32	0.11
- desisopropyl-atrazine		Apr 09	4247	2042	32	0.02
- 2-hydroxy-desethyl-terbuthylazine	* 0-	Jul 08	3338	1628	32	0.24
Bentazone (Laddok TE)	Jun 05	Jul 08	3338	1628	10	0.18
- AIBA						< 0.01
Glyphosate (Roundup Bio)	Nov 05	Jul 14	5191	2460	68	4.04 ¹⁾
- AMPA						0.421)
Spring barley 2006						
Florasulam (Primus)	Jun 06	Jul 08	2442	1163	0	< 0.01
- florasulam-desmethyl						< 0.03
Azoxystrobin (Amistar)	Jun 06	Jul 08	2414	1170	0	0.03
- CvPM						0.13

Table A7.4A continued. Pesticides analysed at **Estrup** with the product used shown in parentheses. Degradation products are in italics. Precipitation (prec.) and percolation (perc.) are accumulated from the date of first application until the end of monitoring. 1^{st} month perc. refers to accumulated percolation within the first month after application. C_{mean} refers to average leachate concentration in the drainage water within the first drainage season after application. (See Appendix 2 for calculation methods).

Crop and analysed pesticides	Application	End of	Prec.	Perc.	1 st month	Cmean
	date	monitoring	(mm)	(mm)	perc. (mm)	(µg L ⁻¹)
Winter wheat 2007						
Mesosulfuron-methyl (Atlantis WG)	Oct 06	Jul 08	1420	305	29	0.01
- Mesosulfuron	Oct 06	Jul 08	1420	305	29	< 0.02
Chlormequat (Cycocel 750)	Apr 07	Jul 08	1261	287	0	< 0.01
Epoxiconazole (Opus)	May 07	Jul 08	1154	299	29	0.02

Systematic chemical nomenclature for the analysed pesticides is given in Appendix 1.

The values for prec. and perc. are accumulated up to July 2006.

¹⁾ Drainage runoff commenced about two and a half months prior to the application of ioxynil and bromoxynil, and the weighted concentrations refer to the period from the date of application until 1 July 2002.

Table A7.5B. Pesticides analysed at **Estrup**. For each compound it is listed, whether it is a pesticide (P) or degradation product (M), as well as the application date (Appl. date) and end of monitoring period (End. mon.). Precipitation (precip. in mm) and percolation (percol. in mm) are accumulated within the first year (Y 1st Precip, Y 1st Percol) and first month (M 1st Percol) after the first application. C_{mean} refers to average leachate concentration [μ g L⁻¹] at 1 m b.g.s. the first year after application. See Appendix 2 for calculation method and Appendix 8 (Table A8.4) for previous applications of pesticides.

