Gold, PGE and sulfide phases of the precious metal mineralization of the Skaergaard intrusion

Part 20: Sample 90-24 1048

Nikolay S. Rudashevsky, Vladimir N. Rudashevsky & Troels F. D. Nielsen

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND DANISH MINISTRY OF CLIMATE, ENERGY AND BUILDING

Gold, PGE and sulfide phases of the precious metal mineralization of the Skaergaard intrusion

Part 20: Sample 90-24 1048

Nikolay S. Rudashevsky, Vladimir N. Rudashevsky & Troels F. D. Nielsen

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND DANISH MINISTRY OF CLIMATE, ENERGY AND BUILDING

Introduction	5
Sample 90-24, 1048	5
Analytical techniques	5
Results	7
Rock forming minerals and sulphide mineralogy	7
Silicates and FeTi-oxides	7
Sulphides	7
Precious metal minerals: recovery, grain size and relations to host rock	8
Recovery	8
Grain size	9
Petrographic observations	.11
Description and composition of precious metal minerals	.12
Skaergaardite (Pd,Au,Pt)(Cu,Fe,Zn,Te,Pb)	.12
Description	.12
Mineral chemistry	.13
Gold minerals: unnamed (Au,Pd,Pt) ₃ Cu and tetra-auricupride (Au,Pd,Pt)(Cu.Fe)	. 14
Vasilite (Pd,Cu) ₁₆ S ₇	.14
Unnamed Pd ₂ Te	.14
Zvyagintsevite Pd ₃ (Pb,Cu,S), atokite Pd ₃ (Sn,Cu,Pb,Te), (Pd,Cu,Sn) alloy, keithcor	nite
Pd ₃ (Te,Cu,Pb,Sn)	.14
Bulk composition of PGMs of the sample 90-24 1059	. 15
Discussion	16
PGM-paragenesis and order of crystallization	.16
Summary	17
References	18

Abstract

The report presents the results of mineralogical investigations of sample 90-24 1048 from the PGE-Au mineralisation of the Platinova Reef in the Skaergaard intrusion. The sample represents the peak of the Pd4a level in the core 90-24. Assays show 630 ppb Pd, 52 ppb Au, and 50 ppb Pt for the 1m sampling interval.

The sample (1140 g) was crushed for short periods (0.3-0.5 min) in small portions using a shatter box with small cavities (200 ml) and sieved after each crushing session to remove the fine fraction (sieve -125 μ m). The residual coarse fraction >125 μ m was re-crushed until the entire sample had attained the desired maximum grain size.

After complete crushing the material was passed through the following sieves: 1) <40, 2) 40-63, 3) 63-80, 4) 80-125 μ m. All fractions were subsequently subjected to wet magnetic separation.

The non-magnetic parts of every fraction from the sample 90-24 1048 were hydroseparated using the computer controlled hydroseparator CNT HS-11. Monolayer polished sections were produced from the obtained heavy concentrates of each grain size fraction. The polished sections and one of the core rock were investigated under the scanning electron microprobe. No precious metal grains were observed in the magnetic grain size fractions.

The gabbroic bulk rock of the sample 90-24 1048 shows the characteristic reaction relationships between cumulus and inter-cumulus phases, such as rims of olivine and anorthite rich plagioclase at the boundaries between Fe-Ti-oxides and pyroxenes. In general, the sample is "dry" with H_2O -bearing minerals occurring only locally in very insignificant amounts in intergrowths with Cu-Fe-sulphides.

The HS-concentrates contain numerous sulphide grains identified as sulphide droplets. They are formed by one or more Cu-sulphides – bornite and chalcosine, rare chalcopyrite, pentlandite-(Co) and unnamed $Cu_2FeS_3(?)$. Several of these droplets and sulphide grains contain inclusions of PGMs.

As the result of microprobe investigations of the un-magnetic heavy mineral concentrates we selected a representative suite of 122 precious metal grains for more detailed studies. The dominating precious metal mineral is skaergaardite (Pd,Au,Pt)(Cu,Fe,Zn) with 95.3 vol. %, followed by several minor minerals (~5 % of all precious metal minerals of the sample) including: (1) tetra-auricupride (Au,Pd,Pt)Cu (1.2 %), (2) unnamed (Au,Pd,Pt)₃Cu (1.6 %), (3) vasilite (Pd,Cu)₁₆S₇ (1.0 vol. %), (4) (Pd,Pb,Sn,Te,Cu) alloys (incl. zvyagintsevite, atokite, keithconite – together 0.5 %), and (5) unnamed Pd₂Te (0.3 %). The grain size of precious metal minerals (ECD) varies from 1 to 93 µm with an average of 30 µm.

The average composition of skaergaardite (analyses from 98 grains) is (wt. %):

Pd: 60.8, Pt: 0.8, Au: 1.2, Cu: 29.2, Fe: 4.5, Zn: 2.0, Sn: 0.3, Te: 0.3, Pb: 0.6, with a total of 99.7. The composition corresponds to the formula:

$(Pd_{0.98}Pt_{0.01}Au_{0.01})_{1.00}(Cu_{0.79}Fe_{0.14}Zn_{0.05}Te_{0.01}Pb_{0.01})_{0.99}.$

The estimated bulk composition of the sample (assays of whole rock in brackets) is (ppb): Pd 688 (630), Au 34 (52), Pt 10 (50). Pd is hosted in skaergaardite (669 ppb) and in other precious metal minerals (totalling 19 ppb). Pt is hosted in skaergaardite (and in some Au alloys), Au is distributed between its own minerals (tetra-auricupride + $Au_3Cu - 21$ ppb) and skaergaardite (13 ppb).

The inter-grain relations suggest that all the precious metal minerals have single paragenesis. The sulphide droplets contain rare droplets of PGMs. The characteristic texture suggests the occurrence of two immiscible melts: 1) a Cu-Fe sulphide melt and 2) a metal melt enriched by Cu, Pd, Au and Pt that separated from the sulphide melt.

Introduction

The report describes the mineralogy of sample 90-24-1048 from Pd4a level some 10m above the main peak of palladium in the Pd5 level of the "Platinova Reef" of the Skaergaard intrusion (Andersen et al., 1998; Nielsen et al, 2005). The report is based on the data recovered from HS concentrates produced using the Hydroseparator CNT HS-11 and one polished section of the core rock. Monolayer polished sections of the HS concentrates and one polished section of the core rock have been studied using electron microscopy and electron microprobe analysis (Camscan-4DV, Link AN-10 000). The report gives descriptions of the grain characteristics, the parageneses, and the compositional variations within the identified groups of minerals, alloys, sulphide droplets and host gabbro.

Sample 90-24, 1048

Drill core sample 90-24 1048 (1140 g) consists of gabbro rich in FeTi-oxides and was collected from BQ drill core # 90-24. The core was drilled with an azimuth of 0° and an inclination of -70 from a location at 504 meters a.s.l, on the western slopes of Basistoppen. The core has previously been sampled for other purposes. The sample collects 1/3 of the diameter of the preserved core between 1048 and 1049 m in the Pd4a level (Nielsen et al., 2005). Assays show 630 ppb Pd, 52 ppb Au, and 50 ppb Pt for this interval.

Analytical techniques

Analytical techniques are described in Nielsen et al. (2003). The heavy mineral concentrates, enriched in precious metal minerals were obtained using the computer controlled Hydroseparator CNT HS-11 and patented glass separation tube (GST, see website of Center for New Technologies, <u>www.cnt-mc.com</u>.). Final HS concentrates were obtained using saturated NaCl solution to provide a better recovery of the heavy media.

One chip of the core was used for a polished section. The remaining core material was crushed to $-125 \ \mu$ m. After complete grinding, the sample was passed through standard sieves with water (wet sieving): <40 μ m (428.6 g)^{*}, 40-63 μ m (134.6 g), 63-80 μ m (93.2 g), 80-125 μ m (363.6).

After wet magnetic separation fractions <40 μ m, 40-63 μ m, 63-80 μ m, 80-125 μ m were processed in hydroseparator CNT HS-11. Monolayered polished sections were produced from all grain size fractions of heavy HS-concentrates.

^{*} Weigh of HS-tailings

Fig 1. Polished sections of heavy mineral concentrate, fraction 40 63 μ m (a – X70; b – X150), sample 90-24 1048, SEM-images (BIE).

Abbreviations: ilm: ilmenite; sk: skaergaardite: bn: bornite; ch: chalcosine.

Results

Rock forming minerals and sulphide mineralogy

Silicates and FeTi-oxides

The silicates and oxides related to sulphides are: 1) *plagioclase*, An₄₂₋₄₇ (Table 1, analyses 1-3); 2) *monoclinic ferrous pyroxene*, Mg# = 0.61-0.65 (Table 1, analyses 4-6); 3) *orthorhombic ferrous pyroxene*, Mg# = 0.50-0.55 (Table 1, analyses 7-8); 4) Fe-rich *olivine*, Mg# = 0.43-0.45 (Table 1, analyses 9-11); Fe-Ti oxides including 5) *ilmenite* (Table 1, analyses 12-14) and 6) *titanomagnetite* (Table 1, analyses 15-17). Monoclinic and orthorhombic pyroxenes form characteristic exsolution textures (see Plate 1).

The Fe-Ti-oxides occur as aggregates of anhedral grains, 1-3 mm in size. They fill space between grains of plagioclase and pyroxenes (see Plate 1). At the contact between pyroxenes and Fe-Ti-oxides these aggregates often are rimmed by fayalite and anorthite (Plate 1, images 1-3) as described in Holness et al., 2011. There are also areas in the section were the rock does not show these reaction rims. (Plate 1, images 4-6, 8).

The gabbro of the sample 90-24 1048 is a "dry" rock. In the polished section no minerals containing volatile elements found (Plate 1). However, chlorite and calcite were identified in the heavy mineral concentrate as grains related to sulphide globules (Plate 2, #24-26; Plate 3, #3; Plate 4, #8, 9).

Sulphides

The gabbro is relatively poor in sulphide. In the investigated polished section just one bornite grain was found as a fine inclusion (~10 μ m) in an intergrowth with titanomagnetite and apatite in a pyroxene-rich aggregate (Plate 1, image 7).

