# **ICAROS 2021 Cruise Report**

# Ice-ocean interactions and marine ecosystem dynamics in Northwest Greenland

Sofia Ribeiro, Steffen M. Olsen, Andreas Münchow, Katrine J. Andresen, Christof Pearce, Sara Harðardóttir, Heike Zimmermann & Alice Stuart-Lee

DE NATIONALE GEOLOGISKE UNDERSØGELSER FOR DANMARK OG GRØNLAND KLIMA-, ENERGI- OG FORSYNINGSMINISTERIET



# **ICAROS 2021 Cruise Report**

Ice-ocean interactions and marine ecosystem dynamics in Northwest Greenland

Sofia Ribeiro, Steffen M. Olsen, Andreas Münchow, Katrine J. Andresen, Christof Pearce, Sara Harðardóttir, Heike Zimmermann & Alice Stuart-Lee



DE NATIONALE GEOLOGISKE UNDERSØGELSER FOR DANMARK OG GRØNLAND KLIMA-, ENERGI- OG FORSYNINGSMINISTERIET

# **Cruise report**

# **ICAROS 2021**

# Ice-ocean interactions and marine ecosystem dynamics in Northwest Greenland

Aasiaat-Pituffik-Nuuk (22<sup>nd</sup> Aug-3<sup>rd</sup> Sep 2021)



Sofia Ribeiro, Steffen M. Olsen, Andreas Münchow, Katrine Juul Andresen, Christof Pearce, Sara Harðardóttir, Heike Zimmermann, Alice Stuart-Lee



# **Table of contents**

| 1. Foreword                                                                                                                                                                                                                                                                                                | 2                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| <ul><li>2. Participants</li><li>2.1 Science crew</li><li>2.2 Royal Danish Navy crew</li></ul>                                                                                                                                                                                                              | 2<br>2<br>3                           |
| 3. Cruise motivation and objectives                                                                                                                                                                                                                                                                        | 4                                     |
| 4. Deck configuration                                                                                                                                                                                                                                                                                      | 6                                     |
| 5. Cruise track and stations                                                                                                                                                                                                                                                                               | 7                                     |
| <ul> <li>6. Scientific operations <ul> <li>6.1 Modern oceanography (WP1)</li> <li>6.2 Ecosystem dynamics (WP2)</li> <li>6.3 Holocene Paleoceanography (WP3)</li> <li>6.3.1 Seismo-acoustic investigations</li> <li>6.3.2 Sediment sampling</li> </ul> </li> <li>7. Permits</li> <li>8. Outreach</li> </ul> | 8<br>14<br>19<br>19<br>29<br>33<br>33 |
| 9. Acknowledgments                                                                                                                                                                                                                                                                                         | 34                                    |
| 10. References                                                                                                                                                                                                                                                                                             | 34                                    |
| <ul> <li>11. Appendices</li> <li>Appendix 1 – Full station Log</li> <li>Appendix 2 – CTD Operations Log</li> <li>Appendix 3 – List of water samples for biogeochemistry</li> <li>Appendix 4 – Sub-bottom profiles at gravity core positions</li> </ul>                                                     | 36<br>36<br>43<br>45<br>51            |

#### 1. Foreword

The ICAROS 2021 cruise was planned as a 3-week marine research expedition on board *HDMS Lauge Koch* including two complementary legs, from Aasiaat-Qaanaaq and Qaanaaq-Nuuk from 22th Aug-13<sup>th</sup> Sep. The expedition was however terminated on the 31<sup>st</sup> Aug at Pituffik (Thule Air Base) by Arctic Command due to unforeseen operational issues. This was followed by transit to Nuuk, where demobilization of equipment and disembarkment of the team took place on the 3<sup>rd</sup> Sep. This report gives an account of the research activities performed from the 22<sup>nd</sup> Aug-31<sup>st</sup> Aug, including an overview of the samples and data collected during the expedition. We note that the unexpected termination of our research activities compromises the objectives we set out to pursue.

#### 2. Participants

#### Science crew



Figure 1- Science crew minutes before onboarding HDMS Lauge Koch in Aasiaat, 22nd Aug 2021. From left to right: S.M. Olsen, S. Ribeiro, E. Brischt, H. Zimmermann, K. J. Andresen, A. Münchow, C. Pearce, S. Harðardóttir, A. Stuart-Lee. Photo by F.W. Teglhus

| Name                   | Affiliation         | Main role                                                |
|------------------------|---------------------|----------------------------------------------------------|
| Sofia Ribeiro          | GEUS                | Cruise leader, Paleoclimate/Paleoceanography             |
| Steffen M. Olsen       | DMI                 | Cruise co-lead, Oceanography                             |
| Andreas Muenchow       | DMI/UDEL            | Oceanography, Ice-ocean interactions                     |
| Katrine Juul Andresen  | AU                  | Geophysics, sub-bottom profiling, multibeam echosounding |
| Christof Pearce        | AU                  | Paleoclimate, sediment coring                            |
| Sara Harðardóttir      | GEUS                | Marine ecology and eDNA                                  |
| Heike Zimmermann       | GEUS                | Sedimentary ancient DNA                                  |
| Alice Stuart-Lee       | GINR/NIOZ           | Ecosystem dynamics, Biogeochemistry                      |
| Eik Brischt            | DTU                 | DCH-certified technician                                 |
| Frederik Wolff Teglhus | Underground Channel | Filmmaker, science communication                         |
| Anna Bang Kvorning     | GEUS                | PhD student (onshore support, planned leg2 participant)  |

## Royal Danish Navy crew

| Name                    | Position             |
|-------------------------|----------------------|
| Steen Kempf-Amkær       | Commanding Officer   |
| Christian Aa. Rothly    | Executive Officer    |
| Ditte R. Olesen         | Navigational Officer |
| Rene Olsson             | Chief Engineer       |
| Erik Johannes Schmidt   | Quartermaster        |
| Jimmi Søren Vestergaard | Supply               |
| Henrik Borum Pedersen   | Radio                |
| Jens T. Konge           | Weapon               |
| Henrik N. Andersen      | Cook                 |
| Anders S. Godiksen      | Food and Bakery      |
| Morten Grysbæk Jensen   | Deckhand             |
| Jon Evers               | Deckhand             |
| Mikkel Diederichsen     | Deckhand             |

| Name                 | Position   |
|----------------------|------------|
| Daniel Jensen        | Deckhand   |
| Torben Bjørn         | Deckhand   |
| Jais Thuge Andersen  | Deckhand   |
| Allan Berg           | Technician |
| Morten M. Møller     | Technician |
| Lars Peter Nielsen   | Technician |
| Peter Ravn Mikkelsen | Technician |

#### 3. Cruise motivation and objectives

Sea ice loss, increasing glacier discharge, and ocean warming will continue to affect the Arctic region in the coming decades under all future climate scenarios (IPCC SROCC 2019). Such changes, at the interface between the cryosphere and the ocean, raise concerns about the downstream effects in marine ecosystems. These include ecosystem services of societal relevance such as fisheries and carbon sequestration, as well as potential hazards such as the introduction of pollutants and invasive/toxic marine species (AMAP 2017). In order to understand the impacts of a rapidlychanging cryosphere on the Arctic marine environment, knowledge concerning the physical and biochemical perturbations occurring at the ice-ocean interface and the structure, function, and resilience of affected ecosystems must be integrated in time and space.

The Northwest Greenland region and in particular its marine environment is sensitive to climate forcing from both the Arctic (Münchow et al., 2015) and subpolar regions (e.g. Rysgaard et al., 2020). Several marine-terminating glaciers in this region have been retreating and accelerating over the past decades, and the mass loss from the Northwest sector of the Greenland Ice Sheet alone is estimated to contribute to 1-3 cm of sea-level rise by 2100 (Morlighem et al., 2019). Some of these glaciers are located in deep fjords and are vulnerable both to sea ice retreat and to the inflow of warm and saline subsurface Atlantic waters carried by the West Greenland Current (Rignot et al. 2016). Also, subglacial meltwater discharge at the calving front of marine-terminating glaciers leads to enhanced melting and upwelling of bottom waters strongly affecting the structure and properties of the water column and promoting upwelling of nutrient-replete bottom waters that may enhance primary production during summer (Meire et al., 2017, Hopwood et al., 2018).

While future climate change is expected to drive habitat and biome shifts, with associated changes in the ranges and abundance of keystone as well as potentially harmful/toxic species, very little is known about the long-term response of primary producers to climate change. This is an important concern when it comes to assessing the vulnerability of hotspot productivity areas such as the North Water polynya or Pikialasorsuaq, a unique and vulnerable sea ice ecosystem and an important area for ocean heat transport (Ribeiro et al. 2021, Jackson et al. 2021). Marine sediments contain a wealth of signatures from primary producers including microfossils, source-specific biomarkers, as well as genetic material that, over time, build up sedimentary archives from which past environmental conditions can be inferred.

The Holocene Epoch (last 11 700 years) offers a suitable time frame for inferring long-term changes, as it encompasses both periods of relatively warmer and cooler conditions than present. Ice core and lake records from Northwest Greenland indicate that summer air temperatures were warmer than modern during the Holocene Thermal Maximum (McFarlin et al. 2018). This period can thus provide a unique "window" into projected future conditions and interlinked cryosphere-ocean-biosphere responses to climate forcing. However, only very few marine records have been recovered from the Northwest Greenland shelf to date that cover the Holocene at high-resolution. Furthermore, new methods are now emerging, such as sedimentary ancient DNA analyses that are particularly sensitive to degradation and contamination and require careful processing of samples and minimal storage time for optimal results (Armbrecht et al., 2019).

This research expedition was motivated by previous and ongoing collaborative work among the consortium partners. It directly addresses the knowledge gap identified by the IPCC calling for new long-term datasets on cryosphere-ocean-biosphere dynamics in the context of climate change (see also Smith et al., 2019, Straneo et al., 2019). The overarching goal of the expedition was to obtain new data on modern ocean conditions, influence of glacier runoff and links to sea-ice retreat along the Northwest Greenland shelf, Melville Bay and the North Water polynya. Biogeochemical, plankton and environmental DNA (eDNA) investigations were also planned, to provide new information on ecosystem structure and functioning while paleo-studies were aimed at tracking long-term changes in ocean conditions, sea-ice cover, productivity, and biodiversity throughout the Holocene. One of the main goals of the cruise was to retrieve new marine records for sedimentary ancient DNA studies. The cruise was designed including 3 interlinked work packages with specific objectives (O).

#### WP1 – Modern oceanography

O 1.1 – Document summer water column properties along offshore-fjord and latitudinal transects O 1.2 – Characterize the spatial variability of the West Greenland current system and its interaction with nearby fjords and marine-terminating glaciers

#### WP2 – Ecosystem dynamics

O 2.1 – Identify drivers of primary productivity and biogeochemical fluxes in the region O 2.2 – Characterize spatial trends in the distribution of plankton species (including phyto- and zooplankton) with focus on keystone, toxic/harmful species, and taxa relevant to paleo studies O 2.3 – Further explore biodiversity trends with eDNA and biomarker approaches

#### WP3 – Holocene paleoceanography and ecosystem changes

O 3.1 – Reconstruct changes at the sea surface (SST, sea ice cover) and at depth (WGC variability) over the Holocene for selected sites

O 3.2 – Reconstruct paleoproductivity changes, including sea ice vs. pelagic productivity

O 3.3 – Explore the potential of sedimentary ancient DNA to trace biodiversity trends and potential invasions/range expansion of harmful or toxic species



#### 4. Deck configuration for scientific operations on Lauge Koch

*Figure 2*- *Aft deck configuration during ICAROS21.* 

Two storage containers were placed on the aft deck (Fig. 2); one for storage of equipment at room temperature and the second one refrigerated (4°C) to keep the sediment cores at a stable temperature (to avoid DNA and biomarker degradation).

Deployment of the standalone CTD and standalone Rosette were done using the A-frame and the 10kN winch with a 3500m Rochester 8mm wire. Deployment of the sediment coring devices (HAPS, Rumohr lot and Gravity corer) were performed using the A-frame and the 50kN winch with a 4200m DynIce Warps (16mm) wire.

The lab container was insulated (temperature controlled), and equipped with a fume hood, several storage cabinets, and both an under-bench freezer (-20°C) and fridge. One of the benches was dedicated to processing of samples for eDNA analyses and a filtering station was set-up with 2 filtering units for eDNA (with individual sterile units used for each sample) and 6 filtering units for biogeochemical analyses run separately (Fig. 3).



Figure 3 - Processing of water samples (water filtering for biogeochemistry and eDNA) was performed in the dedicated lab container installed on deck during ICAROS21.

#### 5. Cruise track and stations

Our research activities were carried out on the Northwest Greenland shelf, Upernavik fjord and Melville Bay, ranging 68-76° North and 50-70° West. Our research cruise track (Fig. 4) covered 1279nm (2368Km). Seismo-acoustic data were acquired along most of these track kilometers (see section 6.3.1). From the total of 41 stations, we carried out CTD casts and water collection for biogeochemistry at 39 unique stations, collection of water samples for eDNA at 15 stations and surface sediments at 14 stations and obtained Gravity cores and Rumohr lot cores from 8 and 4 stations, respectively. Plankton net samples were collected at 10 stations for phytoplankton and 6 stations for zooplankton analyses.



Figure 4 - Overview of stations along the ICAROS21 cruise track. Yellow dots indicate stations were gravity cores were collected (see text for details) Bathymetry data from GEBCO 2020 Grid (doi:10.5285/a29c5465-b138-234d-e053-6c86abc040b9) and ice velocity data from https://doi.org/10.24381/cds.0b96b838). The full station log is given in Appendix 1.

#### 6. Scientific operations

#### 6.1 Modern oceanography (WP1)

#### Equipment and operational procedures

The ICAROS CTD and water sampling was planned with an SBE911plus integrated CTD and rosette system with 12, 5-liter Niskin bottles. The system would be supplied from DCH together with the hydrographic winch and frame as part of the grant and project support. This system was not mobilized, only the winch. Attempts to assemble a backup system failed in the days prior to departure after heroic efforts from DCH staff. In the last minute, a simple, less capable (depth rating, bottles) and non-integrated CTD and Rosette system was kindly supplied by the Greenland Institute of Natural Resources, a system operated from R/V *Sanna*. Other backup CTD's considered included systems available from ICAROS partners but placed in Thule and Qaanaaq. These would not allow water sampling and left in place for pickup if needed.

The available CTD for ICAROS and used throughout the cruise was an autonomous, internally recording SBE19plusV2 fitted with several auxiliary sensors. This includes oxygen, fluorescence, PAR and turbidity. The sensor package makes the system well suited for characterizing both oceanglacier and bio-physical interactions in the region. The depth rating of the system is 2000m, just adequate for the planned sections with maximum depths close to 1800m. The low sampling frequency of the SBE19 system (4 Hz) and sensor response times put strong constraints on the lowering speed and add significant time to deep CTD stations as compared to SBE911 systems. The SBE19 system also needed to be operated with additional care and safety margin in order to avoid bottom contact. Bottom depth is known with about 1% uncertainty from the ship navigational system or multibeam, but the only way to estimate the actual depth of the system during deployment is via the wire payout counter and considering wire angles during strong drift. This is another disadvantage of the SBE19 system compared to the SBE911. For ICAROS this was specifically critical as measurements in the near bottom layer is required along with water sampling.

#### Serial numbers and calibration dates

#### SBE 19plus V 2.5.2 SERIAL NO. 7090

- Pressure, SN 7090, 21-Dec-20
- Temperature, SN 7090, 02-Feb-21
- Conductivity, SN 7090, 02-Feb-21
- Oxygen SBE 43, SN 3056, 01-Jan-21
- Fluorometer, Seapoint, SN 3694, 20-Jan-21
- Turbidity meter, Seapoint, SN 10629, 20-Jan-2021
- PAR/Irradiance, Biospherical/Licor, SN 70578, 21-Jan-2021

An operational procedure that optimized instrument safety, ship-time and data quality was decided. This included a payout speed during downcast of 0.5 m/s for the depth range 0-300m, increasing to 1.0 m/s below 300m and during the full up-cast (backup data). Prior to the downcast, the system was dwelling for 3 min while the pumps activated (1min) and sensors equilibrated (2-3 min). In general, it was intended to keep 20-50 m above the bottom (despite scientific interests in the near bottom layer) depending on water depth, but this was not always possible.