Crop	Applied	Analysed	Appl.	End	Y 1 st	Y 1 st	$M \ 1^{st}$	$M \; 1^{st}$	C _{mean}
	product	pesticide	date	mon.	precip	percol	precip	percol	1
Winter wheat 2008	Amistar	Azoxystrobin(P)	Jun 08	Jun 12	1093	232	88	0	0.06
		CyPM(M)	Jun 08	Jun 12	1093	232	88	0	0.48
	Folicur EC 250	Tebuconazole(P)	Nov 07	Mar 10	1325	275	103	31	0.44
	Pico 750 WG	Picolinafen(P)	Oct 07	Mar 10	1253	267	76	24	0.03
		CL 153815(M)	Oct 07	Mar 10	1253	267	76	24	0.24
	Roundup Max	Glyphosate(P)	Sep 07	Jun 12	1200	261	113	29	0.19
		AMPA(M)	Sep 07	Jun 12	1200	261	113	29	0.13
Spring barley 2009	Amistar	Azoxystrobin(P)	Jun 09	Jun 12	1215	235	60	0	0.04
		CyPM(M)	Jun 09	Jun 12	1215	235	60	0	0.41
	Basagran M75	Bentazone(P)	May 09	Jun 12	1222	238	83	4	0.05
	Fox 480 SC	Bifenox(P)	May 09	Jun 12	1243	246	87	16	< 0.02
		Bifenox acid(M)	May 09	Jun 12	1243	246	87	16	0.16
		Nitrofen(M)	May 09	Jun 12	1243	246	87	16	< 0.01
Winter rape 2010	Biscaya OD 240	Thiacloprid(P)	May 10	Mar 12	1083	196	43	0	< 0.01
		M34(M)	May 10	Mar 12	1083	196	43	0	< 0.02
		Thiacloprid sulfonic acid(M)	May 10	Mar 12	1083	196	43	0	< 0.1
		Thiacloprid-amide(M)	May 10	Mar 12	1083	196	43	0	< 0.01
Winter wheat 2011	Express ST	Triazinamin-methyl(M)	Sep 10	Aug 12	823	176	97	31	0.01
	Fox 480 SC	Bifenox(P)	Apr 11	Dec 12	1217	276	45	2	< 0.01
		Bifenox acid(M)	Apr 11	Dec 12	1217	276	45	2	0.003
		Nitrofen (M)	Apr 11	Dec 12	1217	276	45	2	< 0.01
	Flexity	Metrafenone(P)	May 11	Apr 15	1219	283	114	6	0.02
	Roundup Max	Glyphosate(P)	Oct 11	Jun 15	1150	295	94	26	0.88
	-	AMPA(M)	Oct 11	Jun 15	1150	295	94	26	0.26

Table A7.5A. Pesticides analysed at Faardrup with the product used shown in parentheses. Degradation products are in italics. Precipitation (prec.) and percolation (perc.) are accumulated from the date of first application (approx. date) until the end of monitoring. 1^{st} month perc. refers to accumulated percolation within the first month after application. C_{mean} refers to average leachate concentration in the drainage water the first drainage season after application. (See Appendix 2 for calculation methods).

Crop and analysed pesticides	Application date	End of monitoring	Prec. (mm)	Perc. (mm)	1 st month perc. (mm)	C _{mean} (µg L ⁻¹)
Winter wheat 2000						
Glyphosate (Roundup 2000) - AMPA	Aug 99	Apr 03	2526	947	0	<0.01 <0.01
