Hyperspectral imaging applied to chalk reservoirs in the North Sea

The hyperspectral imaging method calibrated to the chalk mineralogy of the Ekofisk Formation in the SIF-1X well

Morten L. Hjuler, Niels Hemmingsen Schovsbo, Rikke Weibel & Finn Jakobsen

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND DANISH MINISTRY OF ENERGY, UTILITIES AND CLIMATE

Hyperspectral imaging applied to chalk reservoirs in the North Sea

The hyperspectral imaging method calibrated to the chalk mineralogy of the Ekofisk Formation in the SIF-1X well

Morten L. Hjuler, Niels Hemmingsen Schovsbo, Rikke Weibel & Finn Jakobsen

Released 01.05.2021

Indhold

1.		Executive summary	4
2.		Introduction	5
3.		The SIF-1X well	6
4.		Methods	8
4	4.1	Hyperspectral imaging	8
4	4.2	Handheld X-ray fluorescence (HH-XRF)	8
4	4.3	Ultraviolet (UV) core photos	9
4	4.4	Principal component analysis (PCA)	9
5.		Results 1	1
!	5.1	Mineralogy based on hyperspectral imaging1	1
!	5.2	Mineralogy based on HH-XRF1	1
!	5.3	UV core photos	1
!	5.4	Principal component analysis (PCA)1	1
6.		Discussion 2	0
7.		Conclusions 2	1
8.		Recommendations 2	2
9.		References 2	3

1. Executive summary

Hyperspectral imaging provides fast mineralogical characterisation of core material from heterogeneous reservoirs and is a valuable and cost efficient first characterisation method that is already a commercial service provided to the industry.

In this study, we compare data obtained from hyperspectral imaging with high quality core photos (daylight and UV) and high resolution HH XRF data. The study clearly confirms that reliable rock typing can be made by hyperspectral recording even without performing additional chalk specific calibration of the rock libraries applied in the interpretation. For advanced rock typing, the hyperspectral data are, however, subordinate to what can be gained from core studies and (visual) image interpretation.

The cost reduction potential of hyperspectral imaging is thus well documented, as it will allow a first rock characterisation to be made in a systematic manner and in large volumes that will amount to compete core storage inventory. Based on hyperspectral imaging and complemented with existing data, specialists will obtain a high degree of information of reservoir heterogeneities and a solid base for selecting the best sampling sites. In order to provide a more detailed characterisation, the hyper-spectra rock library needs to be updated with the specific rock types present in the targeted reservoirs such as clean chalk, marly chalk etc. in order to constitute a sufficiently accurate mineralogy characterisation tool.

Hyperspectral measurements were performed on slabbed core surfaces from cores of the SIF-1X well representing the lowermost 25 m of the Ekofisk Formation. In order to calibrate the spectra to fit the actual rock characteristics, spectral measurements were selected from four core intervals and compared with data from Handheld XRF (HH-XRF) analysis performed on the same core intervals. HH-XRF analysis provided a fast overview of mineralogical composition of the slabbed core surface and provides the reference data for calibration of spectra. Core photos obtained in ultraviolet (UV) light can be used to perform rough assessments of oil saturation and indirectly indicate silica and clay content.

2. Introduction

Hyperspectral imaging provides fast mineralogical characterisation of core material from heterogeneous reservoirs and is a valuable fast and cost efficient first characterisation that is already a commercial service provided to the industry.

Hyperspectral Imaging of rock surfaces within the visible near-infrared and the short-wave infrared spectra can be used to map mineralogical and textural difference at high resolution and is applicable to a wide range of geological materials in settings ranging from mining to reservoir characterisation.

This study investigates the usage of hyperspectral imaging for enhanced chalk reservoir characterisation. Focus has been to develop a method to resolve the spatial distribution of silica and clay but also on detecting textural variation of the chalk matrix. The investigation includes existing, recently collated spectral imaging data and will aim at establishing and improving the rock type calibration and thus ensure full interpretation of data.

Future perspectives include full imaging of the core archive and mapping of mineralogical and textural properties. For the latter, we recommend that the hyperspectral imaging method is calibrated to the rock types of North Sea chalk. Further, the method allows fast characterisation of core material from heterogeneous reservoirs and identification of silicified sections with possible impact on porosity, permeability and geomechanical properties.

3. The SIF-1X well

The SIF-1X well is located in the Halfdan Field in the southern part of the Danish Central Graben in the North Sea (Figure 1). SIF-1X was drilled in 1999 as an exploration well focussing on reservoir quality, stratigraphy and hydrocarbon content of chalks of the Maastrichtian Tor Formation and the Danian Ekofisk Formation (Mærsk Olie og Gas A/S 2000). Top chalk (Ekofisk Fm) was encountered at 2012 m TVDSS and TD at 2193 m TVDSS (Tor Fm). Six cores totalling 68 m and with a recovery percentage of 98.16% were cut in the Tor and Ekofisk formations (Table 1).

Figure 1. Location of the SIF-1X well in the southern part of the Danish Central Graben in the North Sea. Modified from Mærsk Olie og Gas A/S (2000).

Core	Вох	Recovery	Formation	Age	Depth interval
					(m TVDSS)
1		0%	Ekofisk	Danian	2011–2013
2	1–22	95%	Ekofisk	Danian	2013–2031
3	1–22	100%	Ekofisk	Danian	2031–2049
4	1–5	100%	Ekofisk	Danian	2049–2053
5		0%	Tor	Maastrichtian	2053–2053
6	1–33	100%	Tor	Maastrichtian	2059–2087

Table 1. Overview of cored intervals in the Ekofisk and Tor formations in the SIF-1X well. Shaded cores (2–4) have been partly or completely subjected to hyperspectral imaging.

The lithological variation from pure chalk intervals to partly or completely silicified intervals as well as the presence of stylolites and clay-rich intervals makes the Ekofisk Formation a sensible choice in terms of studying how well hyperspectral imaging differentiates between various lithologies.

4. Methods

In order to calibrate the hyperspectral spectra obtained from the SIF-1X well to fit the actual rock characteristics, the obtained spectra was compared with chemical data from handheld X-ray fluorescence (HH-XRF) analysis performed on slabbed core samples selected from intervals subjected to hyperspectral imaging. In addition,

Further, a minor feasibility study was conducted by applying multilinear regressive models to the relationship between the calibrated spectral response and existing core data such as porosity, permeability, rock strength and chemical data obtained from HH-XRF analysis. This study tested the possibility of making predictive functional rock typing based on spectral data.

Four core intervals were selected for this study comprising:

•	Core 2, box 21	2029.47-2030.36 m (TVDSS)
•	Core 3, box 1	2030.89-2031.50 m (TVDSS)
•	Core 3, box 10	2038.84–2039.75 m (TVDSS)
•	Core 4, box 1	2050.30-2051.21 m (TVDSS)

4.1 Hyperspectral imaging

The hyperspectral imaging method generates 2D images where each pixel contains information from hundreds of spectral channels in the *near visible–shortwave infrared spectrum* (NV–SWIR) (0.9–1.7 mm) and the *longwave infrared spectrum* (LWIR) (8–14 mm). These spectra are invisible to the human eye and capable of storing far more information than regular cameras with three visible RGB colour channels (400–700 nm). Hyperspectral imaging is applied in material identification and process detection.

4.2 Handheld X-ray fluorescence (HH-XRF)

Measuring was done using a handheld NitonTM XI3t Goldd+ XRF device (HH-XRF) at the core storage of Mærsk Oil & Gas, Baltikavej, Copenhagen, Denmark. The device is equipped with an Ag anode that measures at 6–50 kV and up to 200 μ A and provides semi-quantitative element concentrations. Measuring area is about 5mm in diameter. The HH-XRF instrument was mounted on a specially constructed test table allowing full contact between the slabbed cores and probing device.

Measuring time was 2 minutes per measuring point, applying the "test all geo filter" that measured dually on low and high filters. Measurements were performed directly on the slabbed core surface. Measurements of both in-house and certified powder samples were made to ensure data quality and reliability (c.f. Schovsbo et al. 2018).

Measuring points were mainly selected based on visible mineralogy, i.e. silicified intervals, clay-enriched intervals as wells as intervals of pure calcite in order to secure registration of mineralogy variations of the core slabs. In order to validate the measurements, the slab surface were subjected to measurements in both sides, which for convenience are referred to as the left and right side. The measuring points are shown in Fig. 2.

4.3 Ultraviolet (UV) core photos

Ultraviolet imaging illustrates oil saturation. A bright yellow response corresponds to high saturation, dark colour to no saturation. Oil saturation indirectly indicates silica and clay content. Further, UV core photos were used to generate a relative oil saturation curve with 5 steps, step 1 representing 0% oil saturation and step 5 assumed to represent 100 % or nearly 100% oil saturation.