Data quality was generally good, exceptions include one casts where bottom contact and mud clutched the pump and intake. Here the upcast was visibly affected. As only downcast are kept and all with superior data quality relative to the upcast (due to instrument design), this is not a critical issue. Also, the system was re-deployed at the same station after cleaning showing no biases, no degrading of sensors. Noise (leakage) from the PAR voltage channel is also observed in most profiles below 150m. Attempts to correct this by cleaning and reassembling cables had a minor, non-lasting positive effect. PAR/Irradiance data above 150m are considered good. Below these depths there is little or no interests in this parameter. It is noted that shadow effects from the ship may hamper the data quality and usability, no consistent positioning to overcome this has been attempted.

For water sampling we made use of programmable autonomous Rosette water sampling system from General Oceanics (Owner: GINR, model number M10180605, Serial NO H18/23473/1735, firmware version 14003), fitted with 6x5l Niskin bottles. Programming the system for preset depths was achieved via the General Oceanics Rosette Sampling System software release 4.019 dated 10/31/2014. The GO rosette system was calibrated in the range 0-400db July 2009 (depth rated to 6000m) and potentially not adequate for sampling of bottom and deep waters as planned. Even though the rosette has been deployed 80+ times, we never experienced reliability of both software/communication and hardware. The rosette system almost consistently failed below 200m. Charging of the internal battery was also not predictable. The manufacturer has been consulted with the conclusion that the system suffers from known bugs and need to be sent to service and upgrades at GO facilities.

In order to collect at least some bottom water, a single 5L Niskin bottle was attached to the CTD wire above the rosette and triggered by a drop-messenger. The success rate of this well-proven system was 100%.



The complete CTD operations log is given in Appendix 2.

Figure 5- Complete Niskin-Rosette-CTD rack assembled for ICAROS 2021 in replacement for the planned SBE911 system.

#### **CTD data processing**

The raw CTD hex files are processed with standard Seabird software and routines. Steps includes the following routines with settings incorporated in the header file of processed data:

- 1. <u>Data Conversion</u> converts raw data to engineering units from
- 2. <u>Filter</u> runs a low-pass filter on one or more columns of data. A low-pass filter smooths high frequency (rapidly changing) data. To produce zero phase (no time shift), the filter is first run forward through the data and then run backward through the forward-filtered data. This removes any delays caused by the filter.

- 3. <u>Align CTD</u> aligns parameter data in time, relative to pressure. This ensures that calculations of salinity, dissolved oxygen concentration, and other parameters are made using measurements from the same parcel of water. Typically, Align CTD is used to align temperature, conductivity, and oxygen measurements relative to pressure.
- 4. <u>Cell Thermal Mass</u> uses a recursive filter to remove conductivity cell thermal mass effects from the measured conductivity
- 5. <u>Loop Edit</u> marks scans bad by setting the flag value associated with the scan to badflag in input files that have pressure slowdowns or reversals (typically caused by ship heave).
- 6. <u>Derive</u> uses pressure, temperature, and conductivity from the input file to compute oceanographic parameters



7. Bin Average averages data, using averaging intervals based on depth range





Figure 7- Cape York section ICAROS2021, Temperature distribution in the upper 600m of the water column.

#### **Ferry Box**

HDMS Lauge Koch is fitted with a SBE21 Seacat Thermosalinograph or 'Ferry Box', measuring underway salinity and temperature from a 5m intake. Data are logged continuously for scientific use with position and time. The system has been running during ICAROS cruise and data presented below. Apparent calibration information indicates that accuracy may be affected by sensor drift since 2017. Temperature SN 3443, 19-Nov-17, Conductivity SN 3443, 19-Nov-17, Temperature SBE38, SN 0989, 22-Nov-17.



Figure 8 - Surface 5m temperature along the ICAROS cruise track from the ship mounted Ferry Box (Seabird)



Figure 9 - Surface 5m salinity along the ICAROS21 Cruise track from the ship mounted Ferry Box (Seabird)

#### Infrared Sea surface temperature Autonomous Radiometer (ISAR)

An ISAR has been installed on port side at level 3 looking at the sea surface. The ISAR provides accurate and reliable measurements of the radiative sea surface temperature (skin SST) to an accuracy of  $\pm 0.1$  K. Infrared emission from the sea surface and atmosphere are measured in the spectral waveband 9.8-11  $\mu$ m. The ISAR system is specifically designed to address the problem of sea-water spray or rain, which without adequate environmental protection of delicate infrared radiometer fore-optics, could introduce significant errors in the skin SST measurement. Furthermore, it provides a self-calibrating infrared radiometer system that can operate autonomously for extended periods. During ICAROS, performance of the system had been monitored daily including the automatic shutter system protecting the delicate infrared radiometer fore-optics. Data will be used for match-up and calibration of satellite-based sea-surface temperature maps.



Figure 10 - ISAR installation, Lauge Koch, during ICAROS 2021 (Installed on the 23<sup>rd</sup> Aug and unmounted on the 3<sup>rd</sup> Sep).

#### 6.2 Ecosystem dynamics (WP2)

#### Environmental DNA (eDNA) – precautionary notes

In preparation of sampling for DNA (seawater and surface sediments) we wore synthetic aprons, face masks and gloves, which we cleaned with 1% bleach followed by a rinse with 70% ethanol. To monitor contamination from rain or sea spray, we attached open 1.5 mL microcentrifuge tubes as air blanks during the sampling procedures. Lanolin was used as a lubricant for the CTD and Rosette wire (10kN winch). The amount was substantial, and we consider this to be a contamination risk to the DNA samples. We took a sample of the Lanolin as control for the eDNA analyses. To avoid contamination, the Niskin bottles were washed with strong detergent, followed by a 1% bleach and 70% ethanol wash at least one time per day. The messenger was cleaned before every deployment as above.



Figure 11 - Use of protective gear during sampling for eDNA on board

#### Water sampling and filtering for eDNA

To assess spatial trend in species composition (with focus on protists) along the NW Greenland coats via DNA metabarcoding, a water sampling program was carried out with the Rosette, which was mounted with 6x 5L Niskin bottles and deployed together with the CTD. The setup was cast twice to 1) collect deep water (bottom) and locate the depth of chlorophyll maximum (DCM) 2) collect water at DCM and at surface, which was programed at 1 m until station 15, and from station 16 onwards at 2 m. From station 4 onwards, the bottles 4-6 did not close at the deeper water depths. As described in section 6.1, a separate 5L Niskin bottle was placed above the Rosette and triggered with a drop messenger which was custom-made for us on the ship. We are therefore very grateful

to the crew of LAKO to have made it possible for us to collect the deeper water samples (> 100 m) from station 26 onwards.

To prevent contamination during the collection of water, we cleaned the nip (outlet) of the Niskin bottle and around the nip with 1% bleach, which was rinsed off with 70% ethanol. We then attached a short hose (soaked in 1% bleach followed by 70% ethanol) onto the nip and flushed it with the collected seawater. Subsequently, we collected the seawater into 1.6 L sterile Whirl-Pak bags through a sterile 200  $\mu$ m mesh size cell strainer to remove larger zooplankton. The water samples were immediately placed at 4°C in the dark, and filtered as soon as possible onto sterile 0.45  $\mu$ M CN filtration units (Thermo Fisher Scientific) with a vacuum not exceeding 0.47 mbar. Each filter was folded with tweezers five times and placed into a sterile 1.5 mL Eppendorf tube to which 1.3 mL RNAlater were added. Between each sample, the tweezers were soaked in 1% bleach (min. 10min, max. overnight) and rinsed with ethanol 70% and finally with DNA away. The DNA samples (40 filtered water samples) plus air blanks from each water sampling event were stored at -20°C until further analysis.

| #  | Station | Region            | Sample ID           | Water depth (m) | Volume filtered (L) |
|----|---------|-------------------|---------------------|-----------------|---------------------|
| 1  | 1       | Rodebay           | LK21ICst.1_bottom   | 400             | 1.5                 |
| 2  | 1       | Rodebay           | LK21ICst.1_DCM      | 20              | 1.5                 |
| 3  | 1       | Rodebay           | LK21ICst.1_surface  | 1               | 1.5                 |
| 4  | 2       | Uummannaq         | LK21ICst.2_surface  | 1               | 1.5                 |
| 5  | 2       | Uummannaq         | LK21ICst.2_DCM      | 35              | 3                   |
| 6  | 2       | Uummannaq         | LK21ICst.2_bottom   | 600             | 3.2                 |
| 7  | 3       | PS26 area         | LK21ICst.3_surface  | 1               | 2.65                |
| 8  | 3       | PS26 area         | LK21ICst.3_DCM      | 42              | 2.8                 |
| 9  | 3       | PS26 area         | LK21ICst.3_bottom   | 340             | 1.6                 |
| 10 | 12      | Uper1 (fjord)     | LK21ICst.12_surface | 1               | 1.25                |
| 11 | 12      | Uper1 (fjord)     | LK21ICst.12_DCM     | 10              | 1.5                 |
| 12 | 13      | Up4 (fjord)       | LK21ICst.13_surface | 1               | 1.215               |
| 13 | 13      | Up4 (fjord)       | LK21ICst.13_DCM     | 3               | 1.275               |
| 14 | 15      | Up7 (fjord)       | LK21ICst.15_surface | 2               | 1.5                 |
| 15 | 15      | Up7 (fjord)       | LK21ICst.15_DCM     | 7               | 1.58                |
| 16 | 17      | Up9 (fjord outer) | LK21ICst.17_surface | 2               | 1.5                 |
| 17 | 17      | Up9 (fjord outer) | LK21ICst.17_DCM     | 10              | 1.5                 |
| 18 | 18      | T1#12             | LK21ICst.18_surface | 2               | 1.4                 |
| 19 | 18      | T1#12             | LK21ICst.18_DCM     | 13              | 1.65                |
| 20 | 21      | PS25              | LK21ICst.21_surface | 2               | 1.45                |
| 21 | 21      | PS25              | LK21ICst.21_DCM     | 32              | 1.37                |
| 22 | 21      | PS25              | LK21ICst.21_bottom  | 350             | 2.5                 |
| 23 | 24      | T2#3              | LK21ICst.24_surface | 2               | 1.6                 |
| 24 | 24      | T2#3              | LK21ICst.24_DCM     | 35              | 1.62                |
| 25 | 24      | T2#3              | LK21ICst.24_bottom  | 275             | 2.28                |

Table 1 - List of water samples collected for eDNA analyses

| #  | Station | Region    | Sample ID           | Water depth (m) | Volume filtered (L) |
|----|---------|-----------|---------------------|-----------------|---------------------|
| 26 | 26      | Melville1 | LK21ICst.26_surface | 2               | 1.5                 |
| 27 | 26      | Melville1 | LK21ICst.26_DCM     | 40              | 1.39                |
| 28 | 26      | Melville1 | LK21ICst.26_bottom  | 868             | 2.9                 |
| 29 | 28      | T3#12     | LK21ICst.28_surface | 2               | 1.375               |
| 30 | 28      | T3#12     | LK21ICst.28_DCM     | 33              | 1.35                |
| 31 | 28      | T3#12     | LK21ICst.28_bottom  | 1700            | 2.175               |
| 32 | 32      | T3#8      | LK21ICst.32_surface | 2               | 1.4                 |
| 33 | 32      | T3#8      | LK21ICst.32_DCM     | 36              | 1.5                 |
| 34 | 32      | T3#8      | LK21ICst.32_bottom  | 385             | 1.95                |
| 35 | 35      | T3#5      | LK21ICst.35_surface | 2               | 1.73                |
| 36 | 35      | T3#5      | LK21ICst.35_DCM     | 32              | 1.6                 |
| 37 | 35      | T3#5      | LK21ICst.35_bottom  | 417             | 1.45                |
| 38 | 39      | Melville3 | LK21ICst.39_surface | 2               | 1.5                 |
| 39 | 39      | Melville3 | LK21ICst.39_DCM     | 15              | 1.65                |
| 40 | 39      | Melville3 | LK21ICst.39_bottom  | 343             | 1.75                |

#### Water sampling for biogeochemistry (nutrients, chlorophyll a, SPM)

To assess the impact of glaciers on the biogeochemical properties of water and on marine ecosystems we conducted a water program using a 'Mini Rosette' water sampling system equipped with 6 individual 5 L Niskin bottles that could be programmed to close at selected depths. At 30 stations we collected 10-15ml water from depths in the upper 50 m of the water column for analysis of dissolved nutrients (nitrate, phosphate, and silicate). For nutrient samples, water was filtered through 0.45  $\mu$ m Millipore filters and stored frozen at -20 °C. For chlorophyll a, 500 ml water was filtered onto 25 mm GFF filters and frozen at -20 °C.

At a subset of 14 of these stations we also sampled deeper water for nutrient analysis (as above), bacterial abundance and suspended particulate matter (SPM). Approximately 4 ml water at each sampled depth was collected for bacterial abundance analysis via flow cytometry. These were fixed with 20  $\mu$ l 2% glutaraldehyde and frozen at -20 °C. For SPM, between 1000 and 2000 ml of water from selected depths was filtered onto pre-weighed and pre-combusted 25 mm GFF filters and frozen at -20 °C.

A complete list of samples taken for water biogeochemistry is given in Appendix 3.

#### Zooplankton

Zooplankton were collected at 6 stations using a Hydrobios Multinet equipped with nets of 50  $\mu$ m mesh. This could be programmed to open and close the nets across five depth ranges that varied depending on the seafloor depth, for example at 0 - 100 m, 100 - 200 m, 200 - 300 m, 300 - 400 m and 400 - 550 m. The nets were rinsed thoroughly with seawater and their contents were preserved with 25 ml 4 % buffered formalin and stored dry.

Individuals in samples will be identified, counted, and measured for prosome length, and this data will be used to calculate zooplankton biomass using known length to weight regression values from literature.



Figure 12 - Deployment and recovery of the multinet for zooplankton sampling

30-08-2021

|            |         |           | Programmed depth ranges |       |       |       |       |
|------------|---------|-----------|-------------------------|-------|-------|-------|-------|
| Date       | Station | Stn depth | Net 5                   | Net 4 | Net 3 | Net 2 | Net 1 |
| 23-08-2021 | 2       | 600       | 100                     | 200   | 300   | 400   | 530   |
| 24-08-2021 | 3       | 380       | 50                      | 100   | 150   | 200   | 310   |
| 26-08-2021 | 15      | 1000      | 150                     | 300   | 450   | 600   | 800   |
| 27-08-2021 | 21      | 747       | 100                     | 200   | 300   | 400   | 500   |
| 28-08-2021 | 24      | 370       | 50                      | 100   | 150   | 200   | 250   |
| 30-08-2021 | 39      | 367       | 50                      | 100   | 150   | 200   | 250   |
|            |         |           | Sample numbers          |       |       |       |       |
| Data       | Station | Chu dauth | Net 1                   | Net 2 | Net 3 | Net 4 | Net 5 |
| Date       | Station | Stridepth | -                       |       |       | -     | _     |
| 23-08-2021 | 2       | 600       | 1                       | 2     | 3     | 4     | 5     |
| 24-08-2021 | 3       | 380       | 6                       | 7     | 8     | 9     | 10    |
| 26-08-2021 | 15      | 1000      | 11                      | 12    | 13    | 14    | 15    |
| 27-08-2021 | 21      | 747       | 16                      | 17    | 18    | 19    | 20    |
| 28-08-2021 | 24      | 370       | 21                      | 22    | 23    | 24    | 25    |

| Table 2 – | List of sam | oles collected | for zoopla | nkton invest | tigations |
|-----------|-------------|----------------|------------|--------------|-----------|
|           |             |                |            |              |           |

#### Phytoplankton sample collection, onboard microscope observations and culturing

At selected stations, water samples collected with Niskin bottles ranging 0-50m water-depth (and 200m-bottom for two stations) were gathered into 25L containers and filtered through a 20-µm mesh for phytoplankton work. Sub-samples of 100-200 ml were fixed with Lugol's solution (4%) and stored at 4°C in amber glass bottles for further taxonomic investigations. Live material from a few stations was both observed under an upright light microscope on board and placed into replicate culture flasks with growth medium (TL and L1). Mixed phytoplankton cultures were kept alive under cool white light at constant temperature in the ship's walk-in cold room (5°C). Microscope observations on board revealed diverse phytoplankton assemblages. The assemblages from station 3 included the diatom taxa Chaetoceros spp. (e.g. C. affinis, C. willie and C. decipiens), Leptocylindrus spp. and Rhizosolenia spp. and dinoflagellates of the genus Protoperidinium as well as Ceratium arcticum. Station 12 was largely dominated by diatoms, mainly Thalassiosira and Chaetoceros species. Coscinodiscus species were detected at low abundance. At station 39, the assemblages were dominated by diatoms, including Chaetoceros spp., Thalassiosira spp., Pseudo-nitzschia spp. and dinoflagellates Alexandrium tamarense, Protoperidinium sp. and Ceratium spp. Single-cell isolations of target species, namely Pseudo-nitzschia spp. and Alexandrium tamarense were performed at GEUS upon arrival to establish clonal cultures and investigate the potential toxicity of these species.

| Sample |         |                |                 |                     |             |
|--------|---------|----------------|-----------------|---------------------|-------------|
| #      | Station | Mesh size (µm) | Water depth (m) | Volume filtered (L) | Live sample |
| 1      | 2       | 20             | 200-439         | 10                  |             |
| 2      | 2       | 20             | 0-50            | 20                  |             |
| 3      | 3       | 20             | 200-340         | 10                  |             |
| 4      | 3       | 20             | 0-50            | 20                  | x           |
| 5      | 12      | 20             | 0-50            | 20                  | х           |
| 6      | 13      | 20             | 0-50            | 15                  |             |
| 7      | 17      | 20             | 0-50            | 15                  |             |
| 8      | 18      | 20             | 0-50            | 15                  | х           |
| 9      | 21      | 20             | 0-50            | 15                  |             |
| 10     | 26      | 20             | 0-50            | 15                  | х           |
| 11     | 35      | 20             | 0-50            | 15                  | x           |
| 12     | 39      | 20             | 0-50            | 15                  | x           |

Table 3 – List of samples collected for phytoplankton investigations

#### 6.3 Holocene Paleoceanography (WP3)

#### 6.3.1 Seismo-acoustic investigations

The seismo-acoustic investigations (sub-bottom profiling (SBP) and multibeam echosounding (MBSE) on the ICAROS-2021 expedition served two purposes:

- To investigate the geology of the surveyed area, primarily focusing on the configurations of (smaller or larger) sediment basins and expected thickness of soft sediment successions, but also on identification and mapping of morphological features on the seafloor (e.g. glacial landforms), substrate structures such as faults and folds, and re-depositional sediment structures such as contourites or mass transport deposits
- To identify suitable locations for the sediment sampling program with the gravity and Rumohr Lot corers based on the investigations of the geology and in particular the surveying for soft sediment (mud) packages (preferable > 4 m in thickness)

During the first leg (Aasiaat to Pituffik), SBP and MBES data were acquired almost continuously (e.g. both during transit and at stations), as much as the surveyor capacity allowed (only one geophysicist onboard LAKO to do the surveying). At some nights, the ship was anchored and surveying could therefore not be performed.

