Dinocyst zonation and lithostratigraphy of the Miocene Succession in the Westerlangstedt-BR1 borehole

Karen Dybkjær & Erik S. Rasmussen

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND MINISTRY OF CLIMATE AND ENERGY

Dinocyst zonation and lithostratigraphy of the Miocene Succession in the Westerlangstedt-BR1 borehole

Karen Dybkjær & Erik S. Rasmussen

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND MINISTRY OF CLIMATE AND ENERGY

Contents

Contents	2
Summary	3
Introduction	4
Material and methods	5
Palynology/biostratigraphy	7
The Sumatradinium hamulatum Zone, 372 m – 339 m	7
The Cordosphaeridium cantharellus Zone, 339 m – 285 m	9
The <i>Exochosphaeridium insigne</i> Zone, 285 m – 246 m	10
The Cousteaudinium aubryae Zone, 246 m – 231 m	10
The Labyrinthodinium truncatum Zone, 231 m – 186 m	11
The Unipontodinium aquaductum Zone, 186 m – 132 m	12
The Achomosphaera andalousiense Zone, 132 m – 117 m	14
The Gramocysta verricula Zone/Amiculosphaera umbracula Zone, 117 m – 87 n	n16
Conclusion	17
References	19
Enclosures	20

Summary

This report presents the results of a detailed biostratigraphic analysis of the Miocene succession in the borehole Westerlangstedt-BR1, based on fossil dinoflagellate cysts (dinocysts). The borehole is located south of the village Eggebek, south of Flensburg in Germany, (Fig. 1) and was drilled in 2005 using the "straight flush"-drilling method.

The purpose of the study is to test whether the recently published Danish Miocene dinocyst zonation of Dybkjær & Piasecki (2010) can be applied to the Miocene succession in the Schleswig-Holstein area and to provide a detailed and well-documented correlation between the Miocene succession in the Westerlangstedt borehole and the succession in the southern part of Jylland, Denmark.

Caving of Upper Miocene and Pliocene/Pleistocene material was found throughout the studied succession and also reworking of especially Jurassic and Palaeogene palynomorphs was observed. In spite of these problems it was possible with confidence to subdivide the studied succession using the dinocyst zonation defined by Dybkjær & Piasecki (2010) and based on that, to correlate the succession with the Danish Miocene succession, as outlined in the following;

The following dinocyst zones were found:

372 m – 339 m: The Sumatradinium hamulatum Zone (Lower Miocene)
339 m – 285 m: The Cordosphaeridium cantharellus Zone (Lower Miocene)
285 m – 246 m: The Exochosphaeridium insigne Zone (Lower Miocene)
246 m – 231 m: The Cousteaudinium aubryae Zone (Lower Miocene)
231 m – 186 m: The Labyrinthodinium truncatum Zone (Middle Miocene)
186 m – 132 m: The Unipontodinium aquaductum Zone (Middle Miocene)
132 m – 117 m: The Achomosphaera andalousiense Zone (Middle Miocene)
117 m – 87 m: The Gramocysta verricula Zone/Amiculosphaera umbraculum Zone (Middle to Upper Miocene)

Based on a combination of the dinocyst stratigraphy, the lithology of the samples and the geophysical log-pattern, the studied succession can be subdivided into the following lithostratigraphic units, following the lithostratigraphy defined in the Danish area (Rasmussen *et al.*, in press);

1) 372,4 m (TD)–348 m: The Klintinghoved Formation

2) 348 m–292 m: The Bastrup Formation

3) 292 m–252 m: The Arnum Formation

4) 252 m–164m: The Odderup Formation

5) 164 m–132 m: The Hodde Formation

6) 132 m–117 m: The Ørnhøj Formation

7) 117 m–80 m: The Gram Formation

The Miocene succession is unconformably overlain by Quaternary deposits.

Introduction

The present report is based on cuttings samples from the borehole Westerlangstedt BR-1, located south of the village Eggebek in Schleswig-Holstein, Germany. The location of the well is shown in Figure 1.