However, the nonmagnetic heavy mineral concentrates are ilmenite-rich products (> 95 %) enriched in grains of sulphide and PGMs (Fig.1). The sulphide grains are represented by droplet-like microglobules (Plate 2, #1-14; Plate 3, #1, 5-7 etc) of up to 0.1 mm in size and irregular aggregates (Plate 2, #15-39 etc). Inclusions of rock-forming minerals - plagioclase (Plate 2, #22; Plate 4, #3), pyroxenes (Plate 4<#1), olivine (Plate 4, #2) ilmenite (Plate 2, #23; Plate 4, #4-6), chlorite (Plate 2, #24-26; Plate 4, #8, 9), calcite (Plate 4, #10) and even ThO₂ (Plate 4, #7) often occur in the marginal parts of sulphide grains.

The sulphide grains and aggregates are dominantly composed of bornite and chalcosine (see Plates 2 and Plate 3) and sometimes chalcosine, only (Plate 2, #14: Plate 3, #47). The volume ratio of the Cu-sulphides varies significantly from grain to grain (see Plate 2). In the microglobules bornite and chalcosine form classic exsolution textures (see Plates 2-4).

Bornite and chalcosine are are the dominating sulphides. In several sulphide globules was also found chalcopyrite (Plate 3,#25), pentlandite-(Co) (Plate 3, #20, 22, 37) and the unnamed Cu-Fe sulphide Cu₂FeS₃(?) (Plate 3, #13; Plate 4, #7). The composition of bornite (Table 2, analyses 1, 4, 7. 9. 11, 12, 14-17, 28) and chalcosine (Table 2, analyses 2, 3, 5, 6, 8, 12, 13, 18) are near-stoikiometric. Pentlandite contains 11.3-23.3 % Co (Table 2, analyses 19, 20). The unnamed sulphide with a composition close to Cu₂FeS₃ (Table 2, analyses 22, 23) is repeatedly found and represents a hitherto not named or described phase occurring in nature.

Precious metal minerals: recovery, grain size and relations to host rock

Recovery

During the SEM studies of the polished section of sample 90-24 1048 (Plate 1, #3, 8) only one grain of skaergaardite was found. It occurs as an inclusion in ilmenite

However, the heavy mineral concentrates have yielded many precious metal mineral grains. A representative selection of 122 grains with a wide size range (from <40 μ m up to 80-125 μ m) was studied in detail. Eight different precious metal minerals and phases are documented and include (see also Table 3):

- 1. Skaergaardite (Pd,Au,Pt)(Cu,Fe,Zn,Te,Pb) 110 grains,
- 2. Unnamed (Au,Pd,Pt)₃(Cu,Fe) -3 grains
- 3. Tetra-auricupride (Au,Pd,Pt)(Cu,Fe) 4 grains;
- 4. Vasilite (Pd,Cu)₁₆S₇ 5 grains;
- 5. *Unnamed* $Pd_2Te 2grains$.
- 6. Zvyagintsevite Pd₃(Pb,Cu,Sn) 9 grains,
- 7. Atokite Pd₃(Sn,Cu,Pb,Te) 6 grains,
- 8. *Keithconite* $Pd_3(Te,Cu,Pb,Sn) 3$ grains.

The volumetric proportions are calculated from the area of the grains of the minerals (Table 3, 4 and Fig. 2).

Fig. 2. Relative content of precious metal minerals, sample 90-24 1048 (see Table 3). Skaergaardite: 95.3 vol.%; tetra-auricupride and unnamed (Au,Pd)₃Cu: 2.8 vol.%; vasilite: 1 vol.%; and other PGM (zvyagintsevite, atokite, keithconnite, unnamed Pd₂Te) 0.8 vol.%.

Grain size

Grain sizes are measured as the effective diameter of the grains (ECD) by using the "imageJ" software. The grain size varies from 1 to 93 μ m with an average of 30 μ m (Table 4; Fig. 3).

The histogram (Fig. 3) shows the normal distribution of grain sizes for the statistical selection (n=122). By size of the precious metal mineral grains are distributed as follows:

Grain size, µm	Number of grains
0-10	13
10-20	23
20-30	30
30-40	28
40-50	15
50-60	8
60-70	1
70-80	2
80-90	1
90-100	1

Fig 3. Histogram of the size distribution of precious metal mineral grains (n=122) in the heavy mineral concentrates of sample 90-24 1048. [Skriv et citat fra dokumentet, eller gengiv en interessant pointe. Du kan placere tekstfeltet et hvilket som helst sted i dokumentet. Brug fanen Tegnefunktioner til at redigere formateringen i tekstfeltet med uddraget.]

The SEIs (scanning electron images) show that the majority of the grains of precious metals are well preserved and have retained their primary shape and size (Plates 3-7). The grains were not been broken during the production of the concentrates. The largest proportion of PGM grains is in the <40 μ m fraction.

Petrographic observations

The perfect separation of accessory minerals was achieved by gentle crushing/disintegration of the sample and preserved primary grain size, and ensured recovery of most of the information for the evaluation of the mineral geneses. The concentrates provide significant information for the reconstruction of the primary shape and size of accessory minerals and phases, together with the parageneses and the paragenetic relationship to the host rock mineralogy.

In the heavy mineral concentrates of sample 90-24 1048 (n=122) the precious metal mineral grains occur in the following mineral associations (Fig. 4; Table 5):

Association	PGM grains, number	PGM-grains, vol. %
L	33	29
L ⁺	11	7.2
bms-L	18	31.4
bms	47	26.3
sag	6	3.3
ag	3	2.8

Table 5. Different associations of precious metal mineral grains in heavymineral concentrates of the sample 90-24 1048.

L - completely liberated (free) particles; L⁺- more than one precious metal minerals completely liberated (free) particles, **bms-L** - liberated particles with <10 % attached base metal sulphides; **bms** - intergrowths with base metal sulphides (bornite, chalcosine, pentlandite, unnamed Cu₂FeS₃?); **sag** - sulphide and gangue (pyroxenes, plagioclase, ilmenie, olivine, chlorite, calcite, thorianite) attached to PGMs; **ag** - precious metal minerals attached to gangue.

The proportion of completely liberated PGM grains $(L+L^*)$ in the heavy mineral concentrate is 36.2 %. Grains attached to bms (**bms+bms-L+sag** associations) however dominate (61 %, see Fig 4). Only 2.8 % of the PGM grains are attached to gangue (**ag** association).

Based on SEIs, precious metal minerals in the heavy concentrates can be divided into different groups:

- skaergaardite grains-intergrowths with base metal sulphides (bms, bms-L), (Plate 3);
- skaergaardite grain intergrowths with gangue or with gangue and base metal sulphides (sag and ag) – (Plate 4);
- 3. completely liberated skaergaardite grains (L) (Plate 5);
- 4. grains containing PGMs other than skaergaardite (Plate 6);
- 5. grains of gold mineral (Plate 7).

Fig. 4. Precious metal minerals grouped by association, sample 90-24 1048; see Table 5.

L: completely liberated (free) particle, 29%; L⁺: more than one precious metal mineral, completely liberated (free) particles, 7.2%; **bms**: PGMs attached to base metal sulphides, 26.3%; **bms-L**: base metal sulphides attached to PGMs, 31.4%; **sag**: PGMs attached to sulphides and gangue, 3.3%; **ag**: precious metal minerals attached to gangue, 2.8%.

Description and composition of precious metal minerals

Skaergaardite (Pd,Au,Pt)(Cu,Fe,Zn,Te,Pb)

The Skaergaard intrusion is the type locality of skaergaardite (PdCu) and first described by Rudashevsky et al. (2004).

Description

Skaergaardite is the dominant Pd mineral in heavy mineral concentrates of sample 90-24 1048 (95.3 vol.%). It is found in the concentrates as:

- 1. liberated (free) grains: L (Plate 5);
- grains in intergrowths with base metal sulphides (bornite, chalcosine, pentlandite and unnamed Cu₂FeS₃?) bms (Plate 3, #1-25, 31, 32, 37, 48; Plate 6, #3, 8,15, 16), bms-L (Plate 3, #26-30, 33-35, 38-47, 49; Plate 6, # 1, 2, 4, 5, 10, 12);
- grains in intergrowths with sulphide and gangue (plagioclase, pyroxenes, ilmenite, olivine, chlorite, calcite and thorianite) sag (Plate 4, #2, 3, 6-10) or with gangue only -: ag (Plate 4, #1, 4, 5: Plate 6, #11);
- 4. grains in intergrowths with other PGMs zvyagintsevite (Plate 6, #1-9), atokite (Plate 6, #10-13), vasilite (Plate 6, #19) and (Pd,Cu,Sn) (Plate 6, #16).

Beside liberated grains of skaergaardite (Plate 5) also occur in association with base metal sulphides (see Plate 3; Plate 4, #3, 6-10; Plate 6, 1-5, 8,10,12. 15,16). The skaergaarditebearing sulphide grains form droplet-like (Plate 3, #1, 3, 5-10. 16-18; Plate 4, #8; Plate 6. #3 etc) or.irregular-shaped (Plate 3, #11,12, 13-15 etc) aggregates. Usually skaergaardite grains are localized at the margins of sulphide globules (Plate 3, #2-18, 20-23; Plate 4, #8; Plate 6, #3 etc). Skaergaardite grains occur as:

- 1. isometric droplet-like grains with the rounded outlines (Plate 3, #1-6, 22-34, 36; Plate 4, #1; Plate5, # 1-20 etc);
- 2. euhedral to subhedral crystals (Plate 3, *#7-21, 39, 41-44*; Plate 4, *#7*; Plate 5, *#22-26* etc);
- 3. irregular grains and aggregates (Plate 3, *#37, 38, 40, 45-49*; Plate 4, *#2-6. 8, 9*; Plate 5, *#27-31* etc).

The size of skaergaardite grains is 2-93 μ m with an average of 31 μ m (Table 3).