All stations (both CTD and sediment coring stations) were preplanned prior to the cruise. While some of these were well-constrained in terms of information on the substrate and sediment compositions (e.g. by use of existing seismo-acoustic data or information from the literature), others were planned with no prior knowledge of the substrate conditions and no existing seismo-acoustic data control. Hence, for all coring stations seismo-acoustic surveying were carried out prior to deploying the coring devices in order to check the substrate conditions. Depending on the amount of shiptime set aside for surveying these site investigations ranged in duration from only a couple of crossings at the coring sites, to several hours when surveying was planned during the night time and a proper survey could be done. For many of the planned sites, the surveying showed good conditions for coring, while for others, new locations had to be found based on a more extensive survey – typically in an area of ca. 10 km x 10 km around the originally planned site.

Suitable coring sites were identified as areas with a relatively flat or smooth seafloor and where at least 3 m of subparallel (stratified) low-amplitude reflections could be observed on the SBP data immediately below the seafloor. Furthermore, the area of stratified reflections should preferably have a certain lateral extent (>100 m) to allow for some drifting during the coring operations. When drifting exceeded ca. 500 m, the ship typically repositioned back to the planned site.

The seismo-acoustic investigations were carried out from the Flexroom at LAKO via remote desktop connections to the SBP (Fig. 13), MBES and NaviPac/NaviScan computers. Communication to the bridge and the aft deck relied on radios or telephone. It would have been of benefit, with a screen link to the cameras on the aft deck from the Flexroom, so that the geophysical surveyor placed in the Flexroom could follow the deck operations more easily.

#### Sub-bottom profiler

#### Instrument and method

The sub-bottom profiler instrument used for the shallow seismic surveying onboard LAKO is an Innomar SES-2000 Deep, Narrow-Beam Parametric Sub-Bottom Profiler. The instrument is hull-mounted on the ship (placed centrally in the front half of the ship), next to the multibeam echosounder, and associated with a motion sensor (IMU) for recording the heave, pitch and roll variations and a GPS (Applanix PosMV5) for navigation. The cruise track was logged via the Ethernet Logging option in the POSMV module and also via the NaviPac Custom Logging Module.

The parametric sub-bottom profiler works by transmitting a primary fixed high-frequency (HF) (35 kHz) sound pulse (formed as an electrical signal from a transducer) and a secondary pulse that interferes with the primary pulse to form a final lower frequency (LF) sound pulse with frequencies between 2 and 7 kHz. The sound travels through the water column to the seafloor and subsurface layers where it is reflected from the seafloor and the layer interfaces and then travels back to the receiver where it is recorded (Fig. 13). By utilizing the time it takes for the pulse to travel to the seafloor and back again (the two-way-travel time, TWT) as well as the differences in arrival time from different layer interfaces at varying depths (Fig. 13), vertical profiles of the subsurface can be constructed. From these, the geophysicist can interpret the subsurface.

The SBP instrument records data in SES and RAW formats (Fig. 14), which are converted to SEG-Y format using the SES-convert software. No processing of the raw data was carried out onboard LAKO. After conversion, the SEG-Y files were loaded into IHS Markit Kingdom Suite (seismic interpretation software) (Fig. 15) for preliminary interpretation.



Figure 13 - Sub-bottom profiler. Left: Control computer for the permanently installed Innomar SES-2000 Deep sub-bottom profiler at LAKO. Middle and Right: Principle of seismic reflection used in sub-bottom profiling. Reflections from the deeper geological layers will arrive later (i.e. longer two-way travel times (TWT)) than reflections from the shallower layers. The difference in arrival time can be processed into images (vertical sections/profiles) of the subsurface.

| S 352000-047 - forbindete IV Fjendsrivebord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D ×          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 2/ 555 for Windows - [C:\58P_Data\LAKC2021\UCAR055U(LAR0520210823155316.ses]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| Program Options Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| ■ ● 全 ■ ● 図 ⑤ ⑤ 申 窓 べ 刊 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
| Deph Treehold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -John 202    |
| General Transmil Gam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | still.       |
| Bage Process State Contract State St | -5,9 0m (590 |
| Star Exercise Starter Starte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 124          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -595m-595    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112          |
| Auto Range Start come                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -600m-600    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            |
| Adult Ping Rate: Innu D Geom - 600m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -B05M-605    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -610m 610    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6. m         |
| Foot Prive (3dB) 21 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 615#-615     |
| Foot Plue (6dB) 30 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |
| 620m 620m 620m 620m 620m 620m 620m 620m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 620H 620     |
| SIS MS SIG MAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| SIG1 0560228366 625m 625m 625m 625m 625m 625m 625m 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -625m-625    |
| SS2 70800721<br>SS3 1980010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| SS 70 638 630 630 630 630 630 630 630 630 630 630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -630m-630    |
| 565 \$5524713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sec          |
| 2016 (20200/14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dorta ere    |
| 208221 [15543] [NI] @ FNI rooperBul (R-Popt 0 	 0.2193448 	 55 deas. 	 515 deas. 	 MCP: rodes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |

Figure 14 - Example of a raw data recording display from the SES-win software at Station 2 (Ummanaq) showing a thick sedimentary drape above basement rocks. Settings for the data recording are adjusted in the left-side grey panels. Left color display shows the HF signal (which is mainly used for seafloor detection) while the colour display to the right shows the LF signal (where the substrate is visible). Vertical scale is meters (depth converted from TWT using a constant velocity of 1500 m/s).



Figure 15 - Corresponding image of the data from Fig. 14, converted to segy-format and loaded in Kingdom Suite. Vertical scale in TWT.

#### Data quality and resolution

As the target area for the ICAROS expedition extended across Disco Bay, Uummannaq and Upernavik Troughs and fjord systems, and Melville Bay, a wide range of water depths from 50-1800 m were encountered. In the beginning of the cruise, settings were tested in order to find the best settings for a good data quality. These settings were then generally kept throughout the cruise (Fig. 16). In summary, we used a 4 kHz LF pulse, with 2 LF pulses emitted, and a range length of either 50 m, 100 m or 200 m. The Deep Water Pulse Mode was activated, which allowed for higher ping rates up to 11 pps for the 50 m range length. The 50 m range length was preferably used at the coring sites in order to get higher resolution images of the substrate, while we often used 100 m or 200 m range during the transits. For the coastal areas, use of the larger range lengths were particularly necessary due to great variations in water depths over small distances.

Acquisition speed varied as surveying was done both during transit and at stations. Transit speed was 12 knots, while dedicated survey speed was 5 knots or 8 knots. All speeds produced usable data although for detailed mapping, the 5 knots was clearly best. Interference with propeller noise appeared to be reduced below 5 knots, while it was most severe at around 7 knots. Other tests for eliminating noise were also performed such as checking the interference with the other acoustic systems on LAKO, in particular the MBES as well as the single beam echosounder (SBES) and forward-looking sonar used by the bridge. None of these appeared to have any negative effects on the quality of the SBP data. The main factor for SBP data quality was therefore related to survey speed.

The SES-2000 Deep is designed to deliver ultra-high-resolution reflection seismic data optimized for mapping the shallowest subsurface. Depending on the geology of the areas investigated and the water depths, the subsurface penetration depth on the ICAROS 2021 expedition varied from no penetration in areas with a 'hard' seafloor, such as on the ice ploughmarked platforms on the shelf, to over 50 m penetration in areas with thick soft sediment successions – typically within the fjords. The average penetration was around 15-20 m. Concerning resolution, an average velocity of 1500 m/s for the sediments gives a dominant wavelength of 0.4 m (using a dominant frequency of 4 kHz) which in turn gives a vertical resolution around 10 cm (estimated here as a quarter of the dominating wavelength). Hence, the instrument should be able to fully resolve layers that are above 10 cm in thickness.

| INNOMAR SETTINGS ICARC   | DS 2021                                    |                      |          |
|--------------------------|--------------------------------------------|----------------------|----------|
| Range                    | Threshold                                  |                      |          |
| Auto Range Start         | OFF                                        | LF Mode              | LOG      |
| Use LF-waterdepth        | OFF                                        | LF Min level         | 5        |
| Ping Rate                | Maximum, ranges from 1-11 pps ca, depends  | LF SRange            | 10       |
|                          | on water depth, lenght of range window and |                      |          |
|                          | transmit mode                              |                      |          |
| Length                   | 50-200 m, depending on expected topography | HF Mode              | LOG      |
| General                  |                                            | HF Min Level         | 1        |
| Ship                     | LAKO                                       | HF SRange            | 10       |
| Travel                   | ICAROS 2021                                | Gain                 |          |
| Area                     | NW Greenland                               | LF Gain              | 60-70 dB |
| Depth                    |                                            | HF Gain              | 46-60 dB |
| LF detection sesibility  | 40 %                                       | LF Auto Gain control | OFF      |
| HF detection sensibility | 40 %                                       | HF Auto Gain Control | OFF      |
| Detection offset         | 10 %                                       | Deep Water Amplifier | OFF      |
| Bottom Averaging         | 5                                          | Transmit             |          |
| Process                  |                                            | LF frequency         | 4 kHz    |
| Stacking                 | 2                                          | LF Pulses            | 2        |
| Smoothing                | 3                                          | High Energy Mode     | OFF      |
| soft TVG                 | 0 to 0.5                                   | Multi Frequency Mode | OFF      |
| LF Depth for TVG         | OFF                                        | Dual Range Mode      | OFF      |
| Normalize Gain           | OFF                                        | Beam Steering Mode   | OFF      |
| Reduce Noise             | ON                                         | Deep Sea Pulse Mode  | ON       |
| Median Filter            | ON                                         | Burst Mode           | OFF      |
| Swell Filter             | OFF                                        | Chirp Mode           | OFF      |

Figure 16: Overview of SBP settings used during the ICAROS2021 expedition.

#### **Encountered operational problems**

Based on experience from the LAKO research cruise in 2019 (BIOS2019), trigger cables from the SBP and the MBES had been installed on LAKO. Using a trigger box unit from Aarhus University, these cables should allow for trigger synchronization of the two systems (and a third sparker system used during the DaSSap cruise) so that interference could be avoided. While the trigger box connection to the SBP worked without problems, the connection to the MBES did not come through. The trigger cable itself was tested for errors, but none were found. This led us to conclude that the trigger cable most likely had been connected to the wrong port on the MBES computer in Apparatrum 3. Since the connection is placed on the back side of the MBES computer, we could not immediately check whether this was in fact the case. Rather, we needed assistance from the ships technician to dismantle the MBES computer for performing this check-up. Due to a tight research program, where the DCH technician onboard was needed for CTD winch and A-frame operations full-time, we did not investigate the problem any further.

We also did not have the possibility of using the built-in synchronization options in the user interfaces for the SBP and MBES because the two instruments were not connected. Hence, surveying was done throughout the cruise with no synchronization between the MBES and the SBP. The lack of synchronization caused a slightly lower quality of the recorded MBES data – particularly for water depths above 550 m (see more in section on MBES). However, it did not, as described earlier, induce any negative effects on the SBP, but rather allowed for the highest possible ping rates for the SBP to be used (via the Deep Sea Pulse Mode) since the SBP did not have to 'wait' for the slower pinging MBES.

Other issues to be mentioned are instances of drop-out of the POSMV GPS (twice). It occurred two evenings in a row (26-27 august 2021, while the ship was in the Upernavik Trough) at around 19.30 (ship time) and lasted for about 20 min. During this time interval the POSMV did not receive reliable GPS input impacting both the navigation/positioning in NaviPac and Helmsmann Display as well as the IMU sensor data and the roll, pitch and heave logging for the SBP (in the SES-2000 software) and MBES (in NaviScan). During the drop-out time, the SBP seafloor and trackline in Helmsmann Display 'jumped' (see Fig. 17). Restarting NaviPac online did not fix the problem, so it was likely isolated to the POSMV. After approximately 20 min, the POSMV received normal data again and the problem was over. This only occurred twice during the cruise.



Figure 17: Screen-dump showing data during drop-out of POSMV on the 27 august 2021. All instruments and navigation data were affected.

#### Multibeam echosounding

The multibeam echosounder (MBES) acquisition on the ICAROS-2021 cruise served to acquire bathymetry data along the planned transects, at stations and during transit between stations. This data provide information on the seafloor morphology, which allow for interpretations of glacial and sediment dynamics in the surveyed areas and can further be used as additional information in the selection of good coring sites (e.g. Fig. 18).



Figure 18: Example of recorded MBES data as they appear in NaviModel. The data is from the Upernavik Fjord (view towards south) showing a flat fjord bottom with soft stratified sediments and steep rocky sides.

LAKO is routinely used by the Danish Hydrographic Service (Søopmålingen) and the infrastructure for acquisition of bathymetry was passed on in an informal handover with the hydrographers before they departed the ship. This was done in Nuuk on the 12. August 2021 in relation to the previous research cruise with LAKO, DaSSap (the week prior to ICAROS). The handover included discussions on software setup, acquisition parameters and post-processing workflows related to the Seabat 7160 and the RapidCast system. The RapidCast system was used during the DaSSap cruise but not deployed during the ICAROS cruise because CTD measurements were carried out with other instruments at the stations.

In general, MBES bathymetry was acquired continuously as far as possible. Survey time was limited by the capacity of only one geophysicist onboard the ship responsible for all of the surveying. At stations, the MBES was typically turned off during the winching operations. MBES data was logged to NaviScan Online where a point cloud and preliminary DTM could be viewed together with heave, roll and pitch measurements to quality check the data. Data was logged in .SBD format together with the online sound velocity profile data. Water column data or backscatter data (side scan and snippets) (.s7k format) were not acquired or recorded during this expedition.