4.4 Principal component analysis (PCA)

PCA performed on HH-XRF data was used for defining rock types for calibration of the hyperspectral rock model. Only reliable determined elements were used for PCA rock-typing. Lg2-normalization opens the data to better deal with forced correlations. Outliers were removed. For method description see Esbensen (2012).

Figure 2. HH-XRF-analysed slabs. Measuring points (red dots) and numbers are shown. Blue nimbers indicate core piece.

5. Results

5.1 Mineralogy based on hyperspectral imaging

The hyperspectral mineralogy identification is presented in Figs 3–6. Generally, calcite (chalk) is identified satisfactorily when compared with core photos and HH-XRF results; however, clay-enriched sections, which are clearly visible on core photos, may not be identified. Strongly silicified sections, which are visibly determined as flint, are identified as either opal, quartz, fine-grained quartz, finegrained quartz-clay or Al-smectite, the latter obviously, being incorrect. The LWIR and SWIR spectra generally produce similar mineralogy maps for the core slabs; however, in silicified sections the type of silica identified vary between the spectra. Further, the amount and type of clay observed in calcitedominated intervals may vary between the LWIR and SWIR spectra.

5.2 Mineralogy based on HH-XRF

The mineralogy inferred from HH-XRF data satisfactorily describes the distribution of calcite (chalk), flint and silica-rich sections, whereas identification of clay species is more challenging due to the low concentrations of elements such as AI, K and Fe.

One important result obtained of the HH_XRF analysis is a frequently observed inconsistency between measurements from the left and right sides of the core slab. Significantly elevated Chlorine (Cl) concentrations were measured on the right side of the slab (Figs 7–8). Mineralogy

5.3 UV core photos

The oil saturation variations revealed by UV core photos proved a useful support for the mineralogy interpretations obtained by hyperspectral imaging and HH-XRF. Reservoir sections saturated with oil correspond with high calcite content. In contrast flint bands show no saturation and clay-rich sections show various degrees of clay saturation.

As a further result, the UV photos allow the generation of a relative oil saturation curve (Fig. 9).

5.4 Principal component analysis (PCA)

The results of the PCA model of HH-XRF is shown in Figs 10–11. First two PC components display the main structure of the data.

Five rock types have been identified:

- Chalk with low salt content
- Chalk with high salt content
- Nearly pure silica (flint)
- Chalk with similar amounts of carbonate and silica
- Chalk with high clay content

Figure 3. Mineralogy results from LWIR and SWIR spectra compared with core photos and ultraviolet (UV) photos. Note that SWIR spectra identify the flint band in the core middle as AI smectite. SIF-1X, core 2, box 21.

Figure 4. Mineralogy results from LWIR and SWIR spectra compared with core photos and ultraviolet (UV) photos. Note variations between LWIR and SWIR spectra regarding the flint band at the core top. SIF-1X, core 3, box 1.

Figure 5. Mineralogy results from LWIR and SWIR spectra compared with core photos and ultraviolet (UV) photos. SIF-1X, core 3, box 10.

Figure 6. Mineralogy results from LWIR and SWIR spectra compared with core photos and ultraviolet (UV) photos. Note variations between LWIR and SWIR spectra regarding the flint band at the core base. SIF-1X, core 4, box 2.

Figure 7. Mineralogy of the core slabs of core 2, box 21 and core 3, box 1 determined from the HH-XRF analysis. The mineralogy is compared with core photos, ultraviolet (UV) photos and LWIR and SWIR spectra.

Strate Neurity	Image: Distribution Image: Distribution<	SIE-1	1X	Core 3 h	ox 10		Poro-perm	Saturation	Ca	Si	CI	AI	Zr	к	Fe	S	Mg	Mn	Sr	Ba	Ti	Sc
OF V/V V/	Open UV			00/0 0, 0	OX TO		0 Perm (mD) 2	(%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)
Normalization Normalinitity initeninity in initianity in initeninity initianity in i	SHF-1X Core 4, box2 N	Core	UV	/ LWIR	SWIR		0 Por (%) 40	0 100	0 100	0 100	0 100	0 2	0,000 0,005	0 20	0 1	0 5	0,0 0,3	0,0 0,3	0,0 0,3	0,0 0,3	0,0 0,3	0,0 0,3
Strate Core 4, box 2 None (h) Strate (h)	Image: State in the state				Тор	0,0		1				-					1		-			-
Figure 4.0002 No Solution Col Solution Solut	Sift X Core 4 loc X = V = V = V = V = V = V = V = V = V =	•				-		•• •				-	1.				4		-			
Normal Normal<	Image: Statistic Statis Statistic Statistic Statistic Statistic Statistic S		-0			0,1	_			·	2						1				1 .	1.1
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	Strikt Core 4. box 7 C	- 2	1	_												**	-				1.0	
First Core 4, box2 None (b) Ansact (b) </td <td>SPECIAL Core 4, box 2 Processor Cal Si a bit in the second bit in the second</td> <td></td> <td></td> <td>-</td> <td></td> <td>0.2</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td>1</td> <td>1</td>	SPECIAL Core 4, box 2 Processor Cal Si a bit in the second			-		0.2	-	-									1	1			1	1
Normal Participant Normal	Strate Core 4, box2 Property Strate(N) Ca Si Ci A Fe S Mg Mn Sr Ba Ti Sc 0	1				0,2	-	-	1 2	1	6	1.0	1.1	>	1 10	5. C		1	1.1	- 1		12.
Strikt Corres Strikt Circ K Fe S Mg Mn Sr Base (b) Answer(b) Ans	Strate Core 4, box2 Property Strate Core 4, box2 Property Strate <	1		-	1.0						*			2			+				1	
SIF-1X Core 4, box 2 Property Type Saturation Ca Si Cl All of type All of typ	STETX Core 4, box2 OF Amount (b) Amoun	1.1		255	10	0,3			1.1			1	100	1						1.1		
SIF-1X Core 4, loc2 (N) Answer(b)	Single of a bit o											+					+					
SIF-1X Core 4, box2 Free Si Mg Mn Sr Be Ti Sc 0<	Signature Organization Cancer (b) Amenant (b)			X -1		0,4							10				1					
Image: State and Dig an	Image: Normal Statistics Ca Si Cl Amount N <				ti 🖤				· ·								+		*			· ·
SIF-1X Core 4, box2 Core 64, box2	SIF-1X Core 4, box 2 Property field Saturation of the state (b) and		1-45	10	2	0.5	-	-		1							+	-		1		
Image: Statistic Statis Statis Statistic Statistic Statistic Statistic Stat	Image: Normal Part of the second decision of		100	No.	S				· · · ·				-							1		
SIF-1X Core 4. box 2 Pro-perm Saturation 100 Ca Si Cl All Zr K Fe S Mg Mn Sr Ba Ti Sc 000 000 100 100 100	SIF-1X Core 4, box2 Fe S Mg Mn Sr Ba Ti Sc VIII S		MAG G	the state			_	_														-
SIF-1X Core 4, box 2 Pro-perm Saturation Ca Si Cl All Zr K Fe S Mg Mn Sr Ba Ti Sc Core UV UV UV/R SV/R Fp Si Cl All Zr K Fe S Mg Mnout (b) Amout	Image: Solution Ca Si Cl All Zr K Fe S Mg Mn Sr Ba Ti Sc Image: Solution Ca Si Cl All Zr K Fe Simulation Answer (b) Answer					0,6				1					1	•	1					
0.0 0	NIF-1X Core 4. box2 Min Ca Si Cl All Zr K Fe S Mg Mn Sr Ba Ti Sc 0 <	N	2010							1		14		1	1.0		1		1			
SIF-IX Core 4, box 2 (%) (%) Amount (%) Am	Image: Constraint Im					0,7	120 23						- E	2			1 II					1400
Signature Open (m0) Solution Ca Si Cl Ansurt (b) Ansurt	SIF-1X Core 4, box 0 0 0 0 10 0 10 0 10 0				-					18 I I I	4					- R						14
Inst 0.0 SIF-1X Core 4, box 2 (M) Ansunt (H)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-		-	-	0,8			1				1 2				1 II				1.25	
Bit Core 4, box 2 Or UV NUR SWIR 0	Note Operation Statuation Ca Si Cl All Zr K Fe S Mgg Mn Sr Ba Ti Sc Cor V VV VV VV VV VV VV Amount (b) Amo		Statistics.	21.45				Water saturation OII saturation	1.2		4	124		440 L		- E						
SIF-1X Core 4, box2 Ore UV LWIR SWIR Amount (%) <	Since A: box Torrested Since A: box Cit All Zr K Fe S Mg Mn Sr Ba Ti Sc Torrested 1000000000000000000000000000000000000		1000	99 117	Base	0.9		+ Gas saturation														
SIF-1X Core 4, box Poro-perm Saturation Ca Si Cl Al Zr K Fe S Mg Mn Sr Ba Ti Sc Core UV UVR WIR 0	SIF-1X Core 4, box 2 Poropert Saturation Ca Si Cl Al Zr K Fe S Mg Mn Sr Ba Ti Sc 0				100000																	
SIF-1X Core 4, box2 Ca Si Cl All Zr K Fe S Mg Mn Sr Ba Ti Sc Core UV LWIR SWR 0 100 100 100 0 100 0 100 0 100 0 100 0<	SIF-1X Core 4, box 2 Monometry Saturation Ca Si Cl Al Zr K Fe S Mass Massure (%) Amount (%) <th></th> <th></th> <th></th> <th>_</th> <th></th>				_																	
Or 0 Perm (mD)2 (%) Amount (%) Amo	0 0	SIF-1	-1X	Core 4, b	ox 2		Poro-perm	Saturation	Ca	Si	CI	AI	Zr	к	Fe	S	Mg	Mn	Sr	Ba	Ti	Sc
COTE UV LWR SWR Tep 0.0 1000 1000 1000 1000 1000 1000 0.0050 4000 0.0100 0.0000 0.0050 4000 0.0100 0.00000 0.00000 0.00000	Core UV LWIR SWIR Top 0.0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 00 0.3 0.0 0.3	- X3457 (58	1000	CHARLES IN THE	and the second		0 Perm (mD) 2	(%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)
Iop 0.0 0.1 0	Image: Construction of the construle of the construction of the constructio	Core	UV	LWIR	SWIR		0 Por (%) 40	0 100	0 100	0 100	0 100	0 2	0,000 0,005	0 40	0 1	0 20	0,0 0,3	0,0 0,3	0,0 0,3	0,0 0,3	0,0 0,3	0,0 0,3
$ \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	$ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$				Тор	0,0	1	-		•.												
	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$												•	1	•			•			••	
		- A									-	-		-			1			-		-
0.2 0.3 0.4 0.5 0.6 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	$\left[\begin{array}{c c c c c c c c c c c c c c c c c c c $	•				0,1				2	2	-			-			1				3
		-0-	-			0,1 -						1										
				-	-	0,1 -	•••															1
			-	-	-	0,1 -		•• ••		· · ·		1.1.1.1.1							100 m			
				1	-	0,1	•	•• ••											o de seus			
	0.4 0.4 0.4 0.5 <td></td> <td></td> <td></td> <td>•</td> <td>0,1 - 0,2 - 0,3 -</td> <td>•••</td> <td>•• ••</td> <td></td> <td>· · ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td></td> <td></td> <td></td> <td></td>				•	0,1 - 0,2 - 0,3 -	•••	•• ••		· · ·						1		11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
		2			÷ î	0,1 - 0,2 - 0,3 -	•=•	•••					1. N. N. N.		and the second state	1		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	a da a sa se			
	5 0.5	2			Eth (m)	0,1 - 0,2 - 0,3 - 0,4 -	•••	•••							and a second second	1. 		1 N				
		-			ength (m)	0,1 - 0,2 - 0,3 - 0,4 -	•••	•••								1 1 1						
		•			ere length (m)	0,1 - 0,2 - 0,3 - 0,4 - 0,5 -		•••••							and the second second	1		to the second second		1111 - 111 - 111		
		•		•	Gore length (m)	0,1 - 0,2 - 0,3 - 0,4 - 0,5 -	•••								and the second second	1. 		the state and state	and a survey of the	11111111111111111111111111111111111111		
		•		•	Core length (m)	0,1 - 0,2 - 0,3 - 0,4 - 0,5 -	 	•••							and a second reaction	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	and the second second second	1		
		•		•	Core length (m)	0,1 - 0,2 - 0,3 - 0,4 - 0,5 -	•••	••••							and a second second second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	and the second	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		•		•	Core length (m)	0,1 - 0,2 - 0,3 - 0,4 - 0,5 - 0,6 -	• • •	•••••							and a set of	A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A CONTRACTOR A CONTRACTOR A CONTRACTOR A CONTRACTOR A CONTRACTOR A		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	and a second second second second	and a set of the second second		
		•		•	Core length (m)	0,1 - 0,2 - 0,3 - 0,4 - 0,5 - 0,6 - 0,7 -	•••	••••							and the second second second			11.11.11.11.11.11.11.11.11.11.11.11.11.	and the second second second second	and the second second second		
		•		•	Gora length (m)	0,1 - 0,2 - 0,3 - 0,4 - 0,5 - 0,6 - 0,7 -	•	•••••							and a second reaction	en e		1	and a second second second second	and the second second second second		
		•	•	•	Core length (m)	0,1 - 0,2 - 0,3 - 0,4 - 0,5 - 0,6 - 0,7 - 0,8 -	•	•••••							and a second reaction of the			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	and the second	and the second second second second		