Mineral chemistry

The composition of skaergaardite is constrained by 98 analyses from 98 grains (Table 6, analyses 1-98). The average composition of skaergaardite (Table 6, analysis 99) is (wt.%): Pd: 60.8, Pt: 0.8, Au: 1.2, Cu: 29.2, Fe: 4.5, Zn: 2.0, Sn: 0.3, Te: 0.3, Pb: 0.6, with a total of 99.7. The composition corresponds to the following formula:

$$(Pd_{0.98}Pt_{0.01}Au_{0.01})_{1.00}(Cu_{0.79}Fe_{0.14}Zn_{0.05}Te_{0.01}Pb_{0.01})_{1.00}.$$

Typical substitutions in skaergaardite are: Pt up to 19.8 % (Table 6, analysis 24), Au up to 17.9 % (Table 6, analysis 72), Fe up to 7.1 % (Table 6, analysis 73), Zn up to 4.9 % (Table 6, analysis 84), Sn up to 6.6 % (Table 6, analysis 26), Te up to 1.9 % (Table 6, analysis 34), Pb up to 4.2 % (Table 6, analysis 40).Pt and Au concentrations in skaergaardite (n=98) are distributed as follows (Table 7, see Table 6)

Interval, Pt	Number of	Interval, Au	Number of
wt %	analyses - Pt	wt %	analyses - Au
0-1	81	0-1	58
1-3	10	1-3	29
3-5	3	2-3	8
5-7	0	5-7	0
7-9	1	7-9	0
9-11	1	9-11	2
11-13	0	11-13	0
13-15	0	13-15	0
15-17	0	15-17	0
17-19	1	17-19	1
19-21	1	19-21	0

Table 7. Intervals of Pt and Au in skaergaardite (Sample 90-24, 1048):

Gold minerals: unnamed (Au,Pd,Pt)₃Cu and tetra-auricupride (Au,Pd,Pt)(Cu,Fe)

Three grains of $(Au,Pd,Pt)_3Cu$ (possibly a variety of auricupride Au_3Cu, 1.6 vol % of precious metal minerals) and 4 grains of tetra-auricupride (1.2 vol. %) were found in heavy mineral concentrates of sample 90-24 1048 (see Table 3, Fig. 2). The gold minerals only form irregular shaped liberated grains. Grains of $(Au,Pd,Pt)_3Cu$ and tetra-auricupride occur as individual grains (Plate 7, #1, 5), as intergrowth with each other (Plate 7, #4), or in intergrowths with unnamed Pd₂Te (Plate 7, #3, 6). The grain size of tetra-auricupride is 4-29 µm, with an average of 19 µm. The grain size of unnamed $(Au,Pd,Pt)_3Cu$ is 20-35 µm, with an average of 26 µm. The composition of unnamed $(Au,Pd,Pt)_3Cu$ (Table 8, analyses 1-3, average in analysis 4) and tetra-auricupride (Table 8, analyses 5-8, average in analysis 9), are all close to stoikiometry $(Au,Pd,Pt)_3(Cu,Fe)$ and (Au,Pd,Pt)(Cu,Fe), respectively. Tetraauricupride contain 11.9-16.9 % Pd with an average 14.0 % and 0-4.1 % Pt with an average 1.5 %.The unnamed phase $(Au,Pd,Pt)_3Cu$ contains 13.0-18.1 % of Pd with an average of 16.1 % and 0-2.7 % Pt with an average 0.9 %.

Vasilite (Pd,Cu)₁₆S₇

Vasilite $(Pd,Cu)_{16}S_7$ is identified analysed in five grains in the heavy mineral concentrates (1 vol. %; see Table 3 and Fig. 2). Vasilite occurs in association with chalcosine and bornite (Plate 6, #17, 18), and with skaergaardite (Plate 6, #19). It has an irregular shape (size 5-24 µm with an average 16 µm). The composition of vasilite corresponds to the stoikiometric formula (Pd,Cu)_{16}S_7 (Table 9, analyses 17, 18).

Unnamed Pd₂Te

Two liberated grains of the unnamed mineral phase Pd_2Te occur in an intergrowth with gold minerals – tetra-auricupride (Plate 7, #3) and $(Au,Pd,Pt)_3Cu$ (Plate 7, #6). The grain size of Pd_2Te (0.3 vo.% of all precious metal minerals) is 12-16 µm with an average 14 µm (see Table 3). Its composition deviates significantly from that of keithconite $Pd_{3-x}Te$ and telluro-palladinite Pd_4Te_3 . In stoichiometry it corresponds to Pd_2Te (Table 9, analyses 15, 16).

Zvyagintsevite Pd₃(Pb,Cu,S), atokite Pd₃(Sn,Cu,Pb,Te), (Pd,Cu,Sn) alloy, keithconite Pd₃(Te,Cu,Pb,Sn)

Zvyagintsevite, atokite, (Pd,Cu,Sn) alloy and keithconite are found as fine (2-12 μ m) inclusions in skaergaardite grains (Plate 6, 1-16). These minerals represent a total of <1 vol.% of precious metal mineral paragenesis in the sample (see Table 3, Fig. 2). Their compositions are shown in the Table 9 (zvyagintsevite – analyses 1-8, atokite – analyses 9-12, keithconite – analysis 13 and (Pd,Cu,Sn) alloy –analysis 14).

Bulk composition of PGMs of the sample 90-24 1059

The relative concentrations of Pd, Au and Pt in sample 90-24 1048 can be calculated from the total concentration of precious metals, the recovery, the modal proportions, and the compositions of the minerals and phases (Tables 3, 6-8). The estimated bulk composition of the sample (assays of whole rock in brackets, Watts Griffis and McOuat, 2001) is (ppb): Pd 688 (630), Au 34 (52), Pt 10 (50). Pd is hosted in skaergaardite (669 ppb) and in other precious metal minerals (in total19 ppb). Pt is in skaergaardite (some in Au alloys), and Au is distributed between gold minerals (tetra-auricupride and Au₃Cu, 21ppb) and skaergaardite (13 ppb).

As noted for many of the hitherto investigated samples from the Platinova Reef, the estimates of the bulk concentration of Pt is always much lower that the assay value. As of now, no clear explanation for the discrepancy is available. Analysis of the same samples by several laboratories show not systematic deviations from the here given assay values (Watts, Griffis and McOuat, 2001) In combination with the observed but not explained fractionation of the Pd/Pt ratio in basaltic melts from the North Atlantic (Momme et al., 2003) it can not be excluded that small amounts of Pt should be found in f.ex. cumulus titanomagnetite, a phase that is not found in the described and investigated monolayer samples. Pt could be hosted in ferroplatinum as exceedingly small grains.

Discussion

PGM-paragenesis and order of crystallization

The Cu-Fe sulphides, PGMs and gold minerals were synchronous and crystallized later than liquidus minerals: plagioclase, clinopyroxene, orthopyroxene, ilmenite and titanomagnetite. Droplets of sulphide in tilmenite suggests, however, that immiscible droplet were present during the later part of the crystallization of the host rock. The characteristic droplet shape of both - PGMs and host sulphides suggest that they represent two immiscible melts: 1) Cu-Fe sulphide melt and 2) metal melt enriched in Pd, Cu, Pt and Au which has separated from the Cu-Fe melt. All our observations and the inter-grain relations (Plates 3-7) suggest that all precious metal minerals are parts of a single paragenesis.

Summary

- 1. 122 PGM-grains were identified in the heavy mineral concentrates of sample 90-24 1048 (1.14 kg) using hydroseparator CNT HS-11.
- The dominant precious metal mineral of the sample is skaergaardite (Pd, Au,Pt)(Cu,Fe,Zn,Te,Pb) with 95.3 vol.%. In addition, at least 7 other PGMs (in total c. 4.7 vol.%) were identified and include: (1) unnamed (Au,Pd,Pt)₃Cu (1.6 vol.%), (2) tetra-auricupride (Au,Pd,Pt)(Cu,Fe) (1.2 vol.%), (3) vasilite (Pd,Cu)₁₆S₇ (1.0 vol.%), (4) unnamed Pd₂Te (0.3 vol.%), (5) zvyagintsevite Pd₃(Pb,Cu,,Sn) (0.2 vol.%), (6) atokite Pd₃(Sn,Cu,Pb,Te) and (7) keithconite Pd₃(Te, Cu,Pb,Sn), both <0.1 vol.%).
- 3. The estimated bulk composition of the sample (assays of whole rock in brackets) is (ppb): Pd 688 (630), Au 34 (52), Pt 10 (50). Pd is hosted in skaergaardite (669 ppb) and in other precious metal minerals (total 19 ppb). Pt is in skaergaardite (some also in Au alloys), Au is distributed between gold minerals (tetra-auricupride and Au₃Cu, 21 ppb) and skaergaardite (13 ppb).
- 4. The sulphide droplets contain droplets of PGMs. The characteristic texture suggests the presence of two immiscible melts: 1) Cu-Fe sulphide melt and 2) a metal melt enriched by Cu, Pd, Pt and Au that separated from the sulphide melt.
- 5. Unnamed Pd₂Te and unnamed sulphide Cu₂FeS₃ are frequently recognized in the concentrates and may both represent naturally occurring phases and thus not yet described and named minerals.

References

Andersen, J.C.; Rasmussen, H.; Nielsen, T.F.D. & Rønsbo, J.G. 1998. The Triple Group and the Platinova gold and palladium reefs in the Skaergaard intrusion. Stratigraphy and petrographic relations. Econ. Geol. **93**, 488-509.

Holness, M.B., Stripp, G., Humphreys, M.C.S., Veksler, I.V., Nielsen, T.F.D. & Tegner, C. 2011. Silicate liquid immiscibility within the crystal mush: Late-stage magmatic microstructures in the Skaergaard intrusion, East Greenland. Journal of Petrology **52(1)**, 175-222.

Momme, P., Oskarsson, N. and Keays, R.R. 2003. Platinum-group elements in the Icelandic rift system: melting processes and mantle sources beneath Iceland. Chemical Geology **196**, 209-234.

Nielsen, T.F.D., Andersen, J.C.Ø. & Brooks, C.K. 2005. The Platinova Reef of the Skaergaard intrusion. Mineralogical Association of Canada Short Course **35**, 431-455

Nielsen, T.F.D., Rasmussen, H., Rudashevsky, N.S., Kretser, Yu.L., Rudashevsky, V.N. 2003. PGE and sulphide phases of the precious metal mineralisation of the Skaergaard intrusion. Part 2: sample 90-24, 1057. *Geol. Surv. Denmark & Greenland* report 2003/48; 20

Rudashevsky, N.S., MacDonalds, A,M,,Cabri, L.J.,Nielsen, T.D.F.,Stanley, C.J.,Kretzer, Yu.L.,Rudashevsky, V,N, Skaergaardite, PdCu, a new platinum group intermetallic mineral from the Skaergaard intrusion, Greenland. Mineralogical Magazine, 2004, vol. 68 (4). Pp. 615-632.