#### Instrument and method

LAKO has two hull-mounted MBES systems. A Teledyne Reson Seabat T50 and 7160. Because we acquired data in both deep and shallow water settings, we used the Seabat 7160 during the entire expedition. This MBES emits up to 512 beams in a swath that produces "3D-scannings" of the seafloor. Navigation and altitude data is derived from the Applanix PosMV5. Online sound velocity used in the beamforming process is obtained from two SV70 sensors mounted and run in a tandem configuration. Multibeam parameter settings used during the cruise are shown in Fig. 19.

| Instrument type             | Reson Seabat 7160                                                       |
|-----------------------------|-------------------------------------------------------------------------|
| Primary high frequncy       | 44kHz                                                                   |
| Range                       | varies with water depth                                                 |
| Power                       | full power (223 dB)                                                     |
| Beam Mode                   | Best coverage (512ED) (equi-distant)                                    |
| Ping rate                   | Max                                                                     |
| Actual ping rate            | around 1.0-1.3 pps                                                      |
| Beam width                  | 1.5 degree (minimum)                                                    |
| Puse length                 | 4.5 ms (ok for water dephts up to 500 m), deeper 8.0 ms                 |
| Pulse Type                  | CW (constant wavelength at 41.5 kHz), not used FM (Frequency modulated) |
| Horizontal steering         | 0 degrees as default but sometime steering was used in the fjords       |
| Coverage angle              | 80-130 degrees, varies depending on noise from innomar and water depth  |
| Absolute depth gates        | varies, depending on water depth                                        |
| online sound velocity probe | varies typically around 1470-1480 m/s                                   |
| Absorption                  | 0.0 dB/km                                                               |
| Spreading                   | 3.0 dB                                                                  |
| Tracker                     | OFF                                                                     |

Figure 19: Settings for the 7160 used during MBES surveying on ICAROS 2021.

#### **Data quality**

The quality of the MBES data was generally very good (Figs. 20 and 21) except for water depths where there was a high interference with the SBP (Fig. 22).



Figure 20: Examples of good MBES data from the SeaBat 7160 User Interface, with no interference from the SBP (turned off). There is a strong clear detection of the seafloor in both examples. Top: water depths of 731 m showing an area with a generally flat seafloor. The minor curvature is due to the actual seafloor topography). Bottom: MBES from one of the fjords where tilting of the depth gates was applied.



Figure 21: Example of good MBES data logged in NaviScan Online.

Poor data resulted from interference with the SBP due to the lack of synchronization between the two instruments as described earlier. Interference was most severe for depths > 550 m. Below 550 m water depth, the SBP did not disturb the MBES very much. MBES recording was typically paused when drifting at stations. For some of the transits across deep-water settings, we further decided to turn off the SBP recording to allow for good MBES.

| 💎 SeaBat - [7160 (44kHz)]                                                                                                                   |                                                                                                                                                                              | SIN18272415020                                                                                                                                           |                |                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------|
| General Configuration Normalization Help                                                                                                    | p                                                                                                                                                                            |                                                                                                                                                          |                |                                                                               |
| Primary Display - 41 kHz   🔅 BITE [00]   🏶 N                                                                                                | Notion   Side Scan - Disabled   Snippets - Disabled                                                                                                                          |                                                                                                                                                          |                |                                                                               |
| 260<br>Magnitude<br>0m<br>250m<br>500m                                                                                                      | Operator Mode \<br>Ping Number : 3764297<br>Range : 1400.0 m<br>Power 223.0 dB<br>Gain (TVC) : 20.0 dB<br>Pring Rate : 1 1 p/s<br>Pulse Length : 8.000 ms<br>Pulse Type : CW |                                                                                                                                                          | 250 m<br>500 m | Roll Stab. : OFF<br>Pitch Stab. : OFF<br>Tracker : OFF<br>Quality Filter : ON |
| 781.8 750m                                                                                                                                  |                                                                                                                                                                              | V.115-                                                                                                                                                   | 1000 m         |                                                                               |
| 1250m<br>1400m<br>MIN TRAX                                                                                                                  | Freezo     Mode Manual                                                                                                                                                       | Range :                                                                                                                                                  |                | Both good<br>Brightness failed<br>Colinearity failed<br>Both failed           |
|                                                                                                                                             | aizacion 💌 Max 🖉 🖉                                                                                                                                                           | keross inc Depth :                                                                                                                                       |                |                                                                               |
| Man Sonar Settings Detection Settings Ocean I<br>Range<br>25.0 2000.0 0<br>Pover Gain<br>CFF 223 db 0.0<br>Beam Mode<br>Eet Coverage (512E) | Menu   Primary Display Settings                                                                                                                                              | Screen Recording I JO Module Setup  <br>Horizontal Sterring CW Freque<br>-35° 35° 41 letz<br>Coverage Angle<br>60° Default 150°<br>Enable Beam Reduction | ency           |                                                                               |

Figure 22: Example of poor MBES data at water depth of 750 m, due to interference with the SBP

For some of the recorded data, the MBES data showed a set of two parallel noise lines at approximately 30-40 degrees angle on either side ("Erik's horn" artefacts). We tested whether this noise was induced by the SBP, the SBES or the forward-looking sonar, but turning off all three instruments did not remove the noise. Hence, this is something that will have to be cleaned during the postprocessing of the data. No such processing was performed during the cruise due to limited surveyor capacity.



Figure 23: Point cloud and DTM from NaviScan showing the two parallel noise tracks at ca. 30-40 degree angles (from nadir) on both sides. The noise will be cleaned during processing of the data

## 6.3.2 Sediment sampling

We retrieved a total of 14 Haps, 8 Gravity cores and 4 Rumohr cores during the expedition, which amount to about 40m of marine sediments (including 34m of gravity core records).

#### **HAPS** corer

Surface sediments were collected from the seafloor using a HAPS sediment corer. The HAPS is highly suitable for taking well defined, undisturbed samples from hard as well as soft sediments. This can be seen by a clear water phase above the sediment surface. When the sediments were covered by seawater, the water was removed using a 50 mL syringe (previously soaked in 1% bleach followed by 70% ethanol rinse). Stones or larger organisms were removed from the surface if necessary. We sampled 10 g of the sediment surface (0-1 cm, stored frozen) for DNA into a sterile Whirl-Pak using a sterile spoon, followed by 20 g for biomarkers (0-1 cm, stored frozen), 20 g for germination (0-2 cm, stored cooled) and 20 g for foraminifer microfossil analyses (0-2 cm, stored cooled). We collected 14 samples for germination, 13 for DNA and biomarkers, and 11 for foraminifers.

| #  | Station | Sample name      | Region    | Samples                               |
|----|---------|------------------|-----------|---------------------------------------|
| 1  | 2       | LK21ICst.2HAPS1  | Uummannaq | fresh                                 |
| 2  | 3       | LK21ICst.3HAPS1  | PS26 area | DNA, fresh, freeze                    |
| 3  | 12      | LK21ICst.12HAPS1 | Uper1     | DNA, fresh, freeze                    |
| 4  | 15      | LK21ICst.15HAPS1 | Up7       | DNA, fresh, freeze, forams            |
| 5  | 17      | LK21ICst.17HAPS1 | Up9       | DNA, fresh, freeze, forams            |
| 6  | 18      | LK21ICst.18HAPS1 | T1#12     | DNA, fresh, freeze, forams            |
| 7  | 21      | LK21ICst.21HAPS1 | PS25      | DNA, fresh, freeze, forams            |
| 8  | 22      | LK21ICst.22HAPS1 | T2#1      | DNA, fresh, freeze, forams            |
| 9  | 24      | LK21ICst.24HAPS1 | T2#3      | DNA, fresh, freeze, forams            |
| 10 | 26      | LK21ICst.26HAPS1 | Melville1 | DNA, fresh, freeze, forams            |
| 11 | 28      | LK21ICst.28HAPS1 | T3#12     | DNA, fresh, freeze, forams, push core |
| 12 | 32      | LK21ICst.32HAPS1 | T3#8      | DNA, fresh, freeze, forams            |
| 13 | 35      | LK21ICst.35HAPS1 | T3#5      | DNA, fresh, freeze, forams            |
| 14 | 39      | LK21ICst.39HAPS1 | Melville3 | DNA, fresh, freeze, forams            |

**Table 4** - List of surface sediment samples taken for eDNA analyses, germination (fresh),

 biomarkers (freeze), and foraminifers (forams).



Figure 24 - Deployment of the Haps corer during ICAROS21

#### **Rumohr lot**

The Rumohr corer consists of weights to which an unsupported transparent liner made from PC (up to 2m-long and with an outer diameter of 80 mm) is attached. When the Rumohr corer reaches and penetrates the seafloor, the liner is filled with sediment and the loss of tension on the wire causes the lid to release. As the corer is pulled up, the tension closes a small valve on top of the liner, which keeps the sediment from being lost. A Rumohr-lot core makes it possible to retrieve a sediment record of the uppermost seabed without disturbing the sediments. This is possible because the core penetrates the sediment with a relatively small weight compared to that of a gravity core, thereby decreasing the likelihood of sediments being blown away from the seabed. During ICAROS21, the Rumohr lot was deployed using the A-frame and 50kN winch. The liner bottom was capped during recovery (with the corer still attached to the winch) and after each core was secured on deck, a hole was drilled in the liner close to the water-sediment interface to remove the water. The surface sediments were sub-sampled on deck before each core was capped, labelled, sealed, and stored in the refrigerated container.



*Figure 25 - Mounting of a liner in the Rumohr corer metal frame before deployment* 

#### **Gravity corer**

A gravity corer consisting of a 5.8m-long metal barrel was used to recover soft Holocene sediments. Besides the metal barrel, the gravity corer includes a core catcher, and lead plates making up a total weight of about 1000 Kg. Before each deployment, the core barrel was loaded with a PVC liner with an outer/inner diameter of 125/115 mm. The core catcher prevents the liner with sediments from sliding out of the barrel after recovery. The gravity corer was deployed by using both the ships crane and the A-frame, installed at the starboard side of the ship. The corer was deployed at a velocity of 1 m/s. After recovery, the gravity corer was moved inboard and turned along the ship using the LAKO crane. We carefully removed the core catcher and collected any visible material suitable for radiocarbon dating (e.g. mollusk shells, seaweed fragments, organic warm tubes) as well as core catcher sediments into sample plastic bags. Prior to cutting and to avoid contamination (sedaDNA studies), both the liner and the metal spatula used to slice the sediments were carefully cleaned with bleach and ethanol. The liner was then cut into 1m-long sections and each section was labelled, capped on both ends, sealed with tape, and stored in the refrigerated container (4-7 °C). The deployment of the gravity corer was successful and there were no technical problems, however, since the corer was missing a metal plate, overpenetration occurred at several of the coring sites with soft sediments (see Table below for details).



Figure 26 - Deployment and recovery of the gravity corer

| # | Station | Water<br>depth (m) | Core<br>type | Core ID       | Length (cm)  | Core<br>catcher | Comments                                                      |
|---|---------|--------------------|--------------|---------------|--------------|-----------------|---------------------------------------------------------------|
| 1 | 1       | 438                | GC           | LK21ICst.1GC1 | 573          | Bulk and        | C14: 2 shell samples (B sec                                   |
|   |         |                    |              |               | (6 sections) | Jeaweeu         |                                                               |
| 3 | 2       | 600                | RUM          | LK21ICst.2R1  | 124          | -               | Undisturbed surface;<br>about 25cm of the core<br>bottom lost |
| 4 | 2       | 601                | GC           | LK21ICst.2GC1 | 575          | Bulk            | Shell fragments at bottom                                     |
|   |         |                    |              |               | (6 sections) |                 | of section 1, overshot                                        |
| 5 | 3       | 368                | RUM          | LK21ICst.3R1  | 107          | -               | Undisturbed surface                                           |
| 6 | 3       | 374                | GC           | LK21ICst.3GC1 | 575          | Bulk            | C14: Core catcher shell,<br>and shell from bottom of          |
|   |         |                    |              |               | (6 sections) |                 | sec.1                                                         |

| Table 5 – List of Rumohr and Gravit | v cores retrieved during ICAROS21  |
|-------------------------------------|------------------------------------|
|                                     | y cores retrieved during rearroszi |

| #  | Station | Water<br>depth (m) | Core<br>type | Core ID        | Length (cm)         | Core<br>catcher | Comments                                         |
|----|---------|--------------------|--------------|----------------|---------------------|-----------------|--------------------------------------------------|
| 7  | 12      | 998                | GC           | LK21ICst.12GC1 | 575<br>(6 sections) | Bulk            | C14: tube worm from bottom, overshot             |
| 8  | 21      | 747                | GC           | LK21ICst.21GC1 | 400<br>(4 sections) | Bulk            | Section 5 lost                                   |
| 9  | 26      | 912                | GC           | LK21ICst26GC1  | 320<br>(4 sections) | Bulk            | Top recovered, but top ca.<br>15cm disturbed     |
| 10 | 28      | 1705               | Haps         | LK21ICst.28H1  | 29                  | -               | Push-core from Haps after sampling the surface   |
| 11 | 36      | 555                | RUM          | LK21ICst.36R1  | 53,5                | -               | Surface tilted, core tube bent                   |
| 12 | 36      | 559                | GC           | LK21ICst36GC1  | 256<br>(3 sections) | Bulk            | Surface recovered; slightly disturbed            |
| 13 | 37      | 570                | GC           | LK21ICst.37GC1 | 156                 | Bulk            | Top recovered; Surface collected in a sample bag |

## 7. Permits (leg 1)

In compliance with the Biological Diversity Convention, the Nagoya Protocol and the Greenland Parliament Act no. 3 of 3 June 2016, we obtained a Prior Informed Consent for the collection and use of genetic resources in Greenlandic waters (non-exclusive licence no. G21-041) from the Ministry of Foreign Affairs, Business, Trade and Climate of Greenland on the 10.08.2021. This licence includes an export permit for the genetic resources.

## 8. Outreach

A filmmaker from the GEOCENTER Underground Channel (Frederik Teglhus) joined the cruise and collected high-quality visual material for communication and educational purposes. This included professional still photography and short films.

Four short films were produced and are available at the Channel homepage: https://www.undergroundchannel.dk/videos#64532389

The cruise was promoted via social media (Twitter and Facebook, #ICAROS21) and via a blog hosted at the GEUS homepage:

https://eng.geus.dk/nature-and-climate/palaeoclimate/scientific-expedition-on-board-hdmslauge-koch

Collaboration with Underground Channel will ensure a professional digital legacy of the cruise for multiple purposes.

#### 9. Acknowledgments

We thank the captain and crew of *HDMS Lauge Koch* for their outstanding support and hospitability. A special thanks to John Boserup and the logistics department at GEUS for providing logistical support and testing the coring equipment during the cruise preparation phase. This research cruise was funded by the Dansk Center for Havforskning, The Independent Research Fund of Denmark (DFF Sapere Aude grant nr. 9064-00039B), and the European Union (Marie Skłodowska Curie Actions). We are indebted to Eik Bristch for his invaluable technical assistant during the cruise and Anna Bang Kvorning for onshore support and for designing the cruise logo.

#### 10. References

AMAP, 2017. Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017.

Armbrecht, L. H., Coleen, M. J. L., Lejzerowicz, F. *et al.* (2019). Ancient DNA from marine sediments: Precautions and considerations for seafloor coring, sample handling and data generation. *Earth-Science Reviews* 196.

Hopwood, M.J., Carroll, D., Browning, T.J. *et al.* Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. *Nature Communications* 9, 3256 (2018).

IPCC, 2019. Special Report on the Ocean and Cryosphere in a Changing Climate 2019.

Jackson, R., Kvorning, A.B., Limoges, A., Georgiadis, E., Olsen, S.M., Tallberg, P., Andersen, T. J., Mikkelsen, N., Giraudeau, J., Massé, G., Wacker, L., Ribeiro, S. (2021). Holocene polynya dynamics and their interaction with oceanic heat transport in northernmost Baffin Bay. *Scientific Reports* 11, 10095 <u>https://doi.org/10.1038/s41598-021-88517-9</u>

McFarlin, J.M., Axford, Y., Osburn, M.R. *et al.* (2018) Pronounced summer warming in northwest Greenland during the Holocene and Last Interglacial. *Proceedings of the National Academy of Sciences* 115 (25) 6357-6362; DOI: 10.1073/pnas.1720420115

Meire, L., Mortensen, J., Meire, P. *et al*. (2017). Marine- terminating glaciers sustain high productivity in Greenland fjords. *Global Change Biology* 23 (12).

Morlighem, M., Wood, M., Seroussi, H., Choi, Y. and Rignot, E. (2019) Modeling the response of northwest Greenland to enhanced ocean thermal forcing and subglacial discharge. *The Cryosphere* 13(2): 723-734.

Münchow, A., Falkner, K.K., Melling, H. (2015). Baffin Island and West Greenland Current Systems in northern Baffin Bay. *Progress in Oceanography* 132: 305-317.