Figure 8. Mineralogy of the core slabs of core 3, box 10 and core 4, box 2 determined from the HH-XRF analysis. The mineralogy is compared with core photos, ultraviolet (UV) photos and LWIR and SWIR spectra. For mineralogical legend, refer to Fig. 7.

Figure 9. Relative oil saturation curve generated from ultraviolet (UV) photos. SIF-1X, core 3, box 10.

Figure 10. Loading plot, principal component axis 1 (PC-1) versus principal component (PC) axis 2 (PC-1).

Figure 11. Score plot, principal component axis 1 (PC-1) versus principal component (PC) axis 2 (PC-1).

6. Discussion

Hyperspectral imaging in its present uncalibrated state does not fulfil its purpose satisfactorily due to uncertainties regarding mainly the calcite–clay relation and the silica–clay relation. Sections of elevated clay content were observed in core and UV photos but not in the hyperspectra. With respect to measuring clay elements, the HH-XRF method may hint at their presence, but the measuring uncertainty is high due to low count numbers. Further, the high content of Cl, which is interpreted as a source of error, obscures the true relation between measured elements and thus minerals.

The sporadic but frequent, high content of Cl obtained by the HH-XRF method is explained either as halite precipitated from formation water at the surface or in pores near the surface, or as an infiltration constituent from bore mud. In the final well report, bore mud discharge is specified as containing a significant amount of KCl and as peaks of Cl content coincide with corresponding peaks of K, bore mud infiltration constitutes a reliable explanation. Still, a theory explaining why the Cl content is significantly higher than the Ca content in several measurements is lacking.

The variation between Cl values across the core may be indicative of core orientation during storage. Low values are invariably located to one side of the core and high values to the opposite side of the core. This variation may be explained by core orientation during storage and implies that gravity forces pore water to the lower side of the core where suspended ions precipitate as the pore water evaporates.

7. Conclusions

Hyperspectral imaging has the potential to provide fast and possibly reliable characterisation of chalk cores; however, the hyperspectra used in this study show uncertainties frequent uncertainties, especially in relation to clay. A calibration of the hyperspectral data is necessary, before the potential is unlocked.

Some general trends were observed during the study:

Regarding oil saturation:

- UV core photos allow generation of a relative oil saturation curve
- High salt content (K and Cl) is found in water-saturated, oil-free, porous chalk
- Low salt content is found in oil-saturated porous chalk
- The current hyperspectral index does not allow identification
- of oil saturation in chalk
- Cl and K may originate from evaporating pore water

Regarding silicification

• Silicified zones: General agreement between HI and HH-XRF

Regarding chalk

- Pure chalk: No clear relation between HI and HH-XRF
- Clay-rich zones: some agreement between HI and HH-XRF
- Cl and K-rich zones: only detected by HH-XRF
- *Cl and K-rich zones:* possible agreement between HH-XRF and UV core photos

8. Recommendations

Calibration of the hyperspectra are needed in order for hyperspectral imaging to constitute a reliable tool for providing fast characterisation of core material from heterogeneous reservoirs. X-ray diffraction (XRD), scanning electron microscopy and detailed core description may provide additional calibration data and should be considered.

9. References

Esbensen, K.H. 2012: Multivariate data analysis, in practise: an introduction to multivariate data analysis and experimental design 598 pp. CAMO publishing, Oslo, Norway.

Mærsk Olie og Gas A/S 2000: Final well report. Volume 1(2): Well Sif-1X, Sif-1XA, Sif-1XB, Sif-1XC, Sif-1XD. 269 p.

Schovsbo, N.H., Nielsen A.T., Harstad, A.O., Bruton, D.L., 2018: Stratigraphy and geochemical composition of the Cambrian Alum Shale Formation in the Porsgrunn core, Skien-Langesund district, southern Norway. Bulletin of the Geological Society of Denmark 66, 1–20.