Watts, Griffis & McOuat 1991: 1990 Skaergaard project, Platinova/Corona concession, East Greenland, 55 pp. with appendixes in volumes 2A, 2B, 3A and 3B (in Dodex archive of Danmarks og Grønlands Geologiske Undersøgelse (GEUS), GRF no. 20848).

TABLES

Mineral	р	lagioclas	se	с	linopyro	xene	orthop	oyroxene		olivine			Ilmenite)	tita	nomagn	etite
Analysis wt%	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
SiO ₂	55.9	56.7	56.5	51.5	51.6	51.2	51.5	51.3	34.5	33.9	34.3	-	-	-	-	-	-
TiO ₂	-	-	-	0.3	0.4	0.3	0.2	0.2	-	-	-	51.4	50.5	52.8	14.9	12.4	11.3
AI_2O_3	27.8	27.4	27.5	1.2	1.4	1.3	0.4	-	-	-	-	-	-	-	3.7	3.7	2.5
V_2O_3	-	-	-	-	-	-	-	-	-	-	-	0.5	0.6	0.4	1.3	1.6	2.1
Fe ₂ O ₃	-	-	-	-	-	-	-	-	-	-	-	3.9	4.8	0.6	35.6	39.9	42.6
FeO	-	-	-	13.7	12.5	12.5	26.6	29.9	45.1	45.9	46.2	42.2	40.9	45.0	43.7	41.4	41.1
MnO	-	-	-	0.3	0.4	0.3	0.6	0.7	0.8	0.6	0.5	0.6	0.7	0.4	0.2	0.5	0.2
MgO	-	-	-	12.4	12.3	12.8	18.6	16.7	20.6	19.4	19.6	1.9	2.2	1.1	1.1	1.0	0.5
CaO	-	-	-	20.2	21.1	21.2	1.7	1.0	-	-	-	-	-	-	-	-	-
Na₂O	5.9	6.2	6.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
K ₂ O	0.2	0.3	0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total	99.5	99.3	99.7	99.8	99.7	99.7	99.8	99.8	101.0	99.8	100.6	100.5	99.6	100.3	100.4	100.5	100.2
Proportions																	
Si	2.52	2.56	2.54	1.94	1.96	1.95	1.98	1.99	1.00	1.00	1.00	-	-	-	-	-	-
Ті	-	-	-	0.01	0.01	0.01	0.01	0.01	-	-	-	0.96	0.95	0.99	0.41	0.34	0.32
AI	1.48	1.46	1.46	0.06	0.06	0.06	0.02	-	-	-	-	-	-	-	0.16	0.16	0.11
V	-	-	-	-	-	-	-	-	-	-	-	0.01	0.01	0.01	0.04	0.05	0.06
Fe ³⁺	-	-	-	-	-	-	-	-	-	-	-	0.07	0.09	0.01	0.98	1.11	1.20
Fe ²⁺	-	-	-	0.44	0.40	0.40	0.86	0.97	1.09	1.13	1.13	0.88	0.85	0.94	1.34	1.27	1.28
Mn	-	-	-	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.02	0.01
Mg	-	-	-	0.70	0.70	0.73	1.06	0.97	0.89	0.85	0.86	0.07	0.06	0.04	0.05	0.05	0.03
Ca	0.47	0.42	0.45	0.82	0.86	0.86	0.07	0.04	-	-	-	-	-	-	-	-	-
Na	0.51	0.54	0.52	-	-	-	-	-	-	-	-	-	-	-	-	-	-
К	0.01	0.02	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-
O basis	8	8	8	6	6	6	6	6	4	4	4	3	3	3	4	4	4

Table 1.Compositions and formuli of silicates and oxides of sample 90-24 1048

Mineral						Bornite						Pentlar	ndite	unnamed C	u₂FeS₃
Grain Association	40 gr15 sk+bn	40 gr54 sk+bn +ch	40 gr71 sk+bn	40 gr73a ch+bn	40 gr73c ch+bn	63 gr5 sk+bn	63 gr20 sk+bn	63 gr24 sk+bn	63 gr27 sk+bn	125 gr1 sk+bn +ch	63 gr28 sk+bn+ Cu2FeS3?	40 gr6 sk+zv +pn	40 gr31 sk+bn +ch+pn	40 gr44 sk+bn+ ThO2+ Cu ₂ FeS ₃	63 gr28 sk+bn+ Cu ₂ FeS ₃
Analysis	1	4	7	9	11	12	14	15	16	17	23	19	20	21	22
Cu	62,2	62,4	62,5	62,1	62,1	62,6	62,7	62,4	62,5	63,2	62,8	2,4	3,5	46,5	47,4
Fe	11,4	11,1	11,7	12,0	11,7	11,2	11,6	11,7	11,4	11,2	11,3	10,2	15,3	21,4	21,8
Ni	-	-	-	-	-	-	-	-	-	-	-	30,8	36,8	-	-
Со	-	-	-	-	-	-	-	-	-	-	-	23,3	11,3	-	-
S	25,8	26,1	25,0	24,9	25,1	25,6	26,2	25,3	25,7	24,5	23,5	32,7	32,3	31,5	30,4
Total	99,4	99,6	99,2	99,0	98,9	99,4	100,5	99,4	99,6	99,0	99,6	99,4	99,2	99,4	99,6
Proportions															
Cu	4,92	4,99	4,99	4,96	4,96	4,96	4,90	4,96	4,94	5,07	4,98	0,30	0,44	2,09	2,15
Fe	1,03	1,00	1,06	1,09	1,06	1,01	1,04	1,06	1,03	1,02	1,02	1,44	2,15	1,1	1,12
Ni	-	-	-	-	-	-	-	-	-	-	-	4,13	4,94	-	-
Со	-	-	-	-	-	-	-	-	-	-	-	3,11	1,01	-	-
S	4,05	4,07	3,95	3,94	3,97	4,02	4,07	3,98	4,03	3,90	4	8,03	7,95	2,81	2,73
Total	10	10	10	10	10	10	10	10	10	10	10	17	17	6	6

Table 2.Chemical composition and formulas of sulphides in PGM-bearing globules
in the heavy mineral concentrates of sample 90-24 1048

Abbreviations

bn: bornite; ch: chalcocine; pn: pentlandite; CuFe₂S₃: unnamed mineral

Table 2.Continued

Mineral	Chalcocine								
Grain	40 gr47	40 gr16a	40 gr54	40 gr70a	40 gr73a	40 gr73c	63 gr15	125 gr1	
Association	vs+ch	ch+bn	sk+bn +ch	ch+bn	ch+bn	ch+bn	sk+ch	sk+bn +ch	
Analysia	2	2	F	c	0	10	40	40	
Analysis	3	Z	Э	0	8	10	13	18	
Cu	79,2	78,1	79,7	77,9	77,7	77,5	78,0	76,5	
Fe	-	1,0	1,2	1,4	1,3	1,7	1,5	0,8	
Ni	-	-	-	-	-	-	-	-	
Co	-	-	-	-	-	-	-	-	
S	19,9	20,2	20,5	20,5	20,1	20,0	21,1	20,0	
Total	99,1	99,3	101,4	99,8	99,1	99,2	100,5	99,3	
Proportions									
Cu	2,00	1,96	1,96	1,94	1,96	1,95	1,92	1,98	
Fe	-	0,03	0,03	0,04	0,04	0,05	0,04	0,02	
Ni	-	-	-	-	-	-	-	-	
Co	-	-	-	-	-	-	-	-	
S	1,00	1,01	1,00	1,02	1,00	1,00	1,03	1,00	
Total	3	3	3	3	3	3	3	3	

Abbreviations

bn: bornite; ch: chalcocine; pn: pentlandite; $CuFe_2S_3$: unnamed mineral

Table 3.Precious metal minerals in heavy mineral
concentrates of sample 90-24 1048

Mineral	General formula	Number	Grai	ım	Vol.	
		of grains	min	max	av.	%
Skaergaardite	(Pd,Au,Pt)(Cu,Fe,Zn)	110	2	93	31	95,3
Unnamed	(Au,Pd,Pt) ₃ (Cu,Fe)	3	20	35	26	1,6
Tetra-auricupride	(Au,Pd,Pt)(Cu,Fe)	4	4	29	19	1,2
Vasilite	(Pd,Cu) ₁₆ S ₇	5	5	24	16	1
Unnamed	Pd ₂ Te	2	12	16	14	0,3
Zvyagintsevite	Pd ₃ (Pb,Cu,Sn)	9	3	8	6	0,2
Atokite	Pd₃(Sn,Cu,Pb,Te)	6	2	12	7	0,3
Keithconite	Pd ₃ (Te,Cu,Pb,Sn)	3	2	7	4	<0,1

Table 4 Grain sizes of precious metal minerals in the heavy
mineral concentrates of sample 90-24 1048