Ribeiro, S., Limoges, A., Massé, G., *et al.* Vulnerability of the North Water ecosystem to climate change. *Nature Communications* 12, 4475 (2021). <u>https://doi.org/10.1038/s41467-021-24742-0</u>

Smith, G.C., Allard, R., Babin, M, et al and the WWRP PPP Steering Group (2019): Polar Ocean Observations: A Critical Gap in the Observing System and Its Effect on Environmental Predictions From Hours to a Season <u>https://doi.org/10.3389/fmars.2019.00429</u>

Straneo, F., Sutherland D.A., Stearns, L., Catania, G., Heimbach, P., Moon, T., Cape, M.R., Laidre, K.L., Barber, D., Rysgaard, S., Mottram, R., Olsen, S., Hopwood, M.J. and L. Meire (2019): The Case for a Sustained Greenland Ice Sheet-Ocean Observing System (GrIOOS): <u>https://doi.org/10.3389/fmars.2019.00138</u>

#### 11. Appendices

## Appendix 1 – Full station Log

| Day   | Time  | Station   | Station | Latitude | Longitude | Depth | Drift            | Code | Status  | Success  |
|-------|-------|-----------|---------|----------|-----------|-------|------------------|------|---------|----------|
|       | (UTC) |           | number  | (DD)     | (DD)      | (m)   | speed<br>(knots) |      |         | (coring) |
| 22-08 | 2012  | RB        | 1       | 69,39285 | -51,02247 | 438   | 0,1              | CTD1 | Deploy  |          |
| 22-08 | 2035  | RB        | 1       | 69,39345 | -51,02079 | 438   | 0,3              | CTD1 | Bottom  |          |
| 22-08 | 2044  | RB        | 1       | 69,39403 | -51,01964 | 439   | 0,4              | CTD1 | Recover |          |
| 22-08 | 2118  | RB        | 1       | 69,39708 | -51,01405 | 439   | 0,4              | CTD2 | Deploy  |          |
| 22-08 | 2127  | RB        | 1       | 69,39803 | -51,01214 | 439   | 0,4              | CTD2 | Bottom  |          |
| 22-08 | 2136  | RB        | 1       | 69,39881 | -51,01061 | 438   | 0,4              | CTD2 | Recover |          |
| 22-08 | 2142  | RB        | 1       | 69,39937 | -51,00966 | 439   | 0,4              | CTD3 | Deploy  |          |
| 22-08 | 2146  | RB        | 1       | 69,39969 | -51,00911 | 439   | 0,4              | CTD3 | Bottom  |          |
| 22-08 | 2149  | RB        | 1       | 69,40007 | -51,00868 | 438   | 0,4              | CTD3 | Recover |          |
| 22-08 | 2232  | RB        | 1       | 69,40513 | -51,00245 | 439   | 0,5              | BOX1 | Bottom  | F        |
| 22-08 | 2250  | RB        | 1       | 69,40706 | -50,99972 | 439   | 0,4              | BOX2 | Bottom  | F        |
| 22-08 | 2308  | RB        | 1       | 69,40898 | -50,99741 | 438   | 0,4              | GC1  | Bottom  | ОК       |
| 22-08 | 2345  | RB        | 1       | 69,41278 | -50,99231 | 438   | 0,5              | RUM1 | Bottom  | F        |
| 23-08 | 00:07 | RB        | 1       | 69,41523 | -50,98837 | 434   | 0,4              | RUM2 | Bottom  | ОК       |
| 23-08 | 14:26 | Uummannaq | 2       | 70,82495 | -56,03401 | 600   | 0,5              | CTD1 | Deploy  |          |
| 23-08 | 14:50 | Uummannaq | 2       | 70,82469 | -56,03981 | 601   | 0,3              | CTD1 | Bottom  |          |
| 23-08 | 15:03 | Uummannaq | 2       | 70,82482 | -56,04347 | 601   | 0,3              | CTD1 | Recover |          |
| 23-08 | 15:16 | Uummannaq | 2       | 70,82470 | -56,04712 | 601   | 0,2              | CTD2 | Deploy  |          |
| 23-08 | 15:33 | Uummannaq | 2       | 70,82506 | -56,05304 | 600   | 0,2              | CTD2 | Recover |          |
| 23-08 | 15:54 | Uummannaq | 2       | 70,82540 | -56,05975 | 600   | 0,2              | RUM1 | Bottom  | ОК       |
| 23-08 | 16:11 | Uummannaq | 2       | 70,82563 | -56,06519 | 599   | 0,2              | CTD3 | Deploy  |          |
| 23-08 | 16:13 | Uummannaq | 2       | 70,82567 | -56,06565 | 599   | 0,2              | CTD3 | Bottom  |          |
| 23-08 | 16:16 | Uummannaq | 2       | 70,82576 | -56,06682 | 599   | 0,2              | CTD3 | Recover |          |
| 23-08 | 17:05 | Uummannaq | 2       | 70,82535 | -56,03454 | 601   | 0,3              | GC1  | Bottom  | ОК       |
| 23-08 | 17:52 | Uummannaq | 2       | 70,83416 | -56,05632 | 597   | 0,7              | Z001 | Deploy  |          |
| 23-08 | 18:06 | Uummannaq | 2       | 70,83599 | -56,05788 | 599   | 0,4              | Z001 | Bottom  |          |
| 23-08 | 18:26 | Uummannaq | 2       | 70,83760 | -56,06124 | 598   | 0,4              | Z001 | Recover |          |

| Day   | Time<br>(UTC) | Station   | Station | Latitude | Longitude | Depth<br>(m) | Drift<br>speed | Code  | Status  | Success  |
|-------|---------------|-----------|---------|----------|-----------|--------------|----------------|-------|---------|----------|
|       | (010)         |           | number  | (00)     | (00)      | (,           | (knots)        |       |         | (coring) |
| 23-08 | 18:54         | Uummannaq | 2       | 70,83942 | -56,06340 | 596          | 0,2            | ZOO2  | Deploy  |          |
| 23-08 | 19:23         | Uummannaq | 2       | 70,84150 | -56,06326 | 595          | 0,2            | ZOO2  | Recover |          |
| 23-08 | 19:57         | Uummannaq | 2       | 70,84289 | -56,06037 | 594          | 0,2            | CTD4  | Deploy  |          |
| 23-08 | 20:59         | Uummannaq | 2       | 70,82504 | -56,03122 | 600          | 0,3            | HAPS1 | Bottom  | Ok       |
| 24-08 | 10:27         | PS26      | 3       | 72,23448 | -58,81641 | 374          | 0,5            | CTD1  | Deploy  |          |
| 24-08 | 10:46         | PS26      | 3       | 72,23539 | -58,82120 | 374          | 0,2            | CTD1  | Bottom  |          |
| 24-08 | 10:58         | PS26      | 3       | 72,23600 | -58,82226 | 375          | 0,3            | CTD1  | Recover |          |
| 24-08 | 11:08         | PS26      | 3       | 72,23746 | -58,82413 | 372          | 0,4            | HAPS1 | Bottom  | ОК       |
| 24-08 | 11:28         | PS26      | 3       | 72,24040 | -58,82704 | 371          | 0,6            | CTD2  | Deploy  |          |
| 24-08 | 11:54         | PS26      | 3       | 72,24525 | -58,83216 | 368          | 0,7            | RUM1  | Bottom  | ОК       |
| 24-08 | 13:24         | PS26      | 3       | 72,23585 | -58,81011 | 374          | 0,9            | GC1   | Bottom  | ОК       |
| 24-08 | 14:29         | PS26      | 3       | 72,25265 | -58,81603 | 363          | 0,9            | Z001  | Deploy  |          |
| 24-08 | 14:36         | PS26      | 3       | 72,25466 | -58,81678 | 364          | 1              | Z001  | Bottom  |          |
| 24-08 | 14:51         | PS26      | 3       | 72,25892 | -58,81742 | 353          | 1              | Z001  | Recover |          |
| 24-08 | 14:53         | PS26      | 3       | 72,25958 | -58,81759 | 356          | 1              | Z002  | Deploy  |          |
| 24-08 | 15:01         | PS26      | 3       | 72,26169 | -58,81834 | 354          | 0,9            | Z002  | Bottom  |          |
| 24-08 | 15:15         | PS26      | 3       | 72,26480 | -58,81988 | 353          | 0,8            | Z003  | Recover |          |
| 24-08 | 18:04         | UT9       | 4       | 72,70420 | -58,70636 | 186          | 0,5            | CTD1  | Deploy  |          |
| 24-08 | 18:15         | UT9       | 4       | 72,70576 | -58,70838 | 184          | 0,6            | CTD1  | Bottom  |          |
| 24-08 | 18:18         | UT9       | 4       | 72,70625 | -58,70835 | 185          | 0,6            | CTD1  | Recover |          |
| 24-08 | 18:58         | UT8       | 5       | 72,77550 | -58,89656 | 306          | 0,5            | CTD1  | Deploy  |          |
| 24-08 | 19:15         | UT8       | 5       | 72,77790 | -58,89435 | 306          | 0,7            | CTD1  | Recover |          |
| 24-08 | 19:19         | UT8       | 5       | 72,77858 | -58,89341 | 306          | 0,6            | CTD1  | Bottom  |          |
| 24-08 | 19:55         | UT7       | 6       | 72,85000 | -59,10130 | 460          | 0,6            | CTD1  | Deploy  |          |
| 24-08 | 20:16         | UT7       | 6       | 72,85345 | -59,09940 | 483          | 0,4            | CTD1  | Bottom  |          |
| 24-08 | 20:25         | UT7       | 6       | 72,85443 | -59,09921 | 485          | 0,5            | CTD1  | Recover |          |
| 24-08 | 21:00         | UT6       | 7       | 72,92488 | -59,30095 | 693          | 0,3            | CTD1  | Deploy  |          |
| 24-08 | 21:30         | UT6       | 7       | 72,92678 | -59,30234 | 694          | 0,2            | CTD1  | Bottom  |          |
| 24-08 | 21:47         | UT6       | 7       | 72,92760 | -59,30550 | 690          | 0,3            | CTD1  | Recover |          |
| 24-08 | 22:36         | UT5       | 8       | 73,00000 | -59,49974 | 651          | 0,1            | CTD1  | Deploy  |          |

| Day   | Time<br>(UTC) | Station | Station | Latitude<br>(DD) | Longitude | Depth<br>(m) | Drift<br>speed | Code  | Status  | Success  |
|-------|---------------|---------|---------|------------------|-----------|--------------|----------------|-------|---------|----------|
|       | (010)         |         | namber  | (00)             | (00)      | (,           | (knots)        |       |         | (coring) |
| 24-08 | 23:03         | UT5     | 8       | 73,00117         | -59,50024 | 650          | 0,3            | CTD1  | Bottom  |          |
| 24-08 | 23:12         | UT5     | 8       | 73,00161         | -59,50090 | 651          | 0,3            | CTD1  | Recover |          |
| 24-08 | 23:52         | UT4     | 9       | 73,07495         | -59,70064 | 534          | 0,2            | CTD1  | Deploy  |          |
| 25-08 | 00:14         | UT4     | 9       | 73,07549         | -59,70502 | 523          | 0,3            | CTD1  | Bottom  |          |
| 25-08 | 00:21         | UT4     | 9       | 73,07596         | -59,70585 | 517          | 0,3            | CTD1  | Recover |          |
| 25-08 | 00:59         | UT3     | 10      | 73,15197         | -59,90391 | 350          | 0,4            | CTD1  | Deploy  |          |
| 25-08 | 01:15         | UT3     | 10      | 73,15310         | -59,90418 | 351          | 0,6            | CTD1  | Bottom  |          |
| 25-08 | 01:20         | UT3     | 10      | 73,15364         | -59,90403 | 352          | 0,2            | CTD1  | Recover |          |
| 25-08 | 01:55         | UT1     | 11      | 73,22716         | -60,10833 | 313          | 0,5            | CTD1  | Deploy  |          |
| 25-08 | 02:12         | UT1     | 11      | 73,22981         | -60,10913 | 312          | 0,8            | CTD1  | Bottom  |          |
| 25-08 | 02:16         | UT1     | 11      | 73,23056         | -60,10973 | 311          | 0,4            | CTD1  | Recover |          |
| 25-08 | 11:44         | UPPER1  | 12      | 72,94534         | -55,62004 | 997          | 0,2            | CTD1  | Deploy  |          |
| 25-08 | 12:15         | UPPER1  | 12      | 72,94546         | -55,62871 | 998          | 0,4            | CTD1  | Bottom  |          |
| 25-08 | 12:28         | UPPER1  | 12      | 72,94571         | -55,63354 | 999          | 0,5            | CTD1  | Recover |          |
| 25-08 | 12:56         | UPPER1  | 12      | 72,94811         | -55,64256 | 998          | 0,4            | HAPS1 | Bottom  | ОК       |
| 25-08 | 14:00         | UPPER1  | 12      | 72,94562         | -55,62941 | 998          | 0,3            | CTD2  | Deploy  |          |
| 25-08 | 14:07         | UPPER1  | 12      | 72,94590         | -55,63098 | 997          | 0,3            | CTD2  | Bottom  |          |
| 25-08 | 15:00         | UPPER1  | 12      | 72,94709         | -55,61813 | 997          | 0,2            | CTD3  | Deploy  |          |
| 25-08 | 15:03         | UPPER1  | 12      | 72,94719         | -55,61857 | 998          | 0,3            | CTD3  | Recover |          |
| 25-08 | 15:43         | UPPER1  | 12      | 72,94596         | -55,61228 | 998          | 0,2            | GC1   | Bottom  | ОК       |
| 25-08 | 16:19         | UPPER1  | 12      | 72,94661         | -55,64390 | 999          | 0,4            | Z001  | Deploy  |          |
| 25-08 | 16:40         | UPPER1  | 12      | 72,94720         | -55,64796 | 999          | 0,3            | Z001  | Bottom  |          |
| 25-08 | 17:08         | UPPER1  | 12      | 72,94869         | -55,65688 | 1000         | 0,4            | Z001  | Recover |          |
| 25-08 | 18:37         | UP4     | 13      | 72,90899         | -55,42068 | 970          | 0,5            | CTD1  | Deploy  |          |
| 25-08 | 19:06         | UP4     | 13      | 72,91040         | -55,43286 | 989          | 0,4            | CTD1  | Bottom  |          |
| 25-08 | 19:19         | UP4     | 13      | 72,91070         | -55,43654 | 989          | 0,2            | CTD1  | Recover |          |
| 25-08 | 20:11         | UP4     | 13      | 72,90947         | -55,41304 | 989          | 0,1            | CTD2  | Recover |          |
| 25-08 | 21:35         | UP6     | 14      | 72,94688         | -55,69153 | 999          | 0,4            | CTD1  | Deploy  |          |
| 25-08 | 22:03         | UP6     | 14      | 72,94726         | -55,68363 | 999          | 0,2            | CTD1  | Bottom  |          |
| 25-08 | 22:16         | UP6     | 14      | 72,94734         | -55,68117 | 999          | 0,2            | CTD1  | Recover |          |