Bromoxynil (Briotril)	Oct 99	Apr 02	1738	751	35	< 0.01
Ioxynil (Briotril)	Oct 99	Apr 02	1738	751	35	< 0.01
Fluroxypyr (Starane 180)	Apr 00	Apr 02	1408	494	7	< 0.01
Propiconazole (Tilt Top)	May 00	Jul 03	2151	669	0	< 0.01
Fenpropimorph (Tilt Top) - fenpropimorphic acid	May 00	Jul 02	1518	491	0	<0.01 <0.01
Pirimicarb (Pirimor G) - pirimicarb-desmethyl	Jun 00	Jul 03	2066	684	0	<0.01 <0.01
- pirimicarb-desmethyl-formamido						< 0.02
Sugar beet 2001						
Glyphosate (Roundup 2000) - AMPA	Oct 00	Jul 03	1747	709	0	<0.01 0.01
Metamitron (Goltix WG) - metamitron-desamino	May 01	Jul 03	1512	507	4	0.01
Ethofumesate (Betanal Optima)	May 01	Jul 03	1512	507	4	0.01
Desmedipham (Betanal Optima) - EHPC	May 01	Jul 03	1512	507	4	<0.01 <0.02
Phenmedipham (Betanal Optima) - <i>MHPC</i>	May 01	Jul 03	1512	507	4	< 0.01
Fluazifop-P-butyl (Fusilade X-tra)	Jun 01	Jul 03	1460	503	0	<0.02 <0.01
<i>- fluazifop-P (free acid)</i> Pirimicarb (Pirimor G)	Jul 01	Jul 03	1460	503	1	0.02 <0.01
- pirimicarb-desmethyl - pirimicarb-desmethyl-formamido						<0.01 <0.02
Spring barley 2002						
Flamprop-M-isopropyl (Barnon Plus 3) - flamprop-M (free acid)	May 02	Jul 04	1337	333	0	<0.01 <0.01
MCPA (Metaxon) - 4-chlor-2-methylphenol	May 02	Jul 04	1358	337	4	<0.01 <0.01 <0.02
- triazinamin-methyl ¹ (Express)	May 02	Jul 04	1358	337	4	< 0.02
Dimethoate (Perfekthion 500 S)	Jun 02	Jul 04	1328	333	4 0	< 0.02
Propiconazole (Tilt 250 EC)	Jun 02	Jul 04 Jul 04	1328	333	0	< 0.01
Winter rape 2003						
Clomazone (Command CS) - FMC 65317 (propanamide-clomazon)	Aug 02	Apr 05	1761	509	4	<0.02 <0.02
Winter wheat 2004						
Prosulfocarb (Boxer EC)	Oct 03	Apr 06	1542	454	0	< 0.01
MCPA (Metaxon)	Jun 04	Jul 06	1307	331	0	< 0.01
- 4-chlor,2-methylphenol						< 0.01
Azoxystrobin (Amistar) - CyPM	Jun 04	Jul 07	2098	636	0	<0.01 <0.01
Maize 2005						
Terbuthylazine (Inter-Terbutylazin)	May 05	Jul 08	2078	666	4	0.67
- desethyl-terbuthylazine	May 05	Jul 08	2078	666	•	0.59
- 2-hydroxy-terbuthylazine	May 05	Jul 08	2078	666		0.04
- desisopropyl-atrazine	May 05	Jul 08	2078	666		0.03
- 2- hydroxy-desethyl-terbuthylazine	May 05	Jul 07	1428	465	4	0.07
Bentazone (Laddok TE)	May 05	Jul 07	1408	464	6	2.82
- AIBA						< 0.01
Spring barley 2006						
Fluroxypyr (Starane 180 S)	May 06	Jul 08	1496	524	17	< 0.02
Epoxiconazole (Opus)	Jun 06	Jul 08	1441	507	3	< 0.01