The purpose of the study was to test if it is possible to apply the dinocyst zonation defined in the Danish area (Dybkjær & Piasecki, 2010) to the Schleswig-Holstein area and to present a detailed correlation between the Miocene succession found in the Westerlangstedt well and the Danish Miocene succession.

The results of the study are presented within the frame of the lithostratigraphy of Rasmussen *et al.* (in press) (Fig. 2) and the dinocyst zonation of Dybkjær & Piasecki (2010) (Fig. 3).

Figure 1: Location of the Westerlangstedt-BR-1 borehole and of the Danish boreholes included in the log-correlation panel in Figure 6.

Material and methods

The present report is based on cuttings samples from the borehole Westerlangstedt-BR1, in Germany (Fig. 1). The borehole was drilled in 2005 using the "straight-flush"-drilling method. The samples in the interval from 372,4 m (TD) and up to 80 m, each representing an interval of 3 m, were described lithologically and a total of 63 samples were selected for the palynological study. The samples were processed following standard palynological preparation methods, including treatment with HCl, HF, heavy liquid separation and brief oxygenation with HNO₃ Following sieving on 20 µm filters the organic residue was mounted on glass slides using a glycerine jelly medium. The dinoflagellate cyst (dinocyst) content was analysed using a normal light microscope. A semiquantitative analysis consisting of counting at least 200 dinocysts from each sample, were performed where possible (in some samples there were to few dinocysts). All other marine algae, acritarchs and freshwater algae observed while counting the 200 dinocysts, were registered in order to assess the abundance of dinocysts relative to these other palynomorph groups. The qualitative analysis consisted of a thorough study of two palynological slides per sample in order to register all dinocyst species occurring in each sample. The taxonomy used herein follows "The Lentin & Williams Index" (Fensome & Williams, 2004).

In the text, dinocyst taxa which comprise more than 10% of the total number of dinocysts are "dominant", 5–10% are "common", 2–4% are frequent and an occurrence of less than 2% are "sporadic" or "consistent", depending on whether the taxa in question occurs only in a few of the samples representing the described interval, or if it occurs in most of the samples.

The results of the palynological study are presented in Enclosure 1 and 2. The variations in the dinocyst assemblage and in the freshwater algae assemblage shown in Enclosure 1, reflect partly stratigraphic changes and partly changes in the depositional environment, e.g. in salinity, nutrient availability and sea water temperature. Dinocyst taxa, which are interpreted as a result of caving (downfall of material from younger strata during the drilling process) are marked with a "C". Occurrences marked with a "?" indicate that the identification to species or genus level is questionable. Reworked dinocyst taxa are presented in a separate panel. Variations in the relative abundances within the dinocyst group are presented in Enclocure 2.

Based on first- and last occurrences of stratigraphically important species ("events") the studied succession is subdivided into the dinocyst zonation defined by Dybkjær & Piasecki (2010) (Figs. 3, 4; Enclosures 1, 2). Furthermore, the succession is correlated with the Danish Miocene lithostratigraphic units (Rasmussen *et al.*, in press) (Figs. 2, 5). A log-correlation panel running north-south, from the Danish Rødding borehole to the Westerlangstedt borehole, is presented in Figure 6 in order to illustrate the straight forward correlation.

Fig. 2. Lithostratigraphy of the Danish Miocene (Rasmussen et al., in press).

Palynology/biostratigraphy

The results of the palynological analysis are presented in Figure 4 and in Enclosures 1 and 2 and are discussed below. In Enclosure 1 all the recorded dinocyst species are presented, (whether interpreted as *in situ*, caved or reworked). The dinocysts species interpreted as reworked are shown separately. In addition, the recorded freshwater algae, acritarchs and "other marine algae" (OM) are shown. The recordings are presented as percentages of the total number of dinocysts, acritarchs, freshwater algae and "other marine algae". In Enclosure 2 only the presumed "*in situ*" and the caved dinocysts are shown in order to present the variations within the dinocyst group.

The Sumatradinium hamulatum Zone, 372 m – 339 m

Dinocyst zonation

This interval is referred to the *Sumatradinium hamulatum* Zone (Dybkjær & Piasecki, 2010) due to the presence of *Sumatradinium hamulatum* in the sample at 369–372 m and the first occurrence of *Exochosphaeridium insigne* in the sample at 336–339 m (Enclosure 1).