| Day   | Time<br>(UTC) | Station | Station<br>number | Latitude<br>(DD) | Longitude<br>(DD) | Depth<br>(m) | Drift<br>speed | Code  | Status  | Success        |
|-------|---------------|---------|-------------------|------------------|-------------------|--------------|----------------|-------|---------|----------------|
|       |               |         |                   | . ,              |                   | . ,          | (knots)        |       |         | (coring)       |
| 26-08 | 11:10         | UP7     | 15                | 72,96110         | -55,84791         | 1001         | 0,4            | CTD1  | Deploy  |                |
| 26-08 | 11:39         | UP7     | 15                | 72,96234         | -55,85606         | 1001         | 0,2            | CTD1  | Bottom  |                |
| 26-08 | 11:51         | UP7     | 15                | 72,96247         | -55,85837         | 1001         | 0,3            | CTD1  | Recover |                |
| 26-08 | 12:01         | UP7     | 15                | 72,96263         | -55,86056         | 1001         | 0,3            | CTD2  | Deploy  |                |
| 26-08 | 12:53         | UP7     | 15                | 72,96513         | -55,87413         | 1002         | 0,3            | HAPS1 | Bottom  | F              |
| 26-08 | 13:30         | UP7     | 15                | 72,96750         | -55,87708         | 1002         | 0,2            | HAPS2 | Bottom  | ОК             |
| 26-08 | 14:15         | UP7     | 15                | 72,97038         | -55,87729         | 1002         | 0,2            | CTD3  | Deploy  |                |
| 26-08 | 14:30         | UP7     | 15                | 72,97095         | -55,87751         | 1004         | 0,1            | CTD3  | Bottom  |                |
| 26-08 | 14:43         | UP7     | 15                | 72,97168         | -55,87659         | 1003         | 0,3            | CTD3  | Recover |                |
| 26-08 | 14:53         | UP7     | 15                | 72,97254         | -55,87571         | 1002         | 0,3            | Z001  | Deploy  |                |
| 26-08 | 15:09         | UP7     | 15                | 72,97373         | -55,87534         | 1002         | 0,3            | Z001  | Bottom  |                |
| 26-08 | 15:39         | UP7     | 15                | 72,97554         | -55,87621         | 1003         | 0,3            | Z001  | Recover |                |
| 26-08 | 16:40         | UP8     | 16                | 72,98787         | -56,04905         | 1005         | 0,8            | CTD1  | Deploy  |                |
| 26-08 | 17:07         | UP8     | 16                | 72,99219         | -56,04193         | 1004         | 0,7            | CTD1  | Bottom  |                |
| 26-08 | 17:20         | UP8     | 16                | 72,99430         | -56,03823         | 1004         | 0,6            | CTD1  | Recover |                |
| 26-08 | 18:48         | UP9     | 17                | 73,01104         | -56,23829         | 1007         | 1,5            | HAPS1 | Bottom  | F              |
| 26-08 | 19:08         | UP9     | 17                | 73,01651         | -56,23343         | 1000         | 1,5            | HAPS1 | Recover | F              |
| 26-08 | 20:39         | UP9     | 17                | 72,99142         | -56,24954         | -            | 0,7            | HAPS3 | Deploy  | Ok             |
| 26-08 | 21:03         | UP9     | 17                | 73,00104         | -56,24391         | 1005         | 1,7            | HAPS3 | Bottom  | Ok             |
| 26-08 | 21:22         | UP9     | 17                | 73,00865         | -56,23690         | 1005         | 1,5            | HAPS3 | Recover | Ok             |
| 26-08 | 21:36         | UP9     | 17                | 72,99914         | -56,24819         | 1006         | 1,1            | CTD1  | Deploy  |                |
| 26-08 | 21:56         | UP9     | 17                | 73,00585         | -56,23779         | 1005         | 1,4            | CTD1  | Bottom  |                |
| 26-08 | 22:09         | UP9     | 17                | 73,01038         | -56,23165         | 1006         | 1,1            | CTD1  | Recover |                |
| 27-08 | 11:46         | T1 ST12 | 18                | 73,49903         | -57,19820         | -            | 0,5            | CTD1  | Deploy  |                |
| 27-08 | 12:12         | T1 ST12 | 18                | 73,49865         | -57,19605         | -            | 0,2            | CTD1  | Bottom  |                |
| 27-08 | 12:25         | T1 ST12 | 18                | 73,49859         | -57,19448         | -            | 0,2            | CTD1  | Recover |                |
| 27-08 | 12:52         | T1 ST12 | 18                | 73,49815         | -57,19063         | -            | 0,1            | HAPS1 | Bottom  | OK,<br>surface |
| 27-08 | 13:19         | T1 ST12 | 18                | 73,49740         | -57,18605         | -            | 0,3            | CTD2  | Deploy  |                |
| 27-08 | 14:19         | T1 ST11 | 19                | 73,40050         | -57,60663         | 300          | 0,3            | CTD1  | Deploy  |                |
| 27-08 | 14:33         | T1 ST11 | 19                | 73,40184         | -57,60938         | 300          | 0,6            | CTD1  | Bottom  |                |

| Day   | Time  | Station | Station | Latitude | Longitude | Depth | Drift            | Code  | Status  | Success         |
|-------|-------|---------|---------|----------|-----------|-------|------------------|-------|---------|-----------------|
|       | (UTC) |         | number  | (DD)     | (DD)      | (m)   | speed<br>(knots) |       |         | (coring)        |
| 27-08 | 14:37 | T1 ST11 | 19      | 73,40236 | -57,61013 | 300   | 0,5              | CTD1  | Recover |                 |
| 27-08 | 15:49 | T1 ST10 | 20      | 73,30166 | -58,00702 | -     | 0,4              | CTD1  | Deploy  |                 |
| 27-08 | 16:05 | T1 ST10 | 20      | 73,30295 | -58,01346 | -     | 0,5              | CTD1  | Bottom  |                 |
| 27-08 | 16:13 | T1 ST10 | 20      | 73,30349 | -58,01691 | -     | 0,8              | CTD1  | Recover |                 |
| 27-08 | 20:04 | PS25    | 21      | 73,06638 | -58,75313 | -     | 0,1              | CTD1  | Deploy  |                 |
| 27-08 | 20:28 | PS25    | 21      | 73,06858 | -58,74448 | -     | 0,6              | CTD1  | Bottom  |                 |
| 27-08 | 20:37 | PS25    | 21      | 73,06949 | -58,74064 |       | 0,4              | CTD1  | Recover |                 |
| 27-08 | 20:59 | PS25    | 21      | 73,07116 | -58,73341 | -     | 0,4              | HAPS1 | Bottom  | OK,<br>surface  |
| 27-08 | 21:15 | PS25    | 21      | 73,07219 | -58,72867 | -     | 0                | CTD1  | Deploy  |                 |
| 27-08 | 21:45 | PS25    | 21      | 73,07288 | -58,71506 | -     | 0,6              | GC1   | Bottom  | OK,<br>overshot |
| 27-08 | 22:17 | PS25    | 21      | 73,07188 | -58,69798 | -     | 0,6              | Z001  | Deploy  |                 |
| 27-08 | 22:28 | PS25    | 21      | 73,07121 | -58,69189 | -     | 0,7              | Z001  | Bottom  |                 |
| 27-08 | 22:48 | PS25    | 21      | 73,07059 | -58,68277 | -     | 0,5              | Z001  | Recover |                 |
| 28-08 | 13:06 | T2 ST1  | 22      | 75,70937 | -60,05970 | 428   | 0,4              | CTD1  | Deploy  |                 |
| 28-08 | 13:25 | T2 ST1  | 22      | 75,71153 | -60,07299 | 493   | 0,8              | CTD1  | Bottom  |                 |
| 28-08 | 13:30 | T2 ST1  | 22      | 75,71221 | -60,07736 | 494   | 0,8              | CTD1  | Recover | no<br>water     |
| 28-08 | 14:14 | T2 ST1  | 22      | 75,70868 | -60,06346 | 440   | 0,6              | HAPS1 | Bottom  | ОК              |
| 28-08 | 15:37 | T2 ST2  | 23      | 75,59876 | -60,42214 | 550   | 0,1              | CTD1  | Deploy  |                 |
| 28-08 | 15:56 | T2 ST2  | 23      | 75,60089 | -60,42510 | 500   | 0,5              | CTD1  | Bottom  |                 |
| 28-08 | 16:03 | T2 ST2  | 23      | 75,60177 | -60,42624 | 485   | 0,5              | CTD1  | Recover |                 |
| 28-08 | 16:59 | T2 ST3  | 24      | 75,50827 | -60,77865 | 365   | 0,1              | CTD1  | Deploy  |                 |
| 28-08 | 17:13 | T2 ST3  | 24      | 75,50886 | -60,77863 | 348   | 0,2              | CTD1  | Bottom  |                 |
| 28-08 | 17:18 | T2 ST3  | 24      | 75,50900 | -60,77874 | 335   | 0,1              | CTD1  | Recover |                 |
| 28-08 | 17:30 | T2 ST3  | 24      | 75,50933 | -60,77886 | 331   | 0,2              | HAPS1 | Bottom  | ОК              |
| 28-08 | 17:45 | T2 ST3  | 24      | 75,50965 | -60,77955 | 324   | 0,1              | CTD2  | Deploy  |                 |
| 28-08 | 17:49 | T2 ST3  | 24      | 75,50971 | -60,77962 | 332   | 0                | CTD2  | Bottom  |                 |
| 28-08 | 17:54 | T2 ST3  | 24      | 75,50974 | -60,77940 | 329   | 0                | CTD2  | Recover |                 |
| 28-08 | 18:08 | T2 ST3  | 24      | 75,50978 | -60,77893 | 338   | 0                | Z001  | Deploy  |                 |

| Day   | Time  | Station   | Station | Latitude | Longitude | Depth<br>(m) | Drift<br>speed | Code  | Status  | Success  |
|-------|-------|-----------|---------|----------|-----------|--------------|----------------|-------|---------|----------|
|       | (010) |           | namber  | (00)     | (00)      | (,           | (knots)        |       |         | (coring) |
| 28-08 | 18:22 | T2 ST3    | 24      | 75,50977 | -60,77979 | 330          | 0,1            | Z001  | Recover |          |
| 28-08 | 18:30 | T2 ST3    | 24      | 75,50993 | -60,78045 | 320          | 0,1            | CTD3  | Deploy  |          |
| 28-08 | 18:32 | T2 ST3    | 24      | 75,50999 | -60,78066 | 319          | 0,1            | CTD3  | Recover |          |
| 28-08 | 19:36 | T2 ST4    | 25      | 75,39894 | -61,20392 | 750          | 0,6            | CTD1  | Deploy  |          |
| 28-08 | 19:58 | T2 ST4    | 25      | 75,39874 | -61,21021 | -            | 0,3            | CTD1  | Bottom  |          |
| 28-08 | 20:13 | T2 ST4    | 25      | 75,39798 | -61,21419 | -            | 0,4            | CTD1  | Recover |          |
| 28-08 | 21:56 | MELVILLE1 | 26      | 75,31940 | -61,91057 | 915          | 0,2            | CTD1  | Deploy  |          |
| 28-08 | 22:22 | MELVILLE1 | 26      | 75,31760 | -61,91300 | -            | 0,2            | CTD1  | Bottom  |          |
| 28-08 | 22:37 | MELVILLE1 | 26      | 75,31639 | -61,91426 | 928          | 0,2            | CTD1  | Recover |          |
| 28-08 | 23:02 | MELVILLE1 | 26      | 75,31463 | -61,91900 | -            | 0,3            | HAPS1 | Bottom  | ОК       |
| 28-08 | 23:28 | MELVILLE1 | 26      | 75,31275 | -61,92367 | -            | 0,3            | CTD2  | Deploy  |          |
| 29-08 | 00:00 | MELVILLE1 | 26      | 75,32023 | -61,90548 | -            | 0,2            | GC1   | Deploy  |          |
| 29-08 | 00:13 | MELVILLE1 | 26      | 75,31963 | -61,90679 | 912          | 0,3            | GC1   | Bottom  | ОК       |
| 29-08 | 00:31 | MELVILLE1 | 26      | 75,31916 | -61,90965 | 914          | 0,2            | GC1   | Recover |          |
| 29-08 | 01:25 | T2 ST6    | 27      | 75,19948 | -62,00181 | 653          | 0,2            | CTD1  | Deploy  |          |
| 29-08 | 01:45 | T2 ST6    | 27      | 75,19934 | -62,00465 | 649          | 0,1            | CTD1  | Bottom  |          |
| 29-08 | 01:55 | T2 ST6    | 27      | 75,19919 | -62,00595 | 647          | 0,1            | CTD1  | Recover |          |
| 29-08 | 10:26 | T3 ST12   | 28      | 74,78521 | -66,98830 | -            | 0,2            | CTD1  | Deploy  |          |
| 29-08 | 11:05 | T3 ST12   | 28      | 74,78405 | -66,97686 | -            | 0,3            | CTD1  | Bottom  |          |
| 29-08 | 11:33 | T3 ST12   | 28      | 74,78391 | -66,96701 | -            | 0,5            | CTD1  | Recover |          |
| 29-08 | 12:17 | T3 ST12   | 28      | 74,78312 | -66,94720 | -            | 0,4            | HAPS  | Bottom  | OK, IRD  |
| 29-08 | 13:01 | T3 ST12   | 28      | 74,78344 | -66,92444 | -            | 0,5            | CTD2  | Bottom  |          |
| 29-08 | 13:51 | T3 ST11   | 29      | 74,89902 | -66,99736 | 1128         | 0,9            | CTD1  | Deploy  |          |
| 29-08 | 14:18 | T3 ST11   | 29      | 74,89947 | -66,97534 | 1124         | 0,7            | CTD1  | Bottom  |          |
| 29-08 | 14:35 | T3 ST11   | 29      | 74,89909 | -66,96174 | 1116         | 0,8            | CTD1  | Recover |          |
| 29-08 | 15:44 | T3 ST10   | 30      | 75,00743 | -66,98386 | 561          | 0,8            | CTD1  | Deploy  |          |
| 29-08 | 16:02 | T3 ST10   | 30      | 75,81600 | -66,96934 | 560          | 0,7            | CTD1  | Bottom  |          |
| 29-08 | 16:12 | T3 ST10   | 30      | 75,00854 | -66,95777 | 560          | 0,8            | CTD1  | Recover |          |
| 29-08 | 16:56 | T3 ST9    | 31      | 75,11815 | -66,98974 | 495          | 0,9            | CTD1  | Deploy  |          |
| 29-08 | 17:17 | T3 ST9    | 31      | 75,11589 | -66,95640 | 504          | 1,6            | CTD1  | Bottom  |          |

| Day   | Time<br>(UTC) | Station    | Station | Latitude<br>(DD) | Longitude | Depth<br>(m) | Drift<br>speed | Code  | Status  | Success  |
|-------|---------------|------------|---------|------------------|-----------|--------------|----------------|-------|---------|----------|
|       | (010)         |            |         | (00)             | ()        | (,           | (knots)        |       |         | (coring) |
| 29-08 | 17:26         | T3 ST9     | 31      | 75,11498         | -66,94110 | 506          | 1,6            | CTD1  | Recover |          |
| 29-08 | 18:14         | T3 ST8     | 32      | 75,23095         | -66,99786 | 470          | 0,9            | CTD1  | Deploy  |          |
| 29-08 | 18:31         | T3 ST8     | 32      | 75,22801         | -66,97754 | 465          | 1,2            | CTD1  | Bottom  |          |
| 29-08 | 18:42         | T3 ST8     | 32      | 75,22624         | -66,96488 | 464          | 1,2            | CTD1  | Recover |          |
| 29-08 | 19:40         | T3 ST8     | 32      | 75,23152         | -66,98617 | 463          | 1,3            | HAPS1 | Bottom  | ОК       |
| 29-08 | 19:56         | T3 ST8     | 32      | 75,22873         | -66,96698 | 467          | 1,4            | CTD2  | Deploy  |          |
| 29-08 | 20:49         | T3 ST7     | 33      | 75,34372         | -66,99495 | 431          | 0,5            | CTD1  | Deploy  |          |
| 29-08 | 21:05         | T3 ST7     | 33      | 75,34100         | -66,97423 | 429          | 1,2            | CTD1  | Bottom  |          |
| 29-08 | 21:16         | T3 ST7     | 33      | 75,33967         | -66,96498 | 429          | 1,1            | CTD1  | Recover |          |
| 29-08 | 22:02         | T3 ST6     | 34      | 75,45541         | -66,99640 | 396          | 0,2            | CTD1  | Deploy  |          |
| 29-08 | 22:18         | T3 ST6     | 34      | 75,45341         | -66,97757 | 373          | 1,2            | CTD1  | Bottom  |          |
| 29-08 | 22:26         | T3 ST6     | 34      | 75,45259         | -66,97081 | 366          | 1,2            | CTD1  | Recover |          |
| 29-08 | 23:12         | T3 ST5     | 35      | 75,56656         | -66,99802 | 413          | 1              | CTD1  | Deploy  |          |
| 29-08 | 23:30         | T3 ST5     | 35      | 75,56681         | -66,99641 | 414          | 0,5            | CTD1  | Bottom  |          |
| 29-08 | 23:38         | T3 ST5     | 35      | 75,56699         | -66,99270 | 414          | 0,4            | CTD1  | Recover |          |
| 29-08 | 23:51         | T3 ST5     | 35      | 75,56667         | -66,98485 | 415          | 0,5            | HAPS  | Bottom  | ОК       |
| 30-08 | 00:10         | T3 ST5     | 35      | 75,56605         | -66,97135 | 419          | 1,1            | CTD2  | Deploy  |          |
| 30-08 | 10:59         | MELVILLE 2 | 36      | 75,66760         | -65,69608 | 555          | 1              | RUM1  | Bottom  | ОК       |
| 30-08 | 11:43         | MELVILLE 2 | 36      | 75,66921         | -65,68916 | 559          | 1,1            | GC1   | Bottom  | ОК       |
| 30-08 | 15:10         | MELVILLE 3 | 37      | 75,78960         | -66,63333 | 568          | 1,3            | RUM1  | Bottom  | F        |
| 30-08 | 15:57         | MELVILLE 3 | 37      | 75,78928         | -66,63002 | 570          | 1,5            | GC1   | Bottom  | ОК       |
| 30-08 | 17:02         | T3 ST4     | 38      | 75,67617         | -66,99157 | 453          | 0,9            | CTD1  | Deploy  |          |
| 30-08 | 17:19         | T3 ST4     | 38      | 75,67573         | -67,00771 | 449          | 0,7            | CTD1  | Bottom  |          |
| 30-08 | 17:28         | T3 ST4     | 38      | 75,67552         | -67,01500 | 448          | 0,9            | CTD1  | Recover |          |
| 30-08 | 18:16         | T3 ST3     | 39      | 75,78961         | -66,99317 | 367          | 1              | CTD1  | Deploy  |          |
| 30-08 | 18:33         | T3 ST3     | 39      | 75,78992         | -67,01300 | 361          | 1,1            | CTD1  | Bottom  |          |
| 30-08 | 18:41         | T3 ST3     | 39      | 75,78996         | -67,02180 | 358          | 1              | CTD1  | Recover |          |
| 30-08 | 19:05         | T3 ST3     | 39      | 75,78860         | -66,99822 | 367          | 1,1            | HAPS1 | Bottom  | OK, IRD  |
| 30-08 | 19:19         | T3 ST3     | 39      | 75,78831         | -67,01476 | 366          | 1              | CTD2  | Deploy  |          |
| 30-08 | 19:24         | T3 ST3     | 39      | 75,78819         | -67,02040 | 363          | 1,1            | CTD2  | Recover |          |

| Day   | Time<br>(UTC) | Station | Station<br>number | Latitude<br>(DD) | Longitude<br>(DD) | Depth<br>(m) | Drift<br>speed<br>(knots) | Code | Status  | Success<br>(coring) |
|-------|---------------|---------|-------------------|------------------|-------------------|--------------|---------------------------|------|---------|---------------------|
| 30-08 | 19:36         | T3 ST3  | 39                | 75,78801         | -67,03478         | 360          | 1                         | Z001 | Deploy  |                     |
| 30-08 | 19:42         | T3 ST3  | 39                | 75,78784         | -67,04135         | 356          | 0,9                       | Z001 | Bottom  |                     |
| 30-08 | 19:53         | T3 ST3  | 39                | 75,78749         | -67,05332         | 352          | 1                         | Z001 | Recover |                     |
| 30-08 | 20:25         | T3 ST2  | 40                | 75,85361         | -66,97797         | 100          | 0,1                       | CTD1 | Deploy  |                     |
| 30-08 | 21:04         | T3 ST1  | 41                | 75,90536         | -66,98857         | 64           | 0,3                       | CTD1 | Deploy  |                     |