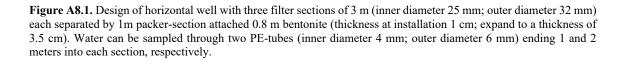
Systematic chemical nomenclature for the analysed pesticides is given in Appendix 1. ¹⁾ Degradation product of tribenuron-methyl. The parent compound degrades too rapidly to be detected by monitoring. [†] Monitoring will continue during the following year. The values for prec. and perc. are accumulated up to July 2009.

Table A7.5B. Pesticides analysed at **Faardrup**. For each compound it is listed whether it is a pesticide (P) or degradation product (M), as well as the application date (Appl. date) and end of monitoring period (End. mon.). Precipitation (precip. in mm) and percolation (percol. in mm) are accumulated within the first year (Y 1st Precip, Y 1st Percol) and first month (M 1st Precip, M 1st Percol) after the first application. C_{mean} refers to average leachate concentration [μ g L⁻¹] at 1 m b.g.s. the first year after application. See Appendix 2 for calculation method and Appendix 8 (Table A8.5) for previous applications of pesticides.

Crop	Applied	Analysed	Appl.	End	Y 1 st	Y 1 st	M 1st	M 1 st	C _{mean}
	product	pesticide	date	mon.	Precip.	Percol.	Precip.	Percol	
Spring barley 2006	Opus	Epoxiconazole(P)	Jun 06	Jun 08	790	306	17	3	< 0.01
	Starane 180 S	Fluroxypyr(P)	May 06	Jun 08	708	333	37	17	< 0.02
Winter rape 2007	CruiserRAPS	Thiamethoxam(P)	Aug 06	Jun 08	806	294	57	23	< 0.01
		CGA 322704(M)		Jun 08	806	294	57	23	< 0.02
	Kerb 500 SC	Propyzamide(P)	Feb 07	Mar 09	735	199	64	46	0.01
		RH-24580(M)		Mar 09	735	199	64	46	< 0.01
		RH-24644(M)		Mar 09	735	199	64	46	< 0.01
		RH-24655(M)		Mar 09	735	199	64	46	< 0.01
Winter wheat 2008	Folicur 250	Tebuconazole(P)	Nov 07	Dec 09	693	158	64	56	< 0.01
	Stomp SC	Pendimethalin(P)	Oct 07	Dec 09	673	180	51	24	< 0.01
Sugar beet 2009	Ethosan	Ethofumesate(P)	Apr 09	Jun 11	609	146	50	2	0.01
	Goliath	Metamitron(P)	Apr 09	Jun 11	609	146	42	2	0.02
		Desamino- metamitron(M)	Apr 09	Jun 11	609	146	42	2	0.06
	Safari	Triflusulfuron-methyl(P)	Apr 09	Jun 11	609	146	50	2	< 0.01
		IN-D8526(M)	Apr 09	Jun 11	609	146	50	2	< 0.01
		IN-E7710(M)	Apr 09	Jun 11	609	146	50	2	< 0.01
		IN-M7222(M)	Apr 09	Jun 11	609	146	50	2	< 0.02

New horizontal wells

New horizontal wells at each PLAP-field, with three new horizontal screens were established at each PLAP-field in 2011.


A horizontal well with three PE-screens (3 m long, separated by 1 m packer-section attached 0.8 m bentonite, slits of 0.1 mm, Figure A8.1) was installed September 2011 at all five PLAP-fields to optimize monitoring of the fields both in time and space.

The aim of the optimization was:

- at the sandy fields (Tylstrup and Jyndevad) to improve the early warning regarding pesticides and/or their degradation products leaching to the upper fluctuating groundwater by sampling a spatially representative sample of the pore water, which has just reaching the groundwater zone. The well was hence installed at 4.5 m depth at Tylstrup and 2.5 m depth at Jyndevad,
- at the clayey till fields (Silstrup, Estrup and Faardrup) to improve spatial representability of the water sampled in the variably saturated zone below draindepth. To ensure this, the wells are (i) installed at 2 m depth, (ii) oriented such as it is as orthogonal to the orientation of the dominating fracture system as possible and at the same time crossing underneath a drain-line with one of its three filter sections/screens, and (iii) not affected by or affecting sampling from the vertical monitoring wells.

The location of the wells on the PLAP-fields is illustrated in Figure 2.1, 3.1, 4.1, 5.1 and 6.1. The wells/screens/filter sections are installed in boreholes of 9 cm in diameter. These boreholes are drilled by applying the directional drilling system RotamoleTM, which uses a dry percussion-hammer air pressure technique causing minimal disturbances of the soil medium.

Water sampling for pesticide analysis from these new horizontal screens started April 2012 (half a year after installation) and is only conducted when the soil media surrounding the screens is saturated. Water samples are, hence, collected at the:

- Sandy fields monthly. 3 L are sampled from each filter via applying suction onto the two tubes. A half liter of the 3 L, is passed through cells in a flow box measuring pH, temperature, and conductivity. The remaining 2½ L is pooled with the equal volumes from the two other filters. Subsamples for analysis are then taken from the 7½ L pooled sample.
- Clayey till fields monthly if the groundwater table in the nearest vertical monitoring well is situated more than 20 cm above the screens. Having saturated conditions, one liter of water sample is collected from each screen via the two tubes during approximately 10 minutes. The liter sample is passed through cells in a flow box measuring pH, temperature, and conductivity. The samples from each screens are then pooled and send for analysis.

The design of the wells facilitates the possibility of collecting water from six points along the 12 m long well. This option is not utilised yet.

Groundwater age from recharge modelling and tritium-helium analysis

The field investigations carried out at the various PLAP fields offer good opportunity to model the groundwater age from soil porosity and net precipitation assuming simple piston flow for groundwater.

For obvious reasons it would be advantageous to be able to compare groundwater age obtained by recharge modelling and soil porosities with groundwater age obtained by other methods.