Ν	Gr#	host/association	Assoc. type	Mineral	Area µm ²	ECD, µm
1	40-11	sk	L	sk	423	23
2	40-12	sk	L	sk	1107	38
3	40-13	sk	L	sk	702	30
4	40-14	sk	L	sk	911	34
5	40-15	sk+bn	bms-L	sk	970	35
6	40-16	sk	L	sk	381	22
7	40-17	sk+ilm	ag-L	sk	218	17
8	40-18	sk+bn	bms	sk	42	7
9	40-19	sk+vs	L+	total	1088	37
10	40-19	sk+vs	L+	sk	880	33
11	40-19	sk+vs	L+	VS	208	16
12	40-1	sk+bn+pn	bms-L	sk	517	26
13	40-20	sk	L	sk	245	18
14	40-21	sk+zv	L+	total	569	27
15	40-21	sk+zv	L+	sk	543	26
16	40-21	sk+zv	L+	ZV	26	6
17	40-22	sk+bn+ch	bms-L	sk	556	27
18	40-23	sk+bn	bms-L	sk	1169	39
19	40-24	Au ₃ Cu+Pd ₂ Te	L+	total	523	26
20	40-24	Au ₃ Cu+Pd ₂ Te	L+	Au₃Cu	327	20
21	40-24	Au ₃ Cu+Pd ₂ Te	L+	Pd ₂ Te	196	16
22	40-25	sk	L	sk	1302	41
23	40-26	sk	L	sk	659	29
24	40-27	sk	L	sk	813	32
25	40-28	sk	L	sk	467	24
26	40-29	sk+bn+ch+chl	sag-L	sk	637	28
27	40-2	sk+bn+ch	bms	sk	2	2
28	40-30	sk+at+ilm	ag-L+	total	868	33
29	40-30	sk+at+ilm	ag-L+	sk	772	31
30	40-30	sk+at+ilm	ag-L+	at	90	11
31	40-30	sk+at+ilm	ag-L+	at	6	3
32	40-31	sk+bn+ch+pn	bms	sk	88	11
33	40-32	sk+bn	bms	SK	967	35
34	40-33	sk+(Pd,Cu,Sn)	L+	total	435	24
35	40-33	SK+(Pd,Cu,Sh)	L+	SK	433	23
36	40-33	sk+(Pa,Cu,Sn)	L+	(Pa,Cu,Sn)	2	2
37	40-34	SK	L	SK	504	25
30 20	40-35	SK	L	SK	470	20
39 40	40-37		L		029	27
40 //1	40-30	Au ₃ Ou		Au ₃ Cu	113/	38
41	40-33		L 4	total	/86	25
42 43	40-3				400	25
43	40-3		L, +		10	4
45	40-40	sk+zv	L+	Total	947	35
46	40-40	sk+zv	 L+	sk	929	34
47	40-40	sk+zv	 L+	zv	18	5
48	40-41	sk+bn	bms	sk	853	33
49	49-42	sk+ch	bms-L	sk	678	29
50	40-43	AuCu	L	AuCu	257	18
51	40-44	sk+bn+Cu ₂ FeS ₃ +ThO2	bms	sk	552	27
52	40-45	sk	L	sk	570	27
53	40-46	sk	L	sk	1063	37
54	40-47	vs+ch	bms	VS	456	24
55	40-47	vs+ch	bms	VS	240	17
56	40-47	vs+ch	bms	VS	17	5
57	40-48	sk+zv+bn+ch	bms+	total	772	31
58	40-48	sk+zv+bn+ch	bms+	zv	18	5
59	40-48	sk+zv+bn+ch	bms+	sk	754	31

Ν	Gr#	host/association	Assoc. type	Mineral	Area µm ²	ECD, µm
60	40-49	sk	L	sk	740	31
61	40-4	sk+bn+ch	bms	sk	260	18
62	40-50	sk+bn+ch	bms	sk	41	7
63	40-51	sk	L	sk	1860	49
64	40-52	sk+bn+ilm	sag-L	sk	315	20
65	40-53	sk	L	sk	84	10
66	40-54	sk+bn+ch	bms	sk	110	12
67	40-55	sk	L	sk	370	22
68	40-56	sk	L	sk	291	19
69	40-57	sk+zv	L+	total	810	32
70	40-57	sk+zv	L+	zv	27	6
71	40-57	sk+zv	L+	sk	783	32
72	40-58	sk_bn+ch	bms	Sk	112	12
73	40-59	SK+at+bh	bms-L+	total	546	26
74	40-59	SK+at+bh	bms-L+	at	36	/ 25
75	40-59 40 F	SK+al+Dn	bms-L+	SK	510 1220	23 44
70	40-5	SK+DII skuzvubn	DIIIS-L	SK Total	1330	29
78	40-00	sk+zv+bn	bms-L+	rolar	1094	37
70	40-00	sk±zv±bn	bms-L+	3K 7V	32	6
80	40-61	sk+bn+ch	bms	sk	7	3
81	40-62	sk	I	sk	, 196	16
82	40-63	AuCu+Pd_Te	1+	total	785	32
83	40-63	AuCu+Pd₂Te	· +	AuCu	671	29
84	40-63	AuCu+Pd ₂ Te	 L+	Pd ₂ Te	114	12
85	40-64	sk+at+bn	bms+	total	981	35
86	40-64	sk+at+bn	bms+	sk	881	34
87	40-64	sk+at+bn	bms+	at	100	11
88	40-65	sk+bn	bms-L	sk	869	33
89	40-66	sk+bn+ol	sag-L	sk	765	31
90	40-67	sk	L	sk	1604	45
91	40-68	sk	L	sk	141	13
92	40-69	sk+bn+ch	bms	sk	219	17
93	40-6	sk+zv+pn	bms-L+	total	1041	36
94	40-6	sk+zv+pn	bms-L+	sk	996	36
95	40-6	sk+zv+pn	bms-L+	ZV	45	8
96	40-70	sk+bn+ch	bms	sk	142	13
97	40-71	sk+bn	bms-L	sk	643	29
98	40-72	sk+bn+ch	bms-	sk	637	28
99	40-73	SK+DN+CN	bms	SK	420	23
100	40-7	SK+DN+CN	bills	SK	2	2
101	40-7 40-8			SK AuCu	7 450	3 24
102	40-0	skuzvuthn	∟ bms-l +	total	450	24
104	40-9	sk+zv+bn	bms-I +	sk	634	28
105	40-9	sk+zv+bn	bms-I +	7V	29	6
106	63-10	sk+bn+pn	bms	sk	891	34
107	63-11	sk+pn	bms-L	sk	1989	50
108	63-12	sk+bn	bms-L	sk	4015	72
109	63-13	sk+bn+ch	bms	sk	153	14
110	63-14	sk	L	sk	2037	51
111	63-15	sk+ch	bms	sk	2561	57
112	63-16	sk+opx	ag-L	sk	2078	51
113	63-17	sk+zv+ch+bn	bms+	total	1490	44
114	63-17	sk+zv+ch+bn	bms+	sk	1441	43
115	63-17	sk+zv+ch+bn	bms+	ZV	49	8
116	63-18	sk+cp+bn	bms	sk	2255	54
117	63-19	sk+zv+bn+ch	bms+	total	197	16
118	63-19	sk+zv+bn+ch	bms+	ZV	7	3
120	63-19	sk+zv+bn+ch	bms+	sk	190	16
121	63-1	sk+at	L+	total	1536	44
122	63-1	sk+at	L+	sk	1431	43
123	63-1	sk+at	L+	at	105	12

Ν	Gr#	host/association	Assoc. type	Mineral	Area µm²	ECD, µm
124	63-20	sk+bn	bms	sk	1538	44
125	63-21	sk+bn+ch	bms	sk	598	28
126	63-22	sk+bn	bms-L	sk	2252	54
127	63-23	sk	L	sk	3901	70
128	63-24	sk+bn	bms	sk	1711	47
129	63-25	sk+bn+chl	sag	sk	109	12
130	63-26	sk+bn+pl	sag	sk	1850	49
131	63-27	sk+bn	bms	sk	1338	41
132	63-28	sk+bn+Cu ₂ FeS ₃	bms	sk	159	14
133	63-2	sk+bn	bms	sk	217	17
134	63-3	sk+bn	bms	sk	2003	51
135	63-4	sk+bn	bms-L	sk	959	35
136	63-5	sk+bn	bms	sk	1051	37
137	63-6	sk+kth+bn	bms+	total	373	22
138	63-6	sk+kth+bn	bms+	kth	3	2
139	63-6	sk+kth+bn	bms+	kth	5	3
140	63-6	sk+kth+bn	bms+	sk	365	22
141	63-7	sk	L	sk	848	33
142	63-8	sk	L	sk	1831	48
143	63-9	sk	L	sk	2039	51
144	80-10	sk+bn+pn	bms	sk	921	34
145	80-11	sk+kth+bn+ch	bms+	total	259	18
146	80-11	sk+kth+bn+ch	bms+	kth	35	7
147	80-11	sk+kth+bn+ch	bms+	sk	224	17
148	80-11	sk+kth+bn+ch	bms+	sk	8	3
149	80-11	sk+kth+bn+ch	bms+	sk	7	3
150	80-12	sk	L	sk	1860	49
151	80-13	sk+bn	bms-L	sk	5853	86
152	80-1	sk+bn	bms-L	sk	3814	70
153	80-2	sk+bn	bms	sk	368	22
154	80-3	sk+bn	bms	sk	1500	44
155	80-4	sk	L	sk	1928	50
156	80-5	sk+bn+ch	bms	sk	901	34
157	80-5	sk+bn+ch	bms	sk	26	6
158	80-6	sk+bn+ch	bms	sk	43	7
159	80-7	sk+bn+ch+chl	sag	sk	5	3
160	60-8	vs+bn	bms	VS	240	17
161	80-9	sk+bn+ch	bms	sk	172	15
162	125-1	sk+bn+ch	bms	sk	1610	45
163	125-2	sk+bn	bms-L	sk	6788	93

Abbreviations:

chl: chlorite; ol: olivine; opx:orthopyroxene
ilm: ilmenite;
ThO ₂ : torianite
bn: bornite; pentlandite; ch: chalcocine; cp: chalcopyrite; Cu ₂ FeS ₃ : unnamed sulphide;
sk: skaergaardite; vs: vasilite, zv:zyagintsevite; Au3Cu: auricupride; Pd2Te: unnamed alloy;
at: atokite; kth: keithconite; (Pd,Cu,Sn):unnamed alloy; AuCu: tetra-auricupride; Pd ₂ Te: unnamed alloy;

Associations:

bms-L	liberated particles with <10 % attached base metal sulphides
bms	intergrowths with base metal sulphides (bornite, chalcosine, pentlandite, unnamed Cu2FeS3?)
L	completely liberated (free) particles;
sag	sulphide and gangue (pyroxenes, plagioclase, ilmenie, olivine, chlorite, calcite, thorianite) attached to PGMs
bms+	more precious metal phases attached to base metal phases
L+	more than one precious metal minerals completely liberated (free) particles,
ag-L	liberated particles with <10% attached gauge
bms-L+	more than one liberated particles of precious metal phases with <10 % attached base metal sulphides

Table 5

Enclosed in text

Table 6

Chemical composition and formula of skaergaardite in PGM grains in the heavy mineral concentrates of sample 90- 24 1048