Dinocyst assemblage

The rather limited dinocyst assemblage is dominated by *Hystrichokolpoma rigaudiae*, *Operculodinium centrocarpum* and *Spiniferites* spp., while *Apteodinium tectatum*, *Cordosphaeridium cantharellus*, *Dapsilidinium pseudocolligerum*, *Operculodinium* spp. and *Spiniferites pseudofurcatus* are common (Enclosure 2).

Severe caving during the drilling process is indicated by the presence of e.g. *Achomosphaera andalousiense, Cannosphaeropsis passio, Labyrinthodinium truncatum* and *Palaeocystodinium miocaenicum/minor*. In addition, reworking of Palaeogene deposits is indicated by the presence of e.g. *Eatonicysta ursulae, Diphyes* spp. and *Wetzeliella* spp. (see further Enclosure 1).

Age

Burdigalian (Early Miocene) (Fig. 3).

Depositional environment

The somewhat limited *in situ* dinocyst assemblage combined with abundant reworked dinocysts and a high, relative abundance of freshwater algae indicate a shallow marine depositional environment with some influence by freshwater run-off from land. This is supported by abundant terrestrial pland remains, i.e. wood-particles, cuticles and non-saccate and bisaccate pollen.

Lithostratigraphy

Based on a combination of the dinocyst stratigraphy, the geophysical log pattern and the lithology of the samples, the lower part of this interval (up to 348 m) is correlated with the Danish Klintinghoved Formation, while the upper part is correlated with the Bastrup Formation (Fig. 2).

(6			olankton n	Dinoflagellate cysts zona	tion: Denmark	
Age (Ma	Epoch	Stage	Nannop zonatio	Dinoflagellate events	Onshore zonation	Offshore zonation
	Holocene		NN21	-		
-	Pleistocene		NN19			
-	L	— 1.81 — Gelasian	NN18	Amiculosphaera umbraculum Bitectatodinium tepikiense Impagidinium multiplexum		l. multiplexum
		2.59	NN17	Barssidinium pliocenium		D alla seriessa
	M cene	Piacenzian	NN16	Molitornhoeridium chooponhorum		B. pilocenicum
-	oild	Zanclean	NN15/ NN13	Reticulosphaera actinocoronatum		M. choanophorum
5-		<u> </u>	NN12	Barssidinium evangelinae Ervmnodinium delectabile		
-		Messinian	n11 p			S. armageddonensis
-		— 7.25 —	a	∱ Selenopemphix armageddonensis Hystrichosphaeropsis obscura↓ Labyrinthodinium truncatum	H. obscura	H. obscura
-			NN10	▲ Barssidinium evangelipae Palaeocystodinium spp. Systematophara spp.		
10-		Tortonian	NN9		A. umbracula	A. umbracula
-			NN8			
	_	11.61-	NN7	Amiculosphaera umbraculum Palaeocystodinium miocaenicum↓		
-		Communalling			G. verricula	
-	ə	Serravalliari	NN6	☐ Gramocysta verricula ☐ Achomosphaera andalousiense	A. andalousiense	
	Miocei M	—13.65—		Unipontidinium aquaeductus		
	~		NN5	↑ Uninontidinium aquaeductus	U. aquaeductum	U. aquaeductum
15-		Langhian		Palaeocystodinium miocaenicum	L. to a straight	1. 6
		15.97-			L. truncatum	L. truncatum
		10107	NN4			
-					C. aubryae	C. aubryae
-		Burdigalian	NN3	Cousteaudinium aubryae Exochosphaeridium insigne	E. insigne	E. insigne
		2 al al gallari		Cordosphaeridium cantharellus	C. cantharellus	C. cantharellus
-	E			Sumatradinium hamulatur Halassiphora rota	S. hamulatum	S. hamulatum
20-			NNO	Thalassiphora pelagica		
-		20.45		Coline distance emission	T. pelagica	T. pelagica
		Aquitanian		Caligodinium amiculum↓ ↑ Ectosphaeropsis burdigalensis	C. amiculum	C. amiculum
-				Chiropteridium galea	Homotryblium spp.	Homotryblium spp.
-		23.03	NN1	Deflandrea phosphoritica common	C. galea	C. galea
-	Oligocene	Chattian	NP25		D. phosphoritica	D. phosphoritica
• M	aximum occurre	ence 📕 Events	 s defining zo	Distatodinium biffi nal boundaries Additional events		