			Well				Measurir	ng poin	ts		hh-XRF Measurer						urem	nents	(norm	nalize	d)			
					_	Distance between	Distance between		Location															
Reading	Well	Core	Box	Core Piece	Depth Ton core	top box and top	top box and	denth	on well	Visual Lithology	Ca	Si	CL	к	ΔΙ	Μσ	s	Fo	Mn	Sr	Ba	ті	Sc	7r
NO	wen	core	DUX	Tiece	m	mm	m	m		Litilology	%	%	%	%	%	%	%	%	%	%	%	%	%	%
538	SIF-1X	3	10	1	2074,24	7	0,026	2074,27	Left	Chalk	38,207	10,050	53,773	4,995	0,000	0,000	3,129	0,392	0,144	0,184	0,142	0,000	0,119	0,000
539	SIF-1X	3	10	1	2074,24	7	0,026	2074,27	Left	Chalk	40,923	8,366	52,496	5,353	0,000	3,362	3,081	0,418	0,147	0,182	0,119	0,000	0,141	0,001
540 541	SIF-1X SIF-1X	3	10	1	2074,24	7	0,053	2074,29	Left	Chaik Clay and chaik	47,825 89.007	8,678	45,553	5,331 2,370	0,000	0,000	2,588	0,421	0,164	0,174	0,128	0,000	0,141	0,000
541	SIF-1X	3	10	1	2074,24	, 7	0,109	2074,32	Left	flint	0,915	92,214	6,632	0,353	0,369	0,000	0,204	0,063	0,220	0,006	0,079	0,006	0,000	0,004
543	SIF-1X	3	10	1	2074,24	7	0,127	2074,37	Left	flint	1,096	90,136	8,962	0,417	0,350	0,000	, 0,694	0,059	0,015	0,011	0,084	0,007	0,004	0,000
544	SIF-1X	3	10	1	2074,24	7	0,164	2074,40	Left	Chalk	52,713	43 <i>,</i> 896	2,988	0,877	0,568	0,000	0,373	0,310	0,116	0,110	0,097	0,000	0,041	0,000
545	SIF-1X	3	10	1	2074,24	7	0,177	2074,42	Left	Clay and chalk	53,408	38,712	6,767	2,406	0,739	0,000	1,982	0,479	0,123	0,122	0,107	0,071	0,036	0,001
540 547	SIF-1X SIF-1X	3	10	1	2074,24 2074 24	7	0,196	2074,44	Left	Clay and chalk	53,815 88 892	42,733	2,450	1,009	0,455	0,000	0,496	0,349	0,110	0,113	0,101	0,068	0,032	0,002
548	SIF-1X	3	10	1	2074,24	7	0,240	2074,48	Left	Clay and chalk	80,080	14,455	11,186	2,178	1,013	0,000	0,873	0,639	0,198	0,188	0,113	0,000	0,082	0,002
549	SIF-1X	3	10	1	2074,24	0	0,019	2074,26	Right	Chalk	56,173	12,378	33,508	7,790	0,000	0,000	2,082	0,469	0,170	0,182	0,115	0,000	0,141	0,000
550	SIF-1X	3	10	1	2074,24	0	0,053	2074,29	Right	Chalk	43,079	7,440	52,754	5,102	0,000	0,000	2,708	0,411	0,153	0,173	0,126	0,000	0,146	0,002
551	SIF-1X	3	10	1	2074,24	0	0,083	2074,32	Right	Clay and chalk	84,340	10,611	11,894	3,876	0,994	0,000	0,708	0,627	0,207	0,180	0,110	0,000	0,083	0,002
552 553	SIF-1X SIF-1X	3	10	1	2074,24 2074 24	0	0,111	2074,35	Right	Chalk	46,823	45,897	7,532	1,502	0,399	0,000	0,373	0,297	0,116	0,100	0,105	0,000	0,059	0,001
554	SIF-1X	3	10	1	2074,24	0	0,160	2074,40	Right	Chalk	45,385	40,092	10,345	2,493	0,425	0,000	0,402	0,275	0,116	0,101	0,099	0,000	0,044	0,001
555	SIF-1X	3	10	1	2074,24	0	0,173	2074,41	Right	Clay and chalk	37,216	18,111	39,185	9,443	0,000	0,000	1,622	0,430	0,115	0,132	0,133	0,000	0,113	0,002
556	SIF-1X	3	10	1	2074,24	0	0,199	2074,44	Right	Chalk	58,097	35,056	4,860	1,506	0,464	0,000	0,459	0,368	0,134	0,120	0,108	0,084	0,040	0,000
557	SIF-1X	3	10	1	2074,24	0	0,217	2074,46	Right	Chalk Clay and shalk	48,309	45,393	6,915	1,052	0,507	0,000	0,427	0,397	0,102	0,101	0,051	0,065	0,048	0,002
558 559	SIF-1X SIF-1X	3	10	1	2074,24	0	0,227	2074,47	Right	Clay and chalk	85,391 86.091	13,828	4,135	3,088	1,313	0,000	0,647	0,768	0,208	0,192	0,117	0,149	0,000	0,004
560	SIF-1X	3	10	2	2074,24	276	0,297	2074,54	Left	Chalk	57,766	36,594	5,962	1,999	0,644	0,000	0,479	0,369	0,134	0,121	0,103	0,062	0,048	0,001
561	SIF-1X	3	10	2	2074,24	276	0,320	2074,56	Left	Chalk	59,185	35,176	7,027	2,287	0,760	0,000	0,531	0,374	0,134	0,124	0,110	0,000	0,058	0,002
564	SIF-1X	3	10	2	2074,24	245	0,260	2074,50	Right	Chalk	49,602	31,549	13,376	2,744	0,556	0,000	0,605	0,357	0,137	0,115	0,114	0,000	0,092	0,001
563 562	SIF-1X SIF-1X	3	10	2	2074,24	245	0,294	2074,53	Right Right	Chalk	60,345 61 865	37,230	2,179	1,244	0,697	0,000	0,427	0,387	0,134	0,122	0,089	0,067	0,000	0,001
565	SIF-1X	3	10	3	2074,24	330	0,353	2074,59	Left	Chalk	31,905	6,862	58,684	3,794	0,000	0,000	3,171	0,348	0,110	0,120	0,132	0,000	0,076	0,001
566	SIF-1X	3	10	3	2074,24	330	0,391	2074,63	Left	Chalk	48,060	7,940	42,415	6,256	0,000	0,000	2,466	0,389	0,135	0,162	0,126	0,000	0,128	0,000
567	SIF-1X	3	10	3	2074,24	330	0,450	2074,69	Left	Chalk	56,092	11,815	34,226	8,438	0,000	0,000	2,308	0,331	0,156	0,176	0,122	0,000	0,124	0,000
568 569	SIF-1X	3	10 10	3	2074,24	330	0,497	2074,74	Left	Chalk	70,974	16,455	16,123	3,375	0,340	0,000	0,705	0,310	0,167	0,167	0,112	0,000	0,105	0,001
570	SIF-1X SIF-1X	3	10	3	2074,24	330	0,534	2074,79	Left	Chalk	85,452 76.652	17,552	12.987	2.207	0,278	0,000	0,185	0,333	0,195	0,164	0,109	0,103	0,000	0.002
571	SIF-1X	3	10	3	2074,24	330	0,624	2074,86	Left	Chalk	81,390	12,287	12,379	2,938	0,348	0,000	0,394	0,396	0,191	0,178	0,105	0,000	0,059	0,000
572	SIF-1X	3	10	3	2074,24	330	0,657	2074,90	Left	Chalk	87,206	12,424	4,995	2,531	0,376	0,000	0,255	0,383	0,188	0,173	0,101	0,119	0,000	0,000
573	SIF-1X	3	10	3	2074,24	330	0,675	2074,92	Left	Chalk	90,664	13,402	2,633	0,822	0,612	0,000	0,200	0,418	0,197	0,176	0,110	0,122	0,000	0,000
574 575	SIF-1X SIF-1X	3 3	10	3	2074,24 2074 24	335	0,341	2074,58	Right Right	Chalk	29,330	7,421	58,619 64 544	14,914	0,000	0,000	3,469	0,370	0,118	0,171	0,118	0,000	0,091	0,002
576	SIF-1X	3	10	3	2074,24	335	0,438	2074,68	Right	Chalk	15,137	5,036	74,750	17,611	0,000	0,000	4,331	0,205	0,096	0,160	0,127	0,000	0,044	0,002
577	SIF-1X	3	10	3	2074,24	335	0,486	2074,73	Right	Chalk	29,783	8,196	58,103	14,600	0,000	0,000	3,336	0,218	0,102	0,155	0,123	0,000	0,055	0,000
578	SIF-1X	3	10	3	2074,24	335	0,543	2074,78	Right	Chalk	63,680	12,307	24,054	7,313	0,000	0,000	1,523	0,294	0,167	0,168	0,117	0,000	0,106	0,000
579	SIF-1X	3	10	3	2074,24	335	0,587	2074,83	Right	Chalk	29,440	7,612	59,023	13,859	0,000	0,000	3,607	0,326	0,121	0,168	0,122	0,000	0,057	0,001
580 581	SIF-1X SIF-1X	3	10	3	2074,24 2074 24	335	0,611	2074,85	Right	Chalk	58,580 73 537	9,919	31,431	7,302 5.049	0,000	0,000	1,974	0,357	0,158	0,178	0,121	0,000	0,105	0,000
582	SIF-1X	3	10	3	2074,24	335	0,662	2074,90	Right	Chalk	88,874	12,833	4,440	1,783	0,642	0,000	0,219	0,400	0,198	0,173	0,117	0,146	0,051	0,000
583	SIF-1X	3	10	4	2074,24	684	0,705	2074,95	Left	Chalk	90,047	12,411	3,404	2,159	0,338	0,000	0,247	0,423	0,192	0,181	0,122	0,116	0,000	0,002
584	SIF-1X	3	10	4	2074,24	684	0,735	2074,98	Left	Chalk	91,521	13,803	1,373	1,384	0,842	0,000	0,300	0,431	0,189	0,186	0,105	0,132	0,000	0,002
585	SIF-1X	3	10 10	4	2074,24	684	0,764	2075,00	Left	Chalk	90,410	11,909	3,833	2,303	0,528	0,000	0,366	0,434	0,192	0,194	0,109	0,112	0,000	0,002
580	SIF-1X	3	10	4	2074,24	684	0,825	2075,04	Left	Chalk	90,892	14,992	1,504	0,637	0,770	0,000	0,440	0,410	0,209	0,184	0,103	0,125	0,000	0,002
588	SIF-1X	3	10	4	2074,24	684	0,855	2075,10	Left	Chalk	91,265	15,075	1,213	1,298	0,694	0,000	0,277	0,426	0,198	0,184	0,109	0,119	0,000	0,000
597	SIF-1X	3	10	4	2074,24	685	0,706	2074,95	Right	Chalk	85,510	11,670	5,944	3,215	0,333	0,000	0,213	0,424	0,191	0,180	0,108	0,104	0,048	0,000
598	SIF-1X	3	10	4	2074,24	685	0,738	2074,98	Right	Chalk	89,372	13,183	2,315	1,698	0,628	0,000	0,225	0,444	0,204	0,181	0,102	0,106	0,000	0,000
222	211-17	3	TO	4	2074,24	680	0,767	2075,01	rigilt	CHAIK	००,५७४	тт,90р	2,392	1,022	0,031	0,000	0,240	0,432	0,190	U,187	0,107	0,122	0,000	0,002