Analysis#	1	2	3	4	5	6	7	8	9	10	11	12	13
Grain	40 gr1	40 gr4	40 gr5	40 gr6	40 gr9	40 gr10	40 gr11	40 gr12	40 gr13	40 gr14	40 gr15	40 gr16	40 gr17
Association	sk+bn	sk+bn	sk+bn	sk+zv	sk+zv	sk	sk	sk	sk	sk	sk	sk+bn	sk+ilm
	+ch	+ch		+pn	+bn								
Analysis													
wt%													
Pd	62.7	61.2	62.7	64.1	61.3	59.1	63.1	62.0	64.1	60.5	63.3	62.5	59.0
Pt	0.0	1.3	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Au	0.0	2.2	0.0	0.0	2.5	2.1	0.0	0.0	0.0	2.8	0.0	0.0	4.7
Cu	29.0	28.8	29.7	30.0	27.4	28.5	28.5	28.9	28.1	28.4	28.0	28.6	30.3
Fe	5.1	4.6	6.6	4.1	4.7	4.7	4.6	4.8	4.7	4.4	5.9	4.4	3.4
Zn	2.5	1.1	0.4	2.3	2.6	1.9	2.1	1.5	2.5	1.6	2.4	3.2	0.9
Sn	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
Те	0.0	0.5	0.0	0.0	0.9	1.1	0.0	0.0	0.0	1.6	0.0	0.6	1.5
Pb	0.0	0.0	0.0	0.0	0.0	1.4	1.4	1.2	0.0	0.9	0.0	0.0	0.0
Total	99.3	99.7	99.4	100.5	99.4	99.8	99.8	99.4	99.5	99.9	99.6	99.4	99.8
Proportions													
Pd	1.00	0.82	1.00	1.02	1.00	0.97	1.02	1.00	1.03	0.99	1.01	1.00	0.97
Pt	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Au	0.00	0.02	0.00	0.00	0.02	0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.04
Cu	0.78	0.79	0.79	0.80	0.75	0.78	0.77	0.78	0.76	0.77	0.75	0.77	0.83
Fe	0.15	0.14	0.20	0.12	0.15	0.15	0.14	0.15	0.14	0.14	0.18	0.14	0.11
Zn	0.07	0.03	0.01	0.06	0.07	0.05	0.06	0.04	0.07	0.04	0.06	0.08	0.02
Sn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00
Те	0.00	0.01	0.00	0.00	0.02	0.02	0.00	0.00	0.00	0.03	0.00	0.01	0.03
Pb	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.00	0.00	0.00
Total	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00

Abbreviations:

Silicates, FeTi-oxides a.o.: Base metal sulphides:

PGMs:

Analysis# Grain	14 40 gr18	15 40 gr19	16 40 gr21	17 40 gr23	18 40 gr25	19 40 gr26	20 40 gr27	21 40 gr28	22 40 gr29	23 40 gr30	24 40 gr31	25 40 gr32	26 40 gr33
Association	sk+bn	sk+vs	sk+zv	sk+bn	sk	sk	sk	sk	sk+bn+ ch+chl	sk+ilm+ (Pd,Sn,Cu)	sk+bn+ ch+pn	sk+bn	sk+ (Pd,Cu,Sn)
Analysis													
wt%													
Pd	56.2	63.3	60.0	63.1	62.6	62.4	61.7	62.3	63.1	59.9	44.4	61.5	60.7
Pt	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	19.8	0.0	0.0
Au	3.4	0.0	3.1	0.0	0.0	1.0	1.7	0.0	0.0	1.3	2.1	0.0	0.0
Cu	29.1	29.3	28.7	29.7	28.9	30.4	29.0	28.7	31.0	28.8	26.8	30.3	30.1
Fe	4.9	5.2	4.3	3.9	6.0	3.5	4.5	5.7	5.8	3.0	5.8	3.1	1.4
Zn	1.4	2.0	2.5	2.4	1.8	2.5	2.8	2.0	0.0	1.3	0.9	1.4	0.7
Sn	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	2.3	0.0	1.2	6.6
Те	0.9	0.0	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Pb	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	2.4	0.0	2.1	0.0
Total	99.6	99.8	99.3	100.0	99.3	99.8	99.7	99.3	99.9	100.0	99.8	99.7	99.5
Proportions													
Pd	0.93	1.01	0.98	1.01	1.00	1.00	0.99	1.00	1.00	0.99	0.78	1.00	1.00
Pt	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.19	0.00	0.00
Au	0.03	0.00	0.03	0.00	0.00	0.01	0.02	0.00	0.00	0.01	0.02	0.00	0.00
Cu	0.80	0.78	0.78	0.80	0.77	0.82	0.78	0.77	0.82	0.80	0.79	0.83	0.84
Fe	0.15	0.16	0.13	0.12	0.18	0.11	0.14	0.17	0.18	0.10	0.19	0.10	0.04
Zn	0.04	0.05	0.07	0.06	0.05	0.07	0.07	0.05	0.00	0.04	0.03	0.04	0.02
Sn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.03	0.00	0.02	0.10
Те	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pb	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.02	0.00
Total	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00

Abbreviations:

Silicates, FeTi-oxides a.o.: Base metal sulphides:

PGMs:

ol: olivine; opx: orthopyroxene; ilm: ilmenite; chl: chlorite; ThO₂: torianite bn: bornite; ch: chalcocine; pn: pentlandite; Cu_2FeS_3 : unnamed; $FeCu_2S_3$: unnamed

Analysis# Grain Association	27 40 gr34 sk	28 40 gr35 sk	29 40 gr36 sk	30 40 gr37 sk	31 40 gr39 sk	32 40 gr40 sk+zv	33 40 gr41 sk+bn	34 40 gr42 sk+ch	35 40 gr44 sk+bn+ FeCu ₂ S ₃ +ThO	36 40 gr45 sk	37 40 gr46 sk	38 40 gr48 sk+zv +bn+ch	39 40 gr49 sk
Analysis									+1102				
wt%													
Pd	62.5	61.4	61.8	62.6	63.2	62.7	61.6	58.4	63.1	62.6	59.9	60.7	59.4
Pt	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
Au	0.0	1.1	1.5	0.0	0.0	0.0	1.2	3.3	0.0	0.0	4.0	2.1	3.4
Cu	29.3	30.1	29.3	29.3	28.9	29.5	28.2	27.7	30.6	30.0	29.4	29.7	28.1
Fe	3.8	2.5	3.9	4.2	5.0	3.2	5.2	3.5	3.8	6.6	3.8	3.3	4.0
Zn	2.5	2.2	2.5	3.0	2.7	2.2	2.5	3.3	2.6	0.0	2.1	2.9	3.0
Sn	0.0	0.0	0.0	0.0	0.0	1.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Те	0.7	1.1	1.0	0.0	0.0	0.0	0.0	1.9	0.0	0.0	1.0	1.1	0.6
Pb	1.7	2.6	1.0	1.1	0.0	1.9	1.0	1.0	0.0	0.0	0.0	0.0	1.1
Total	100.5	101.0	101.0	100.2	99.8	100.6	99.7	100.1	100.2	99.2	100.2	99.9	99.6
Proportions													
Pd	1.00	1.00	0.99	1.00	1.01	1.01	0.99	0.96	1.00	1.00	0.97	0.98	0.97
Pt	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
Au	0.00	0.01	0.01	0.00	0.00	0.00	0.01	0.03	0.00	0.00	0.04	0.02	0.03
Cu	0.79	0.82	0.79	0.78	0.77	0.80	0.76	0.76	0.81	0.80	0.80	0.80	0.77
Fe	0.12	0.08	0.12	0.13	0.15	0.10	0.16	0.11	0.12	0.20	0.12	0.10	0.13
Zn	0.07	0.06	0.05	0.08	0.07	0.06	0.07	0.09	0.07	0.00	0.06	0.08	0.08
Sn	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Те	0.01	0.02	0.02	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.02	0.02	0.01
Pb	0.01	0.02	0.01	0.01	0.00	0.02	0.01	0.01	0.00	0.00	0.00	0.00	0.01
Total	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00

Abbreviations:

Silicates, FeTi-oxides a.o.: Base metal sulphides:

PGMs:

ol: olivine; opx: orthopyroxene; ilm: ilmenite; chl: chlorite; ThO₂: torianite bn: bornite; ch: chalcocine; pn: pentlandite; Cu₂FeS₃: unnamed; FeCu₂S₃: unnamed

Analysis# Grain Association	40 40 gr50 sk+bn +ch	41 40 gr51 sk	42 40 gr52 sk+bn +ilm	43 40 gr 54 sk+bn +ch	44 40 gr55 sk	45 40 gr56 sk	46 40 gr57 sk+zv	47 40 gr58 sk+bn +ch	48 40 gr59 sk+at +bn	49 40 gr60 sk+zv +bn	50 40 gr64 sk+bn+ (Pd,Cu,Sn)	51 40 gr65 sk+bn	52 40 gr66 sk+bn +ol
Analysis													
wt%													
Pd	52.9	61.7	61.2	62.3	58.8	59.8	61.6	45.8	61.7	63.2	60.3	62.7	62.0
Pt	4.8	0.0	0.0	0.0	1.3	1.0	0	18.5	0	0.0	1.3	0.0	0.0
Au	1.8	0.0	1.9	0	2.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
Cu	31.1	29.6	27.9	30.2	30.2	30.2	29.4	27.5	29.1	29.7	28.9	28.0	29.8
Fe	2.2	4.6	5.2	2.7	5.0	2.9	4.1	6.4	3.9	4.8	3.4	6.9	3.8
Zn	1.8	1.9	2.7	2.2	0.6	0.9	2.6	0.9	1.9	2.8	2.2	2.2	2.8
Sn	0.0	0.0	0.0	1.8	0.0	1.8	0.0	0.0	1.1	0.0	0.7	0.0	0.0
Те	0.0	0.0	0.7	0.0	1.0	0.0	0.0	0.0	0.5	0.0	0.6	0.0	0.5
Pb	4.2	1.4	0.0	1.2	1.2	1.9	1.3	0.0	1.8	0.0	2.0	0.0	0.0
Total	99.0	99.2	99.6	100.5	100.1	99.5	99.0	99.0	100.0	100.4	99.4	99.8	99.9
Proportions													
Pd	0.90	1.00	0.99	1.01	0.95	0.99	1.00	0.79	1.00	1.00	0.99	0.99	0.99
Pt	0.05	0.00	0.00	0.00	0.01	0.01	0.00	0.18	0.00	0.00	0.01	0.00	0.00
Au	0.02	0.00	0.02	0.00	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Cu	0.88	0.80	0.75	0.82	0.82	0.84	0.80	0.80	0.79	0.79	0.79	0.74	0.80
Fe	0.07	0.14	0.16	0.08	0.15	0.09	0.13	0.21	0.12	0.14	0.11	0.21	0.12
Zn	0.05	0.05	0.07	0.06	0.02	0.02	0.07	0.03	0.05	0.07	0.06	0.06	0.07
Sn	0.00	0.00	0.00	0.02	0.00	0.03	0.00	0.00	0.02	0.00	0.01	0.00	0.00
Те	0.00	0.00	0.01	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.01
Pb	0.04	0.01	0.00	0.01	0.01	0.02	0.01	0.00	0.01	0.00	0.02	0.00	0.00
Total	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00