Other methods for age dating of young groundwater are based on natural or anthropogenic tracers include tritium-helium $({}^{3}\text{H}/{}^{3}\text{He})$, chlorofluorocarbons (CFCs) and sulphurhexafluoride (SF₆). Preliminary studies using the latter two methods were, however, unable to produce sufficiently accurate results to permit direct comparison, due to:

- Decline in atmospheric CFCs over the last two decades and
- Difficulties in determining the amount of excess air entering groundwater due to dynamic change in groundwater table.

The tritium-helium method was tested in 2010 at Jyndevad and Tylstrup.

The other fields were discounted because of:

- Low pumping rate excluded sampling for dissolved gases in clamped copper tubes and
- the piston flow model cannot be expected to be valid for the glacial clayey till fields, making direct comparison of the two methods impossible.

Age from recharge modelling

Recharge data obtained by the MACRO model for the 2000-2009 (Rosenbom *et al.*, 2010) were used to estimate water velocity and groundwater age from the deepest screens at the Jyndevad and Tylstrup fields, Table A9.1. The deeper wells are normally only used for water level monitoring, and the wells were included to be able to extend the age interval. Porosity obtained from bulk density of 10 cm cores indicates a soil porosity of 0.43 at 0.5 m and deeper (Lindhardt *et al.*, 2001).

The average water velocities during the last 2-3 years (prior to age-dating in 2010), which are probably more realistic for estimating groundwater age for the shallower filter sections were 1.42–1.60 m per year for Jyndevad and 1.35–1.38 m per year for Tylstrup. A water velocity of 1.4 m per year appears reasonable for estimating groundwater age at both fields based on recharge data. Groundwater age estimates using a water velocity of 1.4 m per year for the deep one at Tylstrup (1.1 m per year) are compared with groundwater age estimated by the tritium-helium method (Figure A9.1).

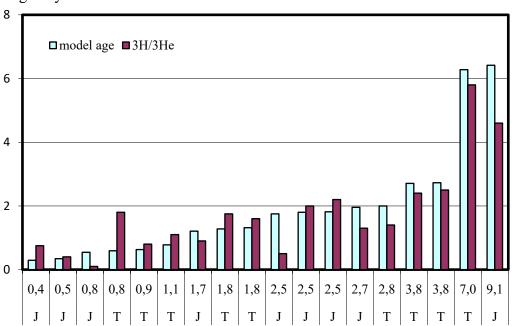

Location	Recharge mm/year	Porosity	Velocity m per year	Water Table m b.s.	Fiter depth m b.s.	Age m per year
Jyndevad	613	0.43	1.43	2.5	11.5	6.3
Tylstrup	477	0.43	1.11	4.5	11.5	6.3

 Table A9.1. Average recharge 2000-2009, water velocity and groundwater age.

Age from tritium-helium analysis

Samples for tritium and helium collected in one liter plastic bottles and clamped copper tubes respectively were shipped to the University of Bremen and analysed according to Sültenfuß et al. (2009). The age of water was determined from the ratio between tritium (³H), half-life 12.5 years, and its daughter product helium-3 (³He) in the water.

The tritium-helium age and the recharge model age differ less than one year for most wells over the entire depth interval and no systematic difference in age can be observed (Figure A9.1). Wells including both fields are shown with increasing depth from left to right in Figure A9.1. The depths are meters below water table to the mid-screen. The length of each screen is 1 m, meaning that the water table was 10 cm below top-screen for the shallowest depth indicated in the figure. Depth of water table checked during pumping did not indicate problems with intake of air, and no bubbles were observed during sampling.

Age in years

Average dept below water table (m), J - Jyndevad, T- Tylstrup Figure A9.1. Groundwater age at Jyndevad and Tylstrup. Recharge model age assumes water velocity of 1.4 m per year, except for the deep filter section at Tylstrup (1.1 m per year).

Minor difference in groundwater age determined by recharge modelling and tritiumhelium analysis is expected due to the analytical uncertainty regarding tritium and helium. Furthermore, groundwater velocity may vary due to local variations in porosity and permeability affecting the depth of iso-age lines below water table. Given these uncertainties it is concluded that the model age and the tritium-helium age are consistent.