600	SIF-1X	3	10	4	2074,24	685	0,797	2075,04	Right	Chalk	89,090	14,319	1,981	1,983	0,648	0,000	0,264	0,401	0,202	0,179	0,106	0,128	0,000	0,000
601	SIF-1X	3	10	4	2074,24	685	0,826	2075,07	Right	Chalk	86,699	14,621	2,384	2,168	0,325	0,000	0,201	0,399	0,201	0,179	0,118	0,119	0,000	0,002
602	SIF-1X	3	10	4	2074,24	685	0,856	2075,10	Right	Chalk	86,114	13,834	4,208	3,528	0,715	0,000	0,229	0,394	0,204	0,181	0,105	0,131	0,000	0,002
603	SIF-1X	4	1	1	2085 7	7	0.017	2085 72	Left	Chalk	90 509	11 094	4 004	1 691	0.838	0 000	0 723	0 408	0 132	0 218	0 1 2 4	0 147	0.047	0.000
604	SIF-1X	4	1	1	2085,7	7	0.046	2085 75	Left	Chalk	87 435	13 918	3 505	0.912	0.626	0,000	0 549	0 390	0 1 2 9	0 205	0,096	0.128	0,000	0,000
605		4	1	1	2005,7	7	0,074	2005,75	Loft		79 590	12 970	11 202	0,012	0,020	0,000	1 265	0,000	0,125	0,205	0,050	0,120	0,000	0,000
606		4	1	1	2085,7	7	0,074	2005,77	Left	Clay and chalk	78,380	12,075	15 262	0,020	0,030	0,000	1 204	0,402	0,133	0,232	0,113	0,139	0,047	0,000
607		4	1	1	2085,7	,	0,098	2005,00	Leit		74,799	10,279	1 204	0,659	0,711	0,000	1,594	0,499	0,121	0,249	0,129	0,130	0,001	0,000
607		4	T	T	2085,7	0	0,017	2085,72	Right	Chalk	93,089	10,801	1,384	0,590	0,030	0,000	0,404	0,395	0,137	0,208	0,114	0,179	0,000	0,000
608		4	1	1	2085,7	0	0,045	2085,75	Right	Chaik Chair an al ab allu	86,905	14,236	4,977	0,560	0,723	0,000	0,512	0,423	0,135	0,199	0,120	0,152	0,000	0,000
609	SIF-1X	4	1	1	2085,7	0	0,074	2085,77	Right	Clay and chalk	85,366	13,825	6,747	0,978	0,805	1,/19	0,493	0,468	0,113	0,197	0,100	0,146	0,058	0,002
610	SIF-1X	4	1	1	2085,7	0	0,097	2085,80	Right	Clay and chalk	/3,261	12,940	18,358	0,893	0,846	0,000	0,560	0,520	0,122	0,193	0,126	0,136	0,078	0,002
611	SIF-1X	4	1	2	2085,7	111	0,124	2085,82	Left	Clay and chalk	84,388	11,753	2,405	0,764	1,150	0,000	12,955	0,735	0,137	0,214	0,125	0,178	0,052	0,002
612	SIF-1X	4	1	2	2085,7	111	0,169	2085,87	Left	Chalk	87,960	12,546	4,595	0,620	0,979	0,000	2,248	0,590	0,138	0,209	0,125	0,174	0,000	0,000
613	SIF-1X	4	1	2	2085,7	106	0,119	2085,82	Right	Clay and chalk	66,548	9,490	21,740	0,493	0,842	0,000	10,843	0,596	0,115	0,220	0,328	0,000	0,101	0,002
614	SIF-1X	4	1	2	2085,7	106	0,164	2085,86	Right	Chalk	75,768	11,034	17,121	0,441	0,900	0,000	1,614	0,531	0,117	0,214	0,116	0,000	0,088	0,000
615	SIF-1X	4	1	3	2085,7	202	0,220	2085,92	Left	ler+kridt	82,272	12,643	11,733	1,034	0,772	0,000	0,377	0,523	0,125	0,191	0,114	0,150	0,074	0,003
616	SIF-1X	4	1	3	2085,7	202	0,246	2085,95	Left	ler+kridt	77,429	10,116	19,274	0,503	0,479	0,000	1,033	0,442	0,125	0,199	0,123	0,000	0,095	0,003
617	SIF-1X	4	1	3	2085,7	202	0,282	2085,98	Left	Chalk	90,703	13,361	2,686	0,686	0,515	0,000	0,234	0,373	0,125	0,203	0,116	0,147	0,000	0,002
618	SIF-1X	4	1	3	2085,7	202	0,325	2086,03	Left	Chalk	85,225	9,105	14,270	0,502	0,661	0,000	2,012	0,462	0,126	0,194	0,123	0,000	0,105	0,002
619	SIF-1X	4	1	3	2085,7	202	0,342	2086,04	Left	Clay and chalk	89,195	11,597	6,322	1,060	0,827	0,000	1,624	0,584	0,133	0,187	0,103	0,171	0,062	0,002
620	SIF-1X	4	1	3	2085,7	187	0,216	2085,92	Right	Clay and chalk	80,032	11,515	15,632	0,693	0,694	0,000	0,384	0,513	0,120	0,195	0,106	0,000	0,103	0,003
621	SIF-1X	4	1	3	2085,7	187	0,237	2085,94	Right	Clay and chalk	86,322	14,224	5,804	0,591	0,966	0,000	0,220	0,440	0,131	0,196	0,110	0,153	0,064	0,002
622	SIF-1X	4	1	3	2085,7	187	0,278	2085,98	Right	Chalk	90,507	13,516	3,009	0,388	0,529	0,000	0,271	0,378	0,127	0,203	0,108	0,147	0,000	0,002
623	SIF-1X	4	1	3	2085,7	187	0,321	2086,02	Right	Chalk	86,855	9,764	12,478	0,493	0,646	0,000	1,203	0,450	0,144	0,197	0,126	0,000	0,071	0,002
624	SIF-1X	4	1	3	2085,7	187	0,338	2086,04	Right	Clay and chalk	86,763	12,777	4,768	1,436	1,433	0,000	1,316	0,723	0,136	0,185	0,107	0,176	0,000	0,004
625	SIF-1X	4	1	3	2085,7	187	0,353	2086,05	Right	Clay and chalk	86,629	13,398	1,705	1,843	1,603	0,000	0,630	0,634	0,146	0,183	0,128	0,188	0,052	0,004
626	SIF-1X	4	2	4	2085,7	377	0,387	2086,09	Left	Clay and chalk	65,624	7,955	26,258	7,822	0,473	0,000	1,770	0,399	0,123	0,207	0,135	0,000	0,064	0,000
627	SIF-1X	4	2	4	2085,7	377	0,427	2086,13	Left	Clay and chalk	84,115	9,535	11,139	3,587	0,533	0,000	0,660	0,365	0,142	0,210	0,110	0,134	0,056	0,000
628	SIF-1X	4	2	4	2085,7	377	0,471	2086,17	Left	, Chalk	88,174	8,843	7,685	2,671	0,508	1,816	0,336	0,314	0,128	0,197	0,108	0,000	0,048	0,000
629	SIF-1X	4	2	4	2085.7	377	0.497	2086.20	Left	Clav and chalk	60.922	8.353	26.154	13.182	0.000	0.000	1.607	0.328	0.108	0.188	0.125	0.000	0.098	0.000
630	SIF-1X	4	2	4	2085.7	377	0.532	2086.23	Left	, Clav and chalk	, 33,467	5.748	53.880	18.209	0.000	0.000	3.332	0.266	0.080	0.185	0.134	0.061	0.029	0.002
631	SIF-1X	4	2	4	2085.7	377	0.586	2086.29	Left	Chalk	64.884	8,727	24.454	13.042	0.659	0.000	1.582	0.352	0.118	0.207	0.120	0.000	0.115	0.000
632	SIF-1X	4	2	4	2085.7	377	0.615	2086.32	Left	Clay and chalk	28.874	5.087	60.122	20.116	0.000	0.000	3.546	0.207	0.086	0.177	0.142	0.046	0.018	0.003
633	SIF-1X	4	2	4	2085.7	377	0.656	2086.36	Left	Clay and chalk	29.576	5,133	59.310	19,760	0.000	0.000	3,500	0.222	0.075	0.198	0.164	0.045	0.024	0.002
634	SIF-1X	4	2	4	2085 7	377	0.677	2086 38	Left	Chalk	78 894	7 470	15 926	7 892	0 387	0,000	1 029	0 299	0 136	0 202	0 1 1 4	0,000	0.072	0,000
635	SIF-1X	4	2	4	2085,7	377	0 697	2086.40	Left	Clay and chalk	71 261	7 406	20 511	10 683	0 485	0,000	1 320	0 338	0 1 3 5	0 199	0 126	0,000	0.079	0,000
636	SIF-1X	4	2	4	2085,7	377	0 717	2086 42	Left	Clay and chalk	81 785	6 735	15 007	4 817	0 410	0,000	0 587	0 318	0 1 3 3	0 221	0 111	0,000	0.076	0,000
637		-т Д	2	-т Д	2085,7	377	0 747	2000,42	Left	Clay and chalk	67 974	5 352	23 471	13 036	0,000	0,000	1 345	0 312	0,106	0 195	0 1 2 5	0,000	0,070	0,000
638		-т Д	2	-т Д	2085,7	377	0,808	2000,45	Left	Clay and chalk	33 117	5 561	50 649	24 688	0.854	0,000	3 341	0 347	0,100	0 207	0,120	0.081	0.053	0,000
630		4	2	4	2085,7	370	0 385	2000,51	Right	Clay and chalk	52 011	10 /11	30,647	1 078	0,004	0,000	1 / 8/	0,347	0,000	0,207	0,133	0,001	0,000	0,000
640		4	2	4	2085,7	370	0,385	2080,05	Pight		6/ 999	0 1/6	22 520	0 164	0,435	0,000	1 1 2 1	0,344	0,102	0,205	0,120	0,093	0,000	0,000
640 641		4	2	4	2085,7	270	0,423	2080,13	Pight	Chalk	04,000	0 1 2 9	23,320	2 025	0,505	0,000	0.751	0,324	0,113	0,221	0,141	0,000	0,039	0,000
657		4	2	4	2085,7	370	0,472	2000,17	Right		22 027	5,130	6,003 E0 E26	2,025	0,000	0,000	2 042	0,317	0,129	0,213	0,121	0,137	0,044	0,000
057		4	2	4	2085,7	370	0,495	2000,20	Night		55,027	0,505	25,220	22,245	0,000	0,000	3,042	0,229	0,004	0,171	0,152	0,000	0,040	0,002
000		4	2	4	2005,/	37U 270	0,537	2000,24	Rigiit		24 450	0,304	55,118	/ 00/	0,000	0,000	2,043	0,315	0,118	0,209	0,129		0,120	0,000
055		4	2	4	2085,7	370	0,585	2086,29	Right	Clay and chalk	24,459	4,875	60,108 50,252	27,621	0,000	0,000	3,684	0,216	0,074	0,187	0,142	0,055	0,047	0,002
654	SIF-1X	4	2	4	2085,7	370	0,614	2086,31	Right		27,275	4,636	59,253	23,141	0,000	0,000	3,699	0,218	0,081	0,205	0,155	0,000	0,036	0,002
653	SIF-1X	4	2	4	2085,7	370	0,674	2086,37	Right	Chaik	54,290	5,994	39,894	10,062	0,000	0,000	2,377	0,283	0,109	0,221	0,118	0,000	0,129	0,000
652	SIF-1X	4	2	4	2085,7	370	0,695	2086,40	Right	Chalk	35,261	4,916	56,334	16,313	0,000	0,000	3,519	0,242	0,088	0,244	0,134	0,000	0,087	0,000
651	SIF-1X	4	2	4	2085,7	370	0,/14	2086,41	Right	Chalk	91,271	6,/61	7,646	3,245	0,344	0,000	0,267	0,294	0,130	0,215	0,114	0,161	0,000	0,000
650	SIF-1X	4	2	4	2085,7	370	0,745	2086,45	Right	Chalk	45,587	4,427	44,449	20,916	0,000	0,000	2,558	0,269	0,111	0,202	0,117	0,000	0,174	0,002
649	SIF-1X	4	2	4	2085,7	370	0,803	2086,50	Right	Clay and chalk	29,219	4,763	56,071	24,304	0,000	0,000	3,671	0,236	0,071	0,204	0,166	0,079	0,048	0,003
658	SIF-1X	4	2	5	2085,7	900	0,900	2086,60	Bottom	Flint	2,532	90,007	0,489	0,353	0,853	0,000	0,910	0,063	0,019	0,004	0,084	0,028	0,000	0,000
659	SIF-1X	4	2	5	2085,7	864	0,864	2086,56	Undefined	Flint	3,383	86,642	0,311	0,365	0,965	0,000	2,611	0,057	0,035	0,005	0,127	0,110	0,000	0,000
664	SIF-1X	3	1	1	2066,29	5	0,043	2066,33	Left	Flint	1,339	82,442	9,183	3,387	0,208	0,000	0,248	0,056	0,016	0,007	0,085	0,000	0,000	0,000
665	SIF-1X	3	1	1	2066,29	58	0,073	2066,36	Right	Flint	1,019	92,899	3,271	0,384	0,161	0,000	0,234	0,053	0,016	0,004	0,084	0,000	0,000	0,000
666	SIF-1X	3	1	1	2066,29	58	0,091	2066,38	Right	Flint	1,914	83,685	5,782	0,391	0,272	0,000	0,367	0,048	0,000	0,004	0,072	0,008	0,000	0,000
667	SIF-1X	3	1	1	2066,29	5	0,025	2066,32	Top (oblique)	Chalk	71,553	29,782	1,867	1,919	0,275	0,000	0,221	0,307	0,150	0,134	0,108	0,075	0,039	0,002