Abbreviations:

Silicates, FeTi-oxides a.o ol: olivine; opx: orthopyroxene; ilm: ilmenite; chl: chlorite; ThO₂: torianite

Base metal sulphides: bn: bornite; ch: chalcocine; pn: pentlandite; Cu₂FeS₃: unnamed; FeCu₂S₃: unnamed

PGMs:

Analysis# Grain Association	53 40 gr67 sk	54 40 gr68 sk	55 40 gr69 sk+ch +bn	56 40 gr70 sk+bn +ch	57 40 gr71 sk+bn	58 40 gr72 sk+bn +ch	59 40 gr73 sk+bn +ch	60 63 gr1 sk+at	61 63 gr2 sk+bn	62 63 gr3 sk+bn	63 63 gr4 sk+bn	64 63 gr5 sk+bn	65 63 gr6 sk+kth +bn
Analysis													
wt%													
Pd	59.3	50.1	60.4	61.0	54.1	61.7	61.5	61.7	61.0	62.7	61.2	61.5	52.3
Pt	1.1	10.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9
Au	1.9	3.0	0.0	0.0	9.7	0.0	0.0	0.0	1.3	0.0	1.3	1.3	10.6
Cu	28.9	25.8	30.8	28.7	30.5	27.9	29.8	29.4	28.7	29.3	29.7	29.6	31.7
Fe	5.6	6.2	3.3	2.9	2.3	4.0	4.5	4.3	4.8	5.1	5.0	3.7	1.3
Zn	0.3	1.9	1.0	2.2	2.1	2.6	3.2	1.3	3.4	1.8	2.4	2.2	2.2
Sn	0.0	0.0	1.8	1.0	0.0	1.0	0.0	2.0	0.0	0.6	0.0	0.0	0.0
Те	1.8	0.0	0.5	0.5	1.2	0.6	0.0	0.0	0.7	0.0	0.0	0.8	1.1
Pb	1.0	1.8	1.9	2.8	0.0	1.4	0.0	1.0	0.0	0.0	0.0	0.0	0.0
Total	99.9	99.4	99.7	99.1	99.9	99.2	99.0	99.7	99.0	99.5	99.6	99.1	100.1
Proportions													
Pd	0.96	0.86	0.98	1.01	0.91	1.01	0.98	1.00	0.97	1.00	0.98	1.00	0.88
Pt	0.01	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Au	0.02	0.03	0.00	0.00	0.09	0.00	0.00	0.03	0.01	0.00	0.01	0.01	0.10
Cu	0.79	0.74	0.84	0.79	0.85	0.76	0.80	0.80	0.77	0.79	0.80	0.81	0.89
Fe	0.17	0.20	0.10	0.09	0.07	0.12	0.14	0.13	0.15	0.15	0.15	0.11	0.04
Zn	0.01	0.05	0.03	0.06	0.06	0.07	0.08	0.03	0.09	0.05	0.06	0.06	0.06
Sn	0.00	0.00	0.03	0.02	0.00	0.02	0.00	0.03	0.00	0.01	0.00	0.00	0.00
Те	0.03	0.00	0.01	0.01	0.02	0.01	0.00	0.00	0.01	0.00	0.00	0.01	0.02
Pb	0.01	0.02	0.02	0.02	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00
Total	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00

Abbreviations:

Silicates, FeTi-oxides a.o.: Base metal sulphides:

PGMs:

ol: olivine; opx: orthopyroxene; ilm: ilmenite; chl: chlorite; ThO₂: torianite bn: bornite; ch: chalcocine; pn: pentlandite; Cu_2FeS_3 : unnamed; $FeCu_2S_3$: unnamed

Analysis#	66	67	68	69	70	71	72	73	74	75	76	77	78
Grain	63 gr7	63 gr8	63 gr9	63 gr10	63 gr11	63 gr12	63 gr13	63 gr14	63 gr15	63 gr16	63 gr17	63 gr18	63 gr19
Association	sk	sk	sk	sk+zv	sk+pn	sk+bn	sk+bn	sk	sk+ch	sk+opx	sk+bn	sk+bn	sk+zv
				+bn+pn			+ch				+ch	+ср	+bn+ch
Analysis													
wt%													
Pd	60.0	63.9	63.2	62.6	61.9	63.1	44.1	61.9	63.5	61.4	62.8	62.6	61.4
Pt	0.0	0.0	0.0	0.0	9.0	0.0	2.4	0.0	0.0	0.0	0.0	0.0	0.0
Au	4.2	0.0	0.0	0.0	1.0	0.0	17.9	0.0	0.0	0.0	1.7	0.0	1.0
Cu	29.3	28.7	29.0	29.8	30.4	29.3	31.2	28.9	27.9	28.6	29.9	29.5	30.0
Fe	4.4	5.8	5.7	4.4	5.2	5.6	1.8	7.1	6.2	5.3	4.2	5.5	2.1
Zn	1.6	2.4	2.0	2.6	0.6	1.8	0.0	0.0	0.7	1.6	2.1	1.9	4.1
Sn	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.4	0.0	0.0	0.0
Те	0.0	0.0	0.0	0.0	0.0	0.0	1.4	1.7	0.0	0.0	0.0	0.0	0.0
Pb	0.0	0.0	0.0	0.0	0.0	0.0	1.2	0.0	0.0	1.2	0.0	0.0	1.4
Total	100.5	100.8	99.9	99.1	99.1	99.8	100.0	99.6	100.3	99.5	100.7	99.5	100.0
Proportions													
Pd	0.97	1.01	1.01	1.00	1.00	1.00	0.78	0.99	1.00	0.99	1.00	1.00	0.99
Pt	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00
Au	0.04	0.00	0.00	0.00	0.01	0.00	0.17	0.00	0.00	0.00	0.01	0.00	0.00
Cu	0.80	0.76	0.77	0.80	0.82	0.78	0.93	0.77	0.79	0.77	0.80	0.79	0.81
Fe	0.14	0.17	0.17	0.13	0.16	0.17	0.05	0.21	0.19	0.16	0.13	0.17	0.07
Zn	0.04	0.06	0.00	0.07	0.02	0.05	0.00	0.00	0.02	0.04	0.06	0.05	0.11
Sn	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00
Те	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.03	0.00	0.00	0.00	0.00	0.00
Pb	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.01
Total	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00

Abbreviations:

Silicates, FeTi-oxides a.o.: ol: o Base metal sulphides: bn: l PGMs: sk: s

Analysis#	79	80	81	82	83	84	85	86	87	89	90	91	92
Grain	63 gr20	63 gr21	63 gr22	63 gr23	63 gr24	63 gr25	63 gr26	63 gr27	63 gr28	80 gr1	80 gr2	80 gr3	80 gr4
Association	sk+bn	sk+bn	sk+bn	sk	sk+bn	sk+bn	sk+bn	sk+bn	sk+bn+	sk+bn	sk+bn	sk+bn	sk
		+ch				+chl	+pl		Cu_2FeS_3				
Analysis													
wt%													
Pd	62.0	61.2	62.3	62.4	62.9	61.4	63.2	62.9	63.4	62.7	62.2	62.4	60.2
Pt	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Au	0.0	1.9	0.0	0.0	0.0	2.1	0.0	0.0	0.0	0.0	0.0	0.0	1.5
Cu	29.3	29.9	29.0	28.1	30.0	28.6	29.4	28.1	29.2	29.4	29.4	29.6	29.3
Fe	5.0	3.4	6.0	6.1	6.4	2.2	6.2	5.4	3.1	6.1	4.2	5.5	4.4
Zn	1.5	2.6	2.2	1.8	0.0	4.9	0.7	2.6	3.9	1.7	3.5	1.9	1.9
Sn	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.0	1.0
Те	0.0	0.6	0.0	0.0	0.0	0.0	1.0	0	0.0	0.0	0.0	0.0	0.0
Pb	0.0	0.0	0.0	1.2	0.0	1.2	0.0	0	0.0	0.0	0.0	0.0	1.4
Total	99.4	99.6	99.5	99.6	99.3	100.4	99.9	99.1	99.6	99.9	99.4	99.5	99.7
Proportions													
Pd	1.00	0.99	0.99	1.00	1.00	1.00	1.00	1.00	1.02	0.99	0.99	0.99	0.98
Pt	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Au	0.00	0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Cu	0.79	0.81	0.77	0.76	0.80	0.78	0.79	0.76	0.79	0.78	0.79	0.79	0.80
Fe	0.15	0.10	0.18	0.19	0.20	0.07	0.19	0.16	0.09	0.18	0.13	0.17	0.14
Zn	0.04	0.07	0.06	0.05	0.00	0.13	0.02	0.07	0.10	0.04	0.09	0.05	0.05
Sn	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.02
Те	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pb	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Total	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00

Abbreviations:

Silicates, FeTi-oxides a.o.: Base metal sulphides: PGMs:

Analysis#	93	94	95	96	97	98	99
Grain	80 gr7	80 gr10	80 gr12	80 gr13	125 gr1	125 gr2	
Association	sk+bn+	sk+bn	sk	sk+bn	sk+bn	sk+bn	avr
	ch+chl	+pn			+ch		
		·					
Analysis							
wt%							
Pd	57.4	60.5	62.3	62.4	62.8	62.1	60.8
Pt	3.6	0.0	0.0	0.0	0.0	0.0	0.8
Au	1.4	0.0	1.2	0.0	0.0	0.0	1.2
Cu	29.6	29.0	30.1	29.8	29.9	29.5	29.2
Fe	4.2	4.5	4.5	7.0	4.4	6.2	4.5
Zn	1.7	2.4	1.6	0.0	2.5	1.8	2.0
Sn	0.0	1.0	0.0	0.0	0.0	0.0	0.3
Те	0.8	0.0	0.0	0.0	0.7	0.0	0.3
Pb	1.4	1.9	0.0	0.0	0.0	0.0	0.6
Total	99.9	99.3	99.7	99.2	100.4	99.6	99.7
Proportions							
Pd	0.94	0.98	1.00	0.99	1.00	0.98	0.98
Pt	0.03	0.00	0.00	0.00	0.00	0.00	0.01
Au	0.01	0.00	0.01	0.00	0.00	0.00	0.01
Cu	0.81	0.79	0.81	0.80	0.80	0.78	0.79
Fe	0.13	0.14	0.14	0.21	0.13	0.19	0.14
Zn	0.05	0.06	0.04	0.00	0.06	0.05	0.05
Sn	0.00	0.01	0.00	0.00	0.00	0.00	0.00
Те	0.01	0.00	0.00	0.00	0.01	0.00	0.01
Pb	0.01	0.02	0.00	0.00	0.00	0.00	0.01
Total	2.00	2.00	2.00	2.00	2.00	2.00	2.00