## Appendix 2 – CTD Operations Log

| Date     | Time<br>(UTC) | Longitude<br>(W) | Latitude<br>(N) | Bottom<br>(m) | Station Name | Comment                            |
|----------|---------------|------------------|-----------------|---------------|--------------|------------------------------------|
| 20210822 | 20:00         | 51.0193          | 69.3943         | 442           | LK21001_1    |                                    |
| 20210823 | 14.00         | 56.0370          | 70.8334         | 600           | LK21002_1    | severe bottom contact <sup>1</sup> |
| 20210823 | 20:00         | 56.0609          | 70.8427         | 595           | LK21002_4    |                                    |
| 20210824 | 10:00         | 58.8178          | 72.2345         | 375           | LK21003_1    |                                    |
| 20210824 | 18:00         | 58.7056          | 72.7040         | 192           | LK21004_1    |                                    |
| 20210824 | 19:00         | 58.8967          | 72.7755         | 310           | LK21005_1    | gentle bottom contact <sup>2</sup> |
| 20210824 | 20:00         | 59.1011          | 72.8502         | 483           | LK21006_1    |                                    |
| 20210824 | 21:00         | 59.3010          | 72.9250         | 698           | LK21007_1    | winch trouble upcast <sup>3</sup>  |
| 20210824 | 23:00         | 59.4999          | 73.0000         | 658           | LK21008_1    |                                    |
| 20210825 | 00:00         | 59.7012          | 73.0749         | 536           | LK21009_1    | orange life form captured          |
| 20210825 | 01:00         | 59.9040          | 73.1521         | 355           | LK21010_1    | adjacent to iceberg                |
| 20210825 | 02:00         | 60.1083          | 73.2273         | 317           | LK21011_1    |                                    |
| 20210825 | 12:00         | 55.6202          | 72.9454         | 1002          | LK21012_1    | gentle bottom contact <sup>2</sup> |
| 20210825 | 19:00         | 55.4215          | 72.9090         | 975           | LK21013_1    |                                    |
| 20210825 | 22:00         | 55.6911          | 72.9470         | 1003          | LK21014_1    |                                    |
| 20210826 | 11:00         | 55.8481          | 72.9611         | 1006          | LK21015_1    | adjacent to iceberg                |
| 20210826 | 17:00         | 56.0489          | 72.9881         | 1008          | LK21016_1    |                                    |

| Date     | Time  | Longitude | Latitude | Bottom | Station Name | Comment                           |
|----------|-------|-----------|----------|--------|--------------|-----------------------------------|
|          | (UTC) | (W)       | (N)      | (m)    |              |                                   |
| 20210826 | 22:00 | 56.2420   | 73.0033  | 1009   | LK21017_1    | wire angle >45 deg.               |
| 20210827 | 12:00 | 57.1983   | 73.4991  | 1030   | LK21018_1    | new set of batteries              |
| 20210827 | 14:00 | 57.6067   | 73.4005  | 313    | LK21019_1    |                                   |
| 20210827 | 16:00 | 58.0070   | 73.3017  | 940    | LK21020_1    |                                   |
| 20210827 | 20:00 | 58.7528   | 73.0664  | 747    | LK21021_1    |                                   |
| 20210828 | 13:00 | 60.0599   | 75.7094  | 470    | LK21022_1    |                                   |
| 20210828 | 16:00 | 60.4222   | 75.5987  | 556    | LK21023_1    |                                   |
| 20210828 | 17:00 | 60.7787   | 75.5083  | 366    | LK21024_1    |                                   |
| 20210828 | 20:00 | 61.2042   | 75.3990  | 784    | LK21025_1    |                                   |
| 20210828 | 22:00 | 61.9107   | 75.3193  | 917    | LK21026_1    |                                   |
| 20210829 | 02:00 | 62.0019   | 75.1994  | 655    | LK21027_1    |                                   |
| 20210829 | 11:00 | 66.9882   | 74.7852  | 1705   | LK21028_1    |                                   |
| 20210829 | 14:00 | 66.9976   | 74.8990  | 1133   | LK21029_1    |                                   |
| 20210829 | 16:00 | 66.9836   | 75.0075  | 566    | LK21030_1    |                                   |
| 20210829 | 17:00 | 66.9893   | 75.1181  | 502    | LK21031_1    |                                   |
| 20210829 | 18:00 | 66.9974   | 75.2309  | 468    | LK21032_1    |                                   |
| 20210829 | 21:00 | 66.9947   | 75.3437  | 436    | LK21033_1    |                                   |
| 20210829 | 22:00 | 66.9964   | 75.4554  | 404    | LK21034_1    |                                   |
| 20210830 | 00:00 | 66.9697   | 75.5660  | 426    | LK21035_1    | new set of batteries <sup>4</sup> |
| 20210830 | 17:00 | 66.9927   | 75.6762  | 457    | LK21036_1    |                                   |
| 20210830 | 18:00 | 66.9938   | 75.7896  | 371    | LK21037_1    | .hex misses cal. coeff.           |
| 20210830 | 20:00 | 66.9280   | 75.8536  | 105    | LK21038_1    | adjacent to iceberg               |
| 20210830 | 21:00 | 66.9884   | 75.9053  | 69     | LK21039_1    |                                   |

1. Severe bottom contact resulted in mud passing through the pump and mudy water reaching conductivity and oxygen sensors;

2. Gentle bottom contact resulted in mud traces on the frame but not inside the pump tubing;

3. Load sensor of winch was turned off after the winch system goes into error mode without reason;

4. CTD failed after battery voltage reaches 11.3 V;

|            |         |                                        |              |           | Filtered |
|------------|---------|----------------------------------------|--------------|-----------|----------|
| Date       | Station | Description                            | Sample depth | Nutrients | (Chla)   |
| 22-08-2021 | 1       | Rodebay (full)                         | 1            | 2 reps    | 500 ml   |
| 22-08-2021 | 1       | Rodebay (full)                         | 5            | 2 reps    | 500 ml   |
| 22-08-2021 | 1       | Rodebay (full)                         | 10           | 2 reps    | 500 ml   |
| 22-08-2021 | 1       | Rodebay (full)                         | 20 (=DCM)    | 2 reps    | 500 ml   |
| 22-08-2021 | 1       | Rodebay (full)                         | 30           | 2 reps    | 500 ml   |
| 22-08-2021 | 1       | Rodebay (full)                         | 50           | 2 reps    | 500 ml   |
| 22-08-2021 | 1       | Rodebay (full)                         | 100          | 2 reps    | -        |
| 22-08-2021 | 1       | Rodebay (full)                         | 200          | 2 reps    | -        |
| 22-08-2021 | 1       | Rodebay (full)                         | BOT:400      | 2 reps    | -        |
| 23-08-2021 | 2       | UMQ (full)                             | 1            | 2 reps    | 500 ml   |
| 23-08-2021 | 2       | UMQ (full)                             | 5            | 2 reps    | 500 ml   |
| 23-08-2021 | 2       | UMQ (full)                             | 10           | 2 reps    | 500 ml   |
| 23-08-2021 | 2       | UMQ (full)                             | 20           | 2 reps    | 500 ml   |
| 23-08-2021 | 2       | UMQ (full)                             | 30           | 2 reps    | 500 ml   |
| 23-08-2021 | 2       | UMQ (full)                             | 50           | 2 reps    | 500 ml   |
| 23-08-2021 | 2       | UMQ (full)                             | 100          | 2 reps    | -        |
| 23-08-2021 | 2       | UMQ (full)                             | 200          | 2 reps    | -        |
| 23-08-2021 | 2       | UMQ (full)                             | BOT:570      | 2 reps    | -        |
| 23-08-2021 | 2       | UMQ (full)                             | DCM:35       | 2 reps    | 500 ml   |
| 24-08-2021 | 3       | PS26 (full)                            | 1            | 2 reps    | 500 ml   |
| 24-08-2021 | 3       | PS26 (full)                            | 5            | 2 reps    | 500 ml   |
| 24-08-2021 | 3       | PS26 (full)                            | 10           | 2 reps    | 500 ml   |
| 24-08-2021 | 3       | PS26 (full)                            | 20           | 2 reps    | 500 ml   |
| 24-08-2021 | 3       | PS26 (full)                            | 30           | 2 reps    | 500 ml   |
| 24-08-2021 | 3       | PS26 (full)                            | 50           | 2 reps    | 500 ml   |
| 24-08-2021 | 3       | PS26 (full)                            | 100          | 2 reps    | -        |
| 24-08-2021 | 3       | PS26 (full)                            | 200          | 2 reps    | -        |
| 24-08-2021 | 3       | PS26 (full)                            | BOT:350      | 2 reps    | -        |
| 24-08-2021 | 3       | PS26 (full)                            | DCM:42       | 2 reps    | 500 ml   |
| 24-08-2021 | 7       | 4th stn of UT transect (crosses T1)    | 1            | 1 rep     | 500 ml   |
| 24-08-2021 | 7       | 4th stn of UT transect (crosses T1)    | 10           | 1 rep     | 500 ml   |
| 24-08-2021 | 7       | 4th stn of UT transect (crosses T1)    | 20           | 1 rep     | 500 ml   |
| 24-08-2021 | 7       | 4th stn of UT transect (crosses T1)    | 30           | 1 rep     | 500 ml   |
| 24-08-2021 | 7       | 4th stn of UT transect (crosses T1)    | 40           | 1 rep     | 500 ml   |
| 24-08-2021 | 7       | 4th stn of UT transect (crosses T1)    | 50           | 1 rep     | 500 ml   |
| 25-08-2021 | 12      | "Uper 1" (mid-Upernavik, full station) | 1            | 1 rep     | 500 ml   |
| 25-08-2021 | 12      | "Uper 1" (mid-Upernavik, full station) | 5            | 1 rep     | 500 ml   |

Appendix 3 – List of water samples for biogeochemistry

|            |         |                                        |              |           | Filtered |
|------------|---------|----------------------------------------|--------------|-----------|----------|
| Date       | Station | Description                            | Sample depth | Nutrients | (Chla)   |
| 25-08-2021 | 12      | "Uper 1" (mid-Upernavik, full station) | 10 (=DCM)    | 1 rep     | 500 ml   |
| 25-08-2021 | 12      | "Uper 1" (mid-Upernavik, full station) | 20           | 1 ren     | 500 ml   |
| 25-08-2021 | 12      | "Uper 1" (mid-Upernavik, full station) | 30           | 1 ren     | 500 ml   |
| 25-08-2021 | 12      | "Upor 1" (mid Uporpavik, full station) | 50           | 1 rop     | 500 ml   |
| 25-08-2021 | 12      | Uper 1 (mid-Upernavik, full station)   | 30           | 1 100     | 500 m    |
| 25-08-2021 | 12      | Oper 1 (mid-Opernavik, full station)   | 100          | 1 rep     | -        |
| 25-08-2021 | 13      | "Uper 4" (inner fjord, full water)     | 1            | 1 rep     | 500 ml   |
| 25-08-2021 | 13      | "Uper 4" (inner fjord, full water)     | 5            | 1 rep     | 500 ml   |
| 25-08-2021 | 13      | "Uper 4" (inner fjord, full water)     | 10           | 1 rep     | 500 ml   |
| 25-08-2021 | 13      | "Uper 4" (inner fjord, full water)     | 20           | 1 rep     | 500 ml   |
| 25-08-2021 | 13      | "Uper 4" (inner fjord, full water)     | 50           | 1 rep     | 500 ml   |
| 25-08-2021 | 13      | "Uper 4" (inner fjord, full water)     | 100          | 1 rep     | -        |
| 25-08-2021 | 13      | "Uper 4" (inner fjord, full water)     | 200          | 1 rep     | -        |
| 25-08-2021 | 13      | "Uper 4" (inner fjord, full water)     | DCM:3        | 1 rep     | 420 ml   |
|            |         | "Uper 7" (mid fjord, full water and    |              |           |          |
| 26-08-2021 | 15      | multinet)                              | 2            | 1 rep     | 500 ml   |
| 26.09.2021 | 15      | "Uper 7" (mid fjord, full water and    |              | 1         | 500 ml   |
| 20-08-2021 | 15      | "Uper 7" (mid fiord full water and     | 5=DCIM       | тер       | 500 mi   |
| 26-08-2021 | 15      | multinet)                              | 10           | 1 rep     | 500 ml   |
|            |         | "Uper 7" (mid fjord, full water and    |              |           |          |
| 26-08-2021 | 15      | multinet)                              | 20           | 1 rep     | 500 ml   |
| 26.00.2024 | 45      | "Uper 7" (mid fjord, full water and    | 20           | 1         | 500 ml   |
| 26-08-2021 | 15      | "Uper 7" (mid fiord, full water and    | 30           | тер       | 500 mi   |
| 26-08-2021 | 15      | multinet)                              | 50           | 1 rep     | 500 ml   |
|            |         | "Uper 7" (mid fjord, full water and    |              |           |          |
| 26-08-2021 | 15      | multinet)                              | 100          | 1 rep     | -        |
| 26.09.2021 | 1       | "Uper 7" (mid fjord, full water and    | 200          | 1         |          |
| 26-08-2021 | 15      |                                        | 200          | тер       | -        |
| 26-08-2021 | 1/      | "Uper 9" (outer fjord)                 | 2            | 1 rep     | 500 mi   |
| 26-08-2021 | 17      | "Uper 9" (outer fjord)                 | 5            | 1 rep     | 500 ml   |
| 26-08-2021 | 17      | "Uper 9" (outer fjord)                 | 10           | 1 rep     | 500 ml   |
| 26-08-2021 | 17      | "Uper 9" (outer fjord)                 | 20           | 1 rep     | 500 ml   |
| 26-08-2021 | 17      | "Uper 9" (outer fjord)                 | 30           | 1 rep     | 500 ml   |
| 26-08-2021 | 17      | "Uper 9" (outer fjord)                 | 50           | 1 rep     | 500 ml   |
| 27-08-2021 | 18      | T1 1st stn (near coast)                | 2            | 1 rep     | 500 ml   |
| 27-08-2021 | 18      | T1 1st stn (near coast)                | 5            | 1 rep     | 500 ml   |
| 27-08-2021 | 18      | T1 1st stn (near coast)                | 10           | 1 rep     | 500 ml   |
| 27-08-2021 | 18      | T1 1st stn (near coast)                | 20           | 1 rep     | 500 ml   |
| 27-08-2021 | 18      | T1 1st stn (near coast)                | 30           | 1 rep     | 500 ml   |
| 27-08-2021 | 18      | T1 1st stn (near coast)                | 50           | 1 ren     | 500 ml   |
| 27-08-2021 | 18      | T1 1st stn (near coast)                | 100          | 1 ren     | 500 ml   |
| 27-00-2021 | 10      | T1 1st stn (near coast)                | DCM:12       | 1 ron     | 500 ml   |
| 27-08-2021 | 10      | TI ISC Stri (near coast)               | DCIVI:13     | i rep     | 500 mi   |