669		n	21	1	2064.97	0	0.019	2064.80	Loft	Chall	25 652	4 0.95	F2 014	20,200	0.000	0.000	2 970	0.226	0 1 1 2	0 1 2 1	0 1 2 5	0.000	0 1 2 7	0.002
668		2	21	1	2064,87	0	0,018	2064,89	Left	Chalk	35,053	4,985	53,914	20,399	0,000	0,000	2,879	0,326	0,113	0,131	0,125	0,000	0,137	0,002
669		2	21	1	2064,87	0	0,033	2064,90	Left	Chalk	17,218	3,/1/	49,961	30,907	0,000	0,000	4,204	0,196	0,079	0,131	0,134	0,000	0,039	0,002
670		2	21	1	2064,87	0	0,054	2064,92	Left	Chaik Clay and shalls	39,100	5,818	48,301	19,030	0,000	0,000	2,609	0,297	0,119	0,132	0,132	0,000	0,093	0,002
672		2	21	1	2064,87	0	0,070	2064,94	Right		23,908	5,000	59 58/	20 805	0,000	0,000	3,389	0,411	0,100	0,137	0,143	0,000	0,070	0,005
673		2	21	1	2004,87	0	0,025	2004,85	Right	Chalk	Q/ 103	12 320	3 570	25,805	0,000	0,000	0 152	0,233	0,034	0,156	0,140	0,041	0,054	0,002
674	SIF-1X	2	21	1	2004,87	0	0,055	2064,91	Right	Chalk	93 402	12,520	2 4 2 9	2,045	0,507	0,000	0,132	0,412	0,202	0 157	0,103	0,000	0,000	0,002
675	SIF-1X	2	21	1	2004,87	0	0,030	2004,55	Right	Clay and chalk	56 894	10 454	27 587	20 034	0,323	0,000	1 567	0,421	0,105	0,139	0 114	0,100	0,000	0,000
676	SIF-1X	2	21	2	2064,87	79	0,110	2064,98	Left	Chalk	18,360	3,336	63,888	38,293	0,000	0,000	3,680	0,175	0,078	0,135	0,114	0,000	0,024	0,002
677	SIF-1X	2	21	2	2064,87	79	0,164	2065,03	Left	Chalk	33,283	, 4,872	, 51,507	28,994	0,000	0,000	2,947	0,189	0,105	, 0,147	0,138	0,000	0,037	0,002
678	SIF-1X	2	21	2	2064,87	79	0,224	2065,09	Left	Chalk	65,289	7,081	30,888	9,496	0,000	0,000	1,631	0,318	0,167	0,165	0,117	0,000	0,117	0,001
679	SIF-1X	2	21	2	2064,87	79	0,264	2065,13	Left	Chalk	25,560	4,959	62,031	26,526	0,000	0,000	3,756	0,177	0,095	0,144	0,127	0,028	0,000	0,001
680	SIF-1X	2	21	2	2064,87	79	0,300	2065,17	Left	Chalk	18,407	3,348	63,265	43,206	0,000	0,000	3,904	0,229	0,091	0,131	0,141	0,000	0,046	0,002
681	SIF-1X	2	21	2	2064,87	82	0,112	2064,98	Right	Chalk	84,137	10,857	11,186	4,201	0,590	0,000	0,625	0,378	0,162	0,159	0,111	0,163	0,056	0,000
682	SIF-1X	2	21	2	2064,87	82	0,166	2065,04	Right	Chalk	95,434	11,161	1,645	2,046	0,618	0,000	0,107	0,393	0,200	0,164	0,107	0,178	0,000	0,000
683	SIF-1X	2	21	2	2064,87	82	0,225	2065,10	Right	Chalk	96,514	11,263	1,375	1,129	0,486	0,000	0,119	0,373	0,203	0,171	0,101	0,166	0,000	0,000
684	SIF-1X	2	21	2	2064,87	82	0,266	2065,14	Right	Chalk	96,680	11,748	0,722	0,536	0,427	2,203	0,088	0,367	0,208	0,166	0,097	0,193	0,000	0,000
685	SIF-1X	2	21	2	2064,87	82	0,300	2065,17	Right	Chalk	78,561	11,147	15,337	6,249	0,631	0,000	0,842	0,447	0,171	0,150	0,123	0,000	0,112	0,003
686	SIF-1X	2	21	3	2064,87	335	0,350	2065,22	Left	Chalk	69,330	31,019	1,892	1,041	0,282	1,184	0,210	0,300	0,151	0,121	0,092	0,116	0,000	0,001
687	SIF-1X	2	21	3	2064,87	335	0,375	2065,25	Left	Flint	1,213	76,097	10,616	3,393	0,228	0,000	0,403	0,050	0,016	0,006	0,086	0,000	0,000	0,000
688	SIF-1X	2	21	3	2064,87	335	0,400	2065,27	Left	Flint	0,849	70,392	13,423	2,995	0,156	0,000	0,513	0,040	0,018	0,005	0,088	0,000	0,000	0,001
689	SIF-1X	2	21	3	2064,87	335	0,346	2065,22	Right	Chalk	18,205	70,751	5,942	2,857	0,325	0,000	0,296	0,107	0,049	0,027	0,098	0,026	0,017	0,001
690	SIF-1X	2	21	3	2064,87	335	0,376	2065,25	Right	Flint	1,296	79,520	13,220	3,052	0,195	0,000	0,608	0,064	0,013	0,005	0,087	0,000	0,000	0,000
691	SIF-1X	2	21	3	2064,87	335	0,401	2065,27	Right	Flint	1,672	34,573	37,720	9,531	0,000	0,000	2,320	0,039	0,015	0,005	0,080	0,006	0,000	0,000
692	SIF-1X	2	21	4	2064,87	415	0,428	2065,30	Left	Chalk	94,229	14,591	1,636	0,580	0,527	1,773	0,086	0,365	0,218	0,172	0,103	0,000	0,050	0,000
693	SIF-1X	2	21	4	2064,87	415	0,464	2065,33	Left	Chalk	25,200	5,884	63,850	16,958	0,000	0,000	3,474	0,149	0,092	0,140	0,130	0,029	0,000	0,002
694	SIF-1X	2	21	4	2064,87	415	0,508	2065,38	Left	Chalk	76,410	12,108	14,757	7,736	0,560	0,000	0,926	0,424	0,177	0,162	0,116	0,000	0,097	0,000
695	SIF-1X	2	21	4	2064,87	415	0,522	2065,39	Left	Chalk	93,619	13,092	1,853	1,668	0,579	0,000	0,080	0,431	0,210	0,169	0,095	0,158	0,000	0,000
696	SIF-1X	2	21	4	2064,87	415	0,563	2065,43	Left	Chalk	93,728	14,334	1,392	1,283	0,839	2,194	0,121	0,462	0,228	0,153	0,122	0,164	0,000	0,002
697	SIF-1X	2	21	4	2064,87	415	0,589	2065,46	Left	Chalk	91,258	14,128	2,325	1,995	0,569	0,000	0,076	0,530	0,202	0,155	0,108	0,182	0,000	0,001
698		2	21	4	2064,87	415	0,620	2065,49	Left	Chalk	52,065	8,596	40,127	9,913	0,000	0,000	2,068	0,436	0,146	0,148	0,123	0,000	0,122	0,002
699 700		2	21	4	2064,87	411	0,426	2065,30	Right	Chalk	91,505	12,056	1,854	1,351	0,367	0,000	0,073	0,365	0,220	0,163	0,106	0,161	0,000	0,002
700		2	21	4	2064,87	411	0,464	2065,33	Right	Chalk	94,020	13,959	1,554	1,1//	0,534	0,000	0,063	0,378	0,214	0,105	0,115	0,000	0,000	0,000
701		2	21	4	2064,87	411	0,509	2065,38	Right	Chalk	96,527	12,143	1,405	0,604	0,643	0,000	0,084	0,387	0,226	0,177	0,109	0,171	0,000	0,000
702		2	21	4	2064,87	411	0,522	2005,39	Right	Chalk	92,130	13,997	2,048	1,504	0,585	0,000	0,051	0,461	0,206	0,154	0,110	0,178	0,000	0,002
703		2	21	4	2064,87	411	0,537	2005,41	Right	Chalk	94,889	14 28 4	1,393	1,182	0,726	0,000	0,081	0,431	0,207	0,156	0,113	0,186	0,000	0,002
704		2	21	4	2064,87	411	0,503	2005,43	Right	Chalk	94,057	14,384	0,954	0,084	0,039	0,000	0,126	0,456	0,207	0,151	0,105	0,108	0,000	0,000
705		2	21	4	2004,87	411	0,569	2005,40	Rigiit Diabt	Chalk	91,547	15 053	1,937	1,070	0,725	0,000	0,100	0,558	0,210	0,152	0,120	0,102	0,000	0,001
706	211-12	2	21	4	2064,87	411	0,620	2005,49	Right	Chaik	90,813	12,923	1,750	1,971	0,88/	0,000	0,135	0,595	0,213	0,157	0,115	0,195	0,000	0,003