Abbreviations:

Silicates, FeTi-oxides a.o.: Base metal sulphides:

PGMs:

Table 7

Enclosed in text

mineral		Au₃Cu	l		AuCu						
Grain #	40 gr3	40 gr24	40 gr38	avr	40 gr3	40 gr8	40 gr43	40 gr63	avr		
Association	Au₃Cu+AuCu	Au₃Cu+kth	Au₃Cu		Au₃Cu+AuCu	AuCu	AuCu	AuCu			
An.	1	2	3	4	5	6	7	8	9		
Analysis											
wt%											
Au	68,1	75,3	69,8	71,1	56,3	60,2	55,0	59,1	57,7		
Pd	17,2	13,0	18,1	16,1	16,9	11,9	13,1	14,0	14,0		
Pt	2,7	0,0	0,0	0,9	1,7	0,0	4,1	0,0	1,5		
Cu	10,9	11,5	11,1	11,2	22,6	26,8	25,6	26,8	25,5		
Fe	0,9	0,0	0,6	0,5	1,1	0,0	1,8	0,0	0,7		
Те	0,0	0,0	0,0	-	0,0	0,8	0,0	0,0	0,2		
Pb	0,0	0,0	0,0	-	1,3	0,0	0,0	0,0	0,3		
Total	99,9	99,8	99,6	99,8	99,9	99,7	99,6	99,9	99,9		
Proportions											
Au	1,95	2,23	2,00	2,06	0,68	0,72	0,65	0,70	0,69		
Pd	0,91	0,71	0,96	0,86	0,38	0,26	0,29	0,31	0,31		
Pt	0,08	0,00	0,00	0,03	0,02	0,00	0,05	0,00	0,02		
Cu	0,97	1,06	0,98	1,00	0,85	1,00	0,94	0,99	0,95		
Fe	0,09	0,00	0,05	0,05	0,05	0,00	0,07	0,00	0,03		
Те	0,00	0,00	0,00	-	0,00	0,02	0,00	0,00	0,01		
Pb	0,00	0,00	0,00	-	0,02	0,00	0,00	0,00	0,01		
Total	4,00	4,00	4,00	4,00	2,00	2,00	2,00	2,00	2,00		

Table 8Composition and formuli of Pd-bearing gold minerals in the heavy mineral
concentrates of sample 90-24 1048

Abbreviations: Au₃Cu: Auricupride; AuCu: tetra-auricupride; kth: keithconite

Table 8	Compositions and formuli of the Pd, Cu, Te alloys zvyagintsevite, atokite and
	keithconite, vasilite, (Pd,Cu,Sn) alloy and unnamed Pd ₂ Te in the heavy mineral
	concentrates of sample 90-24 1048

Mineral			:	zvyagintsev	rite				Atokite?		atokite	
Grain Association	40 gr6 sk+zv +pn	40 gr9 sk+zv +bn	40 gr21 sk+zv	40 gr48 sk+zv +bn+ch	40 gr57 sk+zv	40 gr60 sk+zv +bn	63 gr10 sk+zv +bn+pn	63 gr17 sk+zv +bn+ch	40 gr40 sk+at	40 gr30 sk+at +ilm	40 gr59 sk+at +bn	63 gr1 sk+at
Analysis	1	2	3	4	5	6	7	8	9	10	11	12
wt%												
Pd	71,0	67,2	69,6	68,5	61,3	71,8	73,8	65,8	69,3	67,0	72,0	70,1
Cu	1,7	1,7	3,3	2,2	1,5	1,0	4,0	1,7	5,0	10,5	2,5	2,9
Fe	0,5	1,0	0,6	0,4	0,6	1,3	0,9		1,0	0,6	0,7	0,9
Sn	3,3	2,4	3,5			2,3	6,9	2,1	8,3	21,9	21,5	21,6
Те	0,6			0,8	0,6				1,5			
Pb	23,4	26,8	22,6	27,7	35,6	22,6	13,7	29,4	13,4		3,3	4,3
S												
Total	99,5	99,1	99,7	99,6	99,7	99,1	99,3	99,0	98,3	100,0	100,0	99,9
Proportions												
Pd	3,16	3,06	3,05	3,11	2,92	3,20	3,09	3,07	2,91	2,54	2,92	2,85
Cu	0,13	0,13	0,25	0,17	0,12	0,08	0,28	0,13	0,35	0,67	0,17	0,2
Fe	0,04	0,09	0,05	0,04	0,06	0,11	0,07		0,08	0,04	0,05	0,07
Sn	0,13	1,1	0,14			0,09	0,26	0,09	0,31	0,75	0,78	0,79
Те	0,03			0,04	0,03				0,06			
Pb S	0,51	0,63	0,51	0,65	0,87	0,52	0,30	0,71	0,29		0,07	0,09
Total	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00

Abbreviations:	Silicates, FeTi-oxides, a.o.:	ilm: ilmenite;
	Sulphides:	pn: pentlandite; bn: bornite: ch: chalcocine;
	PGMs:	Sk:Skaergaardite; zv: zvyagintsevite; at: atokite; kth: keithconite; (Pd,Cu,Sn): alloy;

Pd₂Te: unnamed phase;

Mineral	keithconite	vasilite		alloy	Unnamed Pd ₂ Te		
Grain Association	63 gr6 sk+kth +bn	40 gr47 vs+ch	80 gr8 vs+bn	40 gr64 sk+bn+ (Pd,Cu,Sn)	40 gr24 Au ₃ Cu+ Pd ₂ Te	40 gr63 AuCu+ Pd ₂ Te	
Analysis wt%	13	17	18	14	15	16	
Pd	72,5	69,8	69,9	70,0	67,1	67,9	
Cu	3,4	16,1	16,3	11,4		0,5	
Fe		0,4	0,7		0,4	0,4	
Sn	3,3			17,0			
Те	14,2			0.9	31,8	30,9	
Pb	6,8						
S		12,7	12,9				
Total	99,4	99,0	99,8	99,3	99,3	99,7	
Proportions							
Pd	2,95	11,49	11,38	0,67	1,97	1,98	
Cu	0,17	4,44	4,44	0,18		0,02	
Fe		0,13	9,22		0,02	0,02	
Sn	0,12			0,14			
Те	0,62			0,01	1,00	0,97	
Pb	0,14						
S		6,94	6,97				
Total	4,00	23,00	23,00	1,00	3,00	3,00	

Abbreviations:	Silicates, FeTi-oxides, a.o.:	ilm: ilmenite;
	Sulphides:	pn: pentlandite; bn: bornite: ch: chalcocine;
	PGMs:	Sk:Skaergaardite; zv: zvyagintsevite; at: atokite; kth: keithconite; (Pd,Cu,Sn): alloy;
		Pd ₂ Te: unnamed phase;

PLATES

Relationships of rock-forming minerals, Fe-Ti oxides, sulphides and skaergaardite in the oxiderich tholeitic gabbros of the sample 90-24, 1048 (1-8); polished section, SEM-image (BIE).

Abbreviations: pl: plagioclase; pl 1: liquidus plagioclase; pl II: plagioclase related to symplectites; pyr(exs): Ca-pyroxene with exsolutions of low Ca-pyroxene; cpx: clinopyroxene; opx: orthopyroxene; ol: olivine; ilm: ilmenite; timt: titanomagnetite; ap: apatite; bn: bornite; sk: skaergaardite.

Sulphide mineralisation globules of oxide-rich tholeitic gabbros, sample 90-24 1048, image 1-39, polished section of grains, extracted in the heavy concentrate, SEM-image (BIE).

Abbreviations: ch: chalcocine; bn:bornite; pl: plagioclase; ilm: ilmenite; chl: chlorite;

Sulphide globules with inclusions of skaergaardite (**bms**) and skaergaardite particles attached base metal sulphides (**bms-L**)- in the heavy mineral concentrates of sample 90-24 1048; images 1-49; polished section, SEM-image (BIE).

Abbreviations: bn: bornite; ch: chalcocine; cp: chalcopyrite; pn: pentlandite; pn(Co) coboltian pentlandite; sk: skaergaardite; Cu_2FeS_3 : unnamed Cu-sulphide; ct: calcite.

Skaergaardite grains attached to gangue or to gangue+sulphides in the heavy mineral concentrates of sample 90-24 1048, images1-10; polished section, SEM-image (BIE).

Abbreviations: Silicates: opx: orthopyroxene; ol: olivine; pl: plagioclase; chl: chlorite Sulphides: bn: bornite; Cu₂FeS₃: unnamed Cu-sulphide PGMs: sk: skaergaardite; at: atokite Others: ilm: ilmenite; ThO₂; ct: calcite

Completely liberated grains of skaergaardite (L) in the heavy mineral concentrates of sample 90-24 1048, images1-31; polished section, SEM-images (BIE).

Abbreviations: sk: skaergaardite

PGM grains containing zvyagintsevite (images 1-9), atokite (images 10-13), (Pd,Cu,Sn) alloy (image14), keithconite (images 15-16) and vasilite (images 17-19) in the heavy mineral concentrates of sample 90-24 1048; polished section, SEM-image (BIE).

Abbreviations:

sulphides:	bn: bornite; pn-(Co): coboltian pentlandite; ch: chalcocine;
PGMs:	sk: skaergaardite; zv: zvyagintsevite; at: atokite; (Pd,Cu,Sn):
	unnamed alloy; kth: keithconite; vs: vasilite
Others:	ilm: ilmenite;

Grains of gold minerals – tetra-auricupride (images 1-4) and $(Au,Pd)_3Cu$ (images 4-6) in the heavy mineral concentrates of sample 90-24 1048; polished section, SEM-image (BIE).

Abbreviations: AuCu: tetra-auricupride; Pd_2Te : unnamed phase; Au₃Cu and (Au,Pd)₃Cu: auricupride