|            |         |                     |              |           | Filtered         |
|------------|---------|---------------------|--------------|-----------|------------------|
| Date       | Station | Description         | Sample depth | Nutrients | volume<br>(Chla) |
| 27-08-2021 | 19      | T1 2nd stn          | 2            | 1 rep     | 500 ml           |
| 27-08-2021 | 19      | T1 2nd stn          | 5            | 1 rep     | 500 ml           |
| 27-08-2021 | 19      | T1 2nd stn          | 10           | 1 rep     | 500 ml           |
| 27-08-2021 | 19      | T1 2nd stn          | 20           | 1 rep     | 500 ml           |
| 27-08-2021 | 19      | T1 2nd stn          | 30           | 1 rep     | 500 ml           |
| 27-08-2021 | 19      | T1 2nd stn          | 50           | 1 rep     | 500 ml           |
| 27-08-2021 | 20      | T1 3rd stn          | 2            | 1 rep     | 500 ml           |
| 27-08-2021 | 20      | T1 3rd stn          | 5            | 1 rep     | 500 ml           |
| 27-08-2021 | 20      | T1 3rd stn          | 10           | 1 rep     | 500 ml           |
| 27-08-2021 | 20      | T1 3rd stn          | 20           | 1 rep     | 500 ml           |
| 27-08-2021 | 20      | T1 3rd stn          | 30           | 1 rep     | 500 ml           |
| 27-08-2021 | 20      | T1 3rd stn          | 50           | 1 rep     | 500 ml           |
| 27-08-2021 | 21      | "PS25"              | 2            | 1 rep     | 500 ml           |
| 27-08-2021 | 21      | "PS25"              | 5            | 1 rep     | 500 ml           |
| 27-08-2021 | 21      | "PS25"              | 10           | 1 rep     | 500 ml           |
| 27-08-2021 | 21      | "PS25"              | 20           | 1 rep     | 500 ml           |
| 27-08-2021 | 21      | "PS25"              | 30=DCM       | 1 rep     | 500 ml           |
| 27-08-2021 | 21      | "PS25"              | 50           | 1 rep     | 500 ml           |
| 27-08-2021 | 21      | "PS25"              | 100          | 1 rep     | -                |
| 27-08-2021 | 21      | "PS25"              | 200          | 1 rep     | -                |
| 27-08-2021 | 21      | "PS25"              | BOT:350      | 1 rep     | -                |
| 28-08-2021 | 23      | T2 2nd (50 m water) | 2            | 1 rep     | 500 ml           |
| 28-08-2021 | 23      | T2 2nd (50 m water) | 5            | 1 rep     | 500 ml           |
| 28-08-2021 | 23      | T2 2nd (50 m water) | 10           | 1 rep     | 500 ml           |
| 28-08-2021 | 23      | T2 2nd (50 m water) | 20           | 1 rep     | 500 ml           |
| 28-08-2021 | 23      | T2 2nd (50 m water) | 30           | 1 rep     | 500 ml           |
| 28-08-2021 | 23      | T2 2nd (50 m water) | 50           | 1 rep     | 500 ml           |
| 28-08-2021 | 24      | T2 3rd (type 3)     | 2            | 1 rep     | 500 ml           |
| 28-08-2021 | 24      | T2 3rd (type 3)     | 5            | 1 rep     | 500 ml           |
| 28-08-2021 | 24      | T2 3rd (type 3)     | 10           | 1 rep     | 500 ml           |
| 28-08-2021 | 24      | T2 3rd (type 3)     | 20           | 1 rep     | 500 ml           |
| 28-08-2021 | 24      | T2 3rd (type 3)     | 30           | 1 rep     | 500 ml           |
| 28-08-2021 | 24      | T2 3rd (type 3)     | 50           | 1 rep     | 500 ml           |
| 28-08-2021 | 24      | T2 3rd (type 3)     | 100          | 1 rep     | -                |
| 28-08-2021 | 24      | T2 3rd (type 3)     | BOT:275      | 1 rep     | -                |
| 28-08-2021 | 24      | T2 3rd (type 3)     | DCM:35       | 1 rep     | 500 ml           |
| 28-08-2021 | 25      | T2 4th (50 m water) | 2            | 1 rep     | 500 ml           |
| 28-08-2021 | 25      | T2 4th (50 m water) | 5            | 1 rep     | 500 ml           |
| 28-08-2021 | 25      | T2 4th (50 m water) | 10           | 1 rep     | 500 ml           |

|            |         |                                           |               |           | Filtered         |
|------------|---------|-------------------------------------------|---------------|-----------|------------------|
| Data       | Station | Description                               | Sample denth  | Nutrionts | volume<br>(Chia) |
| 28-08-2021 | 25      | T2 4th (50 m water)                       |               | 1 ren     | 500 ml           |
| 28-08-2021 | 25      | T2 4th (50 m water) $T2 4th (50 m water)$ | 20<br>BOT:740 | 1 ron     | 500 mi           |
| 28-08-2021 | 25      | T2 5th (full)                             | 2             | 1 ron     | -<br>500 ml      |
| 28-08-2021 | 20      | T2 5th (full)                             | 5             | 1 rep     | 500 ml           |
| 28-08-2021 | 20      | T2 5th (full)                             | 10            | 1 ron     | 500 ml           |
| 28-08-2021 | 20      | T2 5th (full)                             | 20            | 1 rop     | 500 ml           |
| 28-08-2021 | 20      | T2 5th (full)                             | 20            | 1 rop     | 500 ml           |
| 28-08-2021 | 20      | T2 5th (full)                             |               | 1 rop     | 500 m            |
| 28-08-2021 | 20      |                                           | DCM:40        | 1 rop     | -<br>500 ml      |
| 28-08-2021 | 20      |                                           | DCIVI.40      | 1 rep     | 500 ml           |
| 28-08-2021 | 27      | T2 6th (50 m water)                       | 2<br>r        | 1 rep     | 500 ml           |
| 28-08-2021 | 27      | T2 6th (50 m water)                       | 3             | 1 rep     | 500 ml           |
| 28-08-2021 | 27      | T2 6th (50 m water)                       | 10            | 1 rep     | 500 mi           |
| 28-08-2021 | 27      | T2 6th (50 m water)                       | 20            | 1 rep     | 500 mi           |
| 28-08-2021 | 27      | 12 6th (50 m water)                       | 30            | 1 rep     | 500 mi           |
| 28-08-2021 | 27      | 12 6th (50 m water)                       | 40            | 1 rep     | 500 mi           |
| 28-08-2021 | 27      | 12 6th (50 m water)                       | 50            | 1 rep     | 500 mi           |
| 29-08-2021 | 28      | 13 12th stn (start southern end)          | 2             | 1 rep     | 500 ml           |
| 29-08-2021 | 28      | 13 12th stn (start southern end)          | 5             | 1 rep     | 500 ml           |
| 29-08-2021 | 28      | T3 12th stn (start southern end)          | 10            | 1 rep     | 500 ml           |
| 29-08-2021 | 28      | T3 12th stn (start southern end)          | 20            | 1 rep     | 500 ml           |
| 29-08-2021 | 28      | T3 12th stn (start southern end)          | 30            | 1 rep     | 500 ml           |
| 29-08-2021 | 28      | T3 12th stn (start southern end)          | 50            | 1 rep     | 500 ml           |
| 29-08-2021 | 28      | T3 12th stn (start southern end)          | 100           | 1 rep     | -                |
| 29-08-2021 | 28      | T3 12th stn (start southern end)          | BOT:1400      | 1 rep     | -                |
| 29-08-2021 | 28      | T3 12th stn (start southern end)          | DCM:33        | 1 rep     | 500 ml           |
| 29-08-2021 | 29      | T3 continued                              | 2             | 1 rep     | 500 ml           |
| 29-08-2021 | 29      | T3 continued                              | 5             | 1 rep     | 500 ml           |
| 29-08-2021 | 29      | T3 continued                              | 10            | 1 rep     | 500 ml           |
| 29-08-2021 | 29      | T3 continued                              | 20            | 1 rep     | 500 ml           |
| 29-08-2021 | 29      | T3 continued                              | 30            | 1 rep     | 500 ml           |
| 29-08-2021 | 29      | T3 continued                              | 50            | 1 rep     | 500 ml           |
| 29-08-2021 | 30      | T3 continued                              | 2             | 1 rep     | 500 ml           |
| 29-08-2021 | 30      | T3 continued                              | 5             | 1 rep     | 500 ml           |
| 29-08-2021 | 30      | T3 continued                              | 10            | 1 rep     | 500 ml           |
| 29-08-2021 | 30      | T3 continued                              | 20            | 1 rep     | 500 ml           |
| 29-08-2021 | 30      | T3 continued                              | 30            | 1 rep     | 500 ml           |
| 29-08-2021 | 30      | T3 continued                              | 40            | 1 rep     | 500 ml           |
| 29-08-2021 | 30      | T3 continued                              | 50            | 1 rep     | 500 ml           |
| 29-08-2021 | 31      | T3 continued                              | 2             | 1 rep     | 500 ml           |

|            |         |              |              |           | Filtered |
|------------|---------|--------------|--------------|-----------|----------|
| Date       | Station | Description  | Sample depth | Nutrients | (Chla)   |
| 29-08-2021 | 31      | T3 continued | 5            | 1 rep     | 500 ml   |
| 29-08-2021 | 31      | T3 continued | 10           | 1 rep     | 500 ml   |
| 29-08-2021 | 31      | T3 continued | 20           | 1 rep     | 500 ml   |
| 29-08-2021 | 31      | T3 continued | 30           | 1 rep     | 500 ml   |
| 29-08-2021 | 31      | T3 continued | 40           | 1 rep     | 500 ml   |
| 29-08-2021 | 31      | T3 continued | 50           | 1 rep     | 500 ml   |
| 29-08-2021 | 32      | T3 continued | 2            | 1 rep     | 500 ml   |
| 29-08-2021 | 32      | T3 continued | 5            | 1 rep     | 500 ml   |
| 29-08-2021 | 32      | T3 continued | 10           | 1 rep     | 500 ml   |
| 29-08-2021 | 32      | T3 continued | 20           | 1 rep     | 500 ml   |
| 29-08-2021 | 32      | T3 continued | 30           | 1 rep     | 500 ml   |
| 29-08-2021 | 32      | T3 continued | 50           | 1 rep     | 500 ml   |
| 29-08-2021 | 32      | T3 continued | 100          | 1 rep     | -        |
| 29-08-2021 | 32      | T3 continued | DCM:35       | 1 rep     | 500 ml   |
| 29-08-2021 | 33      | T3 continued | 2            | 1 rep     | 500 ml   |
| 29-08-2021 | 33      | T3 continued | 5            | 1 rep     | 500 ml   |
| 29-08-2021 | 33      | T3 continued | 10           | 1 rep     | 500 ml   |
| 29-08-2021 | 33      | T3 continued | 20           | 1 rep     | 500 ml   |
| 29-08-2021 | 33      | T3 continued | 30           | 1 rep     | 500 ml   |
| 29-08-2021 | 33      | T3 continued | 40           | 1 rep     | 500 ml   |
| 29-08-2021 | 33      | T3 continued | 50           | 1 rep     | 500 ml   |
| 29-08-2021 | 34      | T3 continued | 2            | 1 rep     | 500 ml   |
| 29-08-2021 | 34      | T3 continued | 5            | 1 rep     | 500 ml   |
| 29-08-2021 | 34      | T3 continued | 10           | 1 rep     | 500 ml   |
| 29-08-2021 | 34      | T3 continued | 20           | 1 rep     | 500 ml   |
| 29-08-2021 | 34      | T3 continued | 30           | 1 rep     | 500 ml   |
| 29-08-2021 | 34      | T3 continued | 40           | 1 rep     | 500 ml   |
| 29-08-2021 | 34      | T3 continued | 50           | 1 rep     | 500 ml   |
| 29-08-2021 | 35      | T3 continued | 2            | 1 rep     | 500 ml   |
| 29-08-2021 | 35      | T3 continued | 5            | 1 rep     | 500 ml   |
| 29-08-2021 | 35      | T3 continued | 10           | 1 rep     | 500 ml   |
| 29-08-2021 | 35      | T3 continued | 20           | 1 rep     | 500 ml   |
| 29-08-2021 | 35      | T3 continued | 30=DCM       | 1 rep     | 500 ml   |
| 29-08-2021 | 35      | T3 continued | 50           | 1 rep     | 500 ml   |
| 29-08-2021 | 35      | T3 continued | 100          | 1 rep     | -        |
| 29-08-2021 | 35      | T3 continued | BOT:350      | 1 rep     | -        |
| 30-08-2021 | 38      | T3 continued | 2            | 1 rep     | 500 ml   |
| 30-08-2021 | 38      | T3 continued | 5            | 1 rep     | 500 ml   |
| 30-08-2021 | 38      | T3 continued | 10           | 1 rep     | 500 ml   |

|            |         |              |              |           | Filtered<br>volume |
|------------|---------|--------------|--------------|-----------|--------------------|
| Date       | Station | Description  | Sample depth | Nutrients | (Chla)             |
| 30-08-2021 | 38      | T3 continued | 20           | 1 rep     | 500 ml             |
| 30-08-2021 | 38      | T3 continued | 30           | 1 rep     | 500 ml             |
| 30-08-2021 | 38      | T3 continued | 40           | 1 rep     | 500 ml             |
| 30-08-2021 | 38      | T3 continued | 50           | 1 rep     | 500 ml             |
| 30-08-2021 | 39      | T3 continued | 2            | 1 rep     | 500 ml             |
| 30-08-2021 | 39      | T3 continued | 5            | 1 rep     | 500 ml             |
| 30-08-2021 | 39      | T3 continued | 10           | 1 rep     | 500 ml             |
| 30-08-2021 | 39      | T3 continued | 20           | 1 rep     | 500 ml             |
| 30-08-2021 | 39      | T3 continued | 30           | 1 rep     | 500 ml             |
| 30-08-2021 | 39      | T3 continued | 50           | 1 rep     | 500 ml             |
| 30-08-2021 | 39      | T3 continued | 100          | 1 rep     | -                  |
| 30-08-2021 | 39      | T3 continued | 200          | 1 rep     | -                  |
| 30-08-2021 | 39      | T3 continued | BOT:         | 1 rep     | -                  |
| 30-08-2021 | 39      | T3 continued | DCM:15       | 1 rep     | -                  |
| 30-08-2021 | 40      | T3 continued | 2            | 1 rep     | 500 ml             |
| 30-08-2021 | 40      | T3 continued | 5            | 1 rep     | 500 ml             |
| 30-08-2021 | 40      | T3 continued | 10           | 1 rep     | 500 ml             |
| 30-08-2021 | 40      | T3 continued | 20           | 1 rep     | 500 ml             |
| 30-08-2021 | 40      | T3 continued | 30           | 1 rep     | 500 ml             |
| 30-08-2021 | 40      | T3 continued | 40           | 1 rep     | 500 ml             |
| 30-08-2021 | 40      | T3 continued | 50           | 1 rep     | 500 ml             |
| 30-08-2021 | 41      | T3 continued | 2            | 1 rep     | 500 ml             |
| 30-08-2021 | 41      | T3 continued | 5            | 1 rep     | 500 ml             |
| 30-08-2021 | 41      | T3 continued | 10           | 1 rep     | 500 ml             |
| 30-08-2021 | 41      | T3 continued | 20           | 1 rep     | 500 ml             |
| 30-08-2021 | 41      | T3 continued | 30           | 1 rep     | 500 ml             |
| 30-08-2021 | 41      | T3 continued | 40           | 1 rep     | 500 ml             |
| 30-08-2021 | 41      | T3 continued | 50           | 1 rep     | 500 ml             |





#### LAKO2021-ST01-GC

#### LAKO2021-ST03-GC



Upper homogenous, reflection-free drape unit

Deeper unit with chaotic reflections and many point diffractors at top, most likely bedrock



Figure by Katrine Juul Andresen

#### LAKO2021-ST21-GC



LAKO2021-ST26-GC



Upper reflection-free unit, appears to be influenced by redeposition

Deeper unit with higher amplitude inclined reflections, possibly older sedimentary rocks?





#### LAKO2021-ST37-GC