			W	/ell					Conv	ventio	nal cor	e analy	/sis		De	ean Sta	rk
Sample ID	Well	Formation	Core	Box	Depth m MDRT	Depth Ft MDRT	Depth from core top m	Plug orientation	Plug diameter m	Plug length m	Porosity %	Air perm.	Klink. Perm. mD	Density g/cm3	Water saturation %	Oil saturation %	Gas saturation %
51	SIF-1X	Ekofisk	2	21	2065,07	6775,2	0,20	hor			35,06	1,06	0,44	2,71	38,79	20,51	40,7
52	SIF-1X	Ekofisk	2	21	2065,38	6776,2	0,51	hor			26,87	0,308	0,1	2,7	64,3	17,33	18,37
53	SIF-1X	Ekofisk	2	21	2065,65	6777,1	0,78	hor			34,41	1,4	0,66	2,68	53,47	29,9	16,64
79	SIF-1X	Ekofisk	3	10	2074,29	6805,4	0,05	hor			20,15	0,135		2,71	68,97	8,98	22,05
80	SIF-1X	Ekofisk	3	10	2074,65	6806,6	0,41	hor			21,92	0,15		2,71	76,65	8,17	15,19
10X	SIF-1X	Ekofisk	3	10	2074,98	6807,7	0,74	hor			29,13	0,454	0,18	2,7			
81	SIF-1X	Ekofisk	3	10	2075,03	6807,8	0,79	hor			28,82	0,458	0,19	2,7	53,93	23,68	22,39
111	SIF-1X	Ekofisk	4	2	2085,85	6843,3	0,15	hor			17,43	0,186	-999	2,71	79,32	2,41	18,27
112	SIF-1X	Ekofisk	4	2	2086,18	6844,4	0,48	hor			26,87	0,517	0,22	2,7	64,57	6,24	29,2
113	SIF-1X	Ekofisk	4	2	2086,41	6845,2	0,71	hor			26,15	0,354	0,14	2,71	73,15	3,36	23,49

	(Poro-perm Perm (mD) 2	Saturation (%)		C	a nt (%)		Si Amour	i nt (%)	Å	CI Amount	(%)	Ame	Al ount (%)		Zr Amount	(%)	Am	K nount (%)		Fe Amount (%)		S Amount (%)	1	Mg Amount (%)		Mn Amount (%)	An	Sr nount (%)	I	Ba Amount (%)	Am
	(0 Por (%) 40	0 1	00	0	1	.00	0	100	0		100	0	2	0,0	00	0,010 0)		50	0	1 () 2	20 (0,0 0,3	B 0,	,0	0,3	0,0	0,3	0,0) (0,3	0,0
0,0								:.			•.					2			•••	1	•••	1	•	1			••••			1.				
					. •	•		••		-	· . • .		1			•		•	•		•••		•		+		•			•		•		+
0,1 -					•	•		••			• •		• •	_	-	•		•	•		• •		• •		•		• •			••				•
					•		•	••			•		• •			•		0	•		• •		•		-		• •			•0		• •		•
0,2 -		••	• •																								• •							
					•	·		••		- [•					•			•		• •		•		Į –		• •			••				
0,3 -					•	•		••			• •		• •			•		•	٠		• •		• •		•		• 0			•0		••		•
					•	•		•	•	•			•			•		P			• •				•		• •		•	•		e		•
0,4 -					•			•	•		• •		•			•		••			0		••		-		0 0		P			0 ()		•
								•		t	_		•								•				t l		•			•		e		t.
0,5 -													Ι.						•						I I									T
								:		ł			•	•		•					•				1		0			•		•		
0,6 -						•				ŀ				•		•		•							Į į			•		0		•		
					•			••			•		+	•		••		• •			• •		•		0		• •			•		0		•
0.7 -																																		
-,-																																		
0.8 -		••	•••																															
-,-			Water saturation																															
0,9			Gas saturation																															

SIF-1X Core 3, box 1			Poro-perm 0 Perm (mD)	Saturation	Ca	Si Amount (%)	CI Amount (%)	Al Amount (%)	Zr	K Amount (%)	Fe	S Amount (%)	Mg	Mn Amount (%)	Sr Amount (%)	Ba
Core UV LWIR SWIR			0 Por (%) 40	0 2	0 100	0 100	0 100	0 2	0,000 0,0	10 0 50	0 1	0 20	0,0 0,3	0,0 0,3	0,0 0,3	0,0
الم الم الم الم	Тор	0,0			A	•	•	A		A						
		0,1 -				•		•		•	•		Į	•		•
		0,2 -														
		0,3 -														
	gth (m)	0,4 -														
	Core len	0,5 -														
		0,6 -														
		0,7 -														
		0,8 -		• Water saturation												
				Oil saturation												
	Base	0,9		 Gas saturation 												

	Limestone w. low Si and Al content
	Limestone w. low Si and elevated Al
2	Limestone w. elevated Si and Al
3	Completely or nearly completely silicified section
	Elevated amounts of Cl, K and S

Ba punt (%) 0,	,3 0	Ti Amount	t (%) 0,3	Amor 0,0	C unt (%) 0,3
•				•	

Limestone w. low Si and Al content Limestone w. low Si and elevated Al Limestone w. elevated Si and Al Completely on rearly completely silicified section Elevated amounts of CI, K and S

SIF-1X	Co	ore 3, bo	x 10		
Core	UV	LWIR	SWIR	Тор	0,0
	-	ě.	5		0,1
-					0,2
	149				0,3
8	8	8	2	igth (m)	0,4
	國制	44. 1941	1	Core len	0,5
	DR. A	聯			0,6
•		•	•		0,7
•	0	•	•		0,8
		193		Base	0,9

	Poro-perm	Saturation	Са	Si	Cl	Al	Zr	К	Fe	S	Mg	Mn	Sr	Ва	т
	0 Perm (mD) 2	(%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amount (%)	Amou
	0 Por (%) 40	0 10	0 0 100	0 100	0 100	0 2	0,000 0,00	05 0 20	0 1	0 5	0,0 0,3	0,0 0,3	0,0 0,3	0,0 0,3	0,0
0,0		-	••	•	••	-	• •	• •	•	• •	•	••	•	••	+
	•••	••••			•					••			•	0	1.
0,1 -			• • •			1.		** **	• •	0.0		• •	• • •	••	
								••		•		8	•	0	
0,2 -		-		•							Ť	•			•
				1	4			7		·.	Ę				
					•			•			İ			•	1.
0,3 -								•			Ĭ	•	ő		
			•	·	•	1	•	•	•	•	÷	•	•	•	Ť
0,4 -			••	•	•	- †		•	•	•	+	•	•	•	Ť
			· .	•						•		•	•	•	-
				•											ļ
0,5 -			•	•	•	•	•	•	•	•	T I	•	•	•	Ţ
			••	•	• •	•	+ I	•	•	•	÷	•	•	•	•
0.6 -			• • •	•	•	•		• • •	•	•	+	•	•	•	÷
						•		•		•	1	•	•	•	† .
			· · · · · · · · · · · · · · · · · · ·	1	- <mark>-</mark>		i i i	•*		-	- -			•	
0,7 -			•	•		•		•	•	0	1 I	0	•	•	•
	•••				ļ						Ţ				
08 -	••	••	•	•	•	•	•		•	•	+		0	•	•.
0,0		Water saturation	•	•		• •	•	••		0	1			•	0
		Oil saturation						••		ľ	T I				
0,9 🚽		· Gas saturation													

SIF-1X	(Core 4, b	ox 1	
Core	UV	LWIR	SWIR	Тор
8	3			
				:ngth (m)
•		•	•	Core le
	•	•	•	
N.	-	C-		Base

	0 Perm (mD)	n 2	(%)		Ca Amount (%)	Am	Si ount (%)	C Amour	it (%)	Al Amount (%)		Zr Amount (%)	K Amount (%)	Fe Amount (%)	S Amount (%)	Amo	Mg ount (%)	Mn Amount (%)	Sr Amount (%)	Ba Amount (%)	Ti Amoun
	0 Por (%)	40	0 10	DO C	100	0	100	0	100	0 2	2 0,0	00 0,005	50 40	0 1	0 2	0 0,0	0,3	0,0 0,3	0,0 0	,3 0,0 0,	3 0,0
						•		•		••			•	•	9			0		•	•
					••					••	Ĭ	•	•	0		,		••	••		0
-					· · · ·	0						· · .		•	•	ļ		•		•	· · · ·
	• •		••••		••			. •			ļ			•				••			
-																					
													F I	:	•	Ĭ		-	1		
					•	8		•		•		•	•	6	ł	+		e	•	•	•
						0				· · ·		· · :		•				:			- <u>+</u>
					•						ļ	•	•			l İ.					
											Į		• •							••	••
																			••	•	
	•••		•••		• •	•		• •		Ŷ	•	•	• •	• •	••			••	*•	e	Ŷ
					• •	•		•		•		•	• •	•	••	+		• •	•.	•	•
					•••	•		•	•	•	-		• •		••	•		• •	••	••	
					•	•			•	-		••	••	•	e			•	• •	•	•
					•••	•			•			•	•	•	•	1		•••	•		
-	•••		• • •		•••	•		•		1	ý		* * *	••	• •	÷		••	••	0 0	+ *
					••	•		• •		-	•	•	• •	•	•0	÷		e	e	•	• •
-					•	•						• •	6	••				•	6	••	•
			Water saturation Oil saturation																		
			Gas saturation		0		0	Ŷ		0	Ŷ		9	0	0	Ŷ		0	9	0	0

Limestone w. low Si and Al content Limestone w. low Si and elevated Al Limestone w. elevated Si and Al Completely or nearly completely silicified section Elevated amounts of CJ, K and S