Figure 3: Dinocyst zonation (Dybkjær & Piasecki 2010). The species names shown in black marks the events (first or last occurrences, or abundance occurrences) defining the zonal boundaries. The species names shown in grey are additional stratigraphic usefull events.

The Cordosphaeridium cantharellus Zone, 339 m – 285 m

Dinocyst zonation

This interval is referred to the *Cordosphaeridium cantharellus* Zone (Dybkjær & Piasecki 2010) due to the first occurrence of *Exochosphaeridium insigne* in the sample at 336–339 m and the last occurrence of *Cordosphaeridium cantharellus* in the sample at 282–285 m (Enclosure 1).

Dinocyst assemblage

The dinocyst assemblage is very sparse in the lower part of the interval, up to about 294 m. In the upper part of the interval the assemblage becomes more rich and diverse. The assemblage is dominated by *Cleistosphaeridium placacanthum*, *Hystrichokolpoma rigaudiae*, *Operculodinium centrocarpum* and *Spiniferites* spp. In the upper part of the interval, from 294 m, *Apteodinium australiense* and *A*. cf. *australiense* also dominates, while *A. tectatum*, *Cordosphaeridium cantharellus*, *Dapsilidinium pseudocolligerum* and *Spiniferites* pseudofurcatus are common (Enclosure 2)

Severe caving is indicated by the presence of e.g. Achomosphaera andalousiense, Cerebrocysta poulsenii, Habibacysta tectata, Labyrinthodinium truncatum, Palaeocystodinium miocaenicum/minor and Unipontodinium aquaductum. In addition, reworking of Jurassic, Cretaceous and Palaeogene deposits is indicated by the presence of Gonyaulacysta jurassica, Chatangiella spp., Deflandrea spp., Glaphyrocysta pastielsii and Wetzeliella gochtii (Enclosure 1).

Age

Burdigalian (Early Miocene) (Fig. 3).

Depositional environment

The lower part of the interval, up to and including the sample at 300–303 m, comprises a very limited *in situ* dinocyst assemblage and the freshwater algae *Pediastrum* occurs in high numbers (Enclosure 1). These observations indicate a nearshore marine depositional environment strongly influenced by freshwater run-off from land. This is supported by abundant wood-particles and non-saccate and bisaccate pollen. The upper part of the interval, represented by the samples at 291–294 m and 288–291 m, is characterised by distinctly more diverse and abundant dinocyst assemblages and few freshwater algae. This interval is interpreted as representing a marine depositional setting with minor freshwater influx.

Lithostratigraphy

Based on a combination of the dinocyst stratigraphy, the geophysical log pattern and the lithology of the samples, the lower part of this interval (up to 292 m) is correlated with the Danish Bastrup Formation, while the upper part is correlated with the Arnum Formation (Fig. 2).

The Exochosphaeridium insigne Zone, 285 m – 246 m

Dinocyst zonation

This interval is referred to the *Exochosphaeridium insigne* Zone (Dybkjær & Piasecki 2010) due to the last occurrence of *Cordosphaeridium cantharellus* in the sample at 282–285 m and the first occurrence of *Cousteaudinium aubryae* combined with the last occurrence of *E. insigne* in the sample at 243–246 m (Enclosure 1). The occurrences of *C. aubryae* in the samples at 264–267 m and 255–258 m are here interpreted as due to caving and the occurrences of *E. insigne* in the samples at 237–240 m and 228–231 m are interpreted as the result of reworking, as the range of these two species in previous studies do not overlap (Dybkjær & Piasecki 2010). However, the results from the present study may indicate that overlap can occur.

Dinocyst assemblage

The dinocyst assemblage is relatively rich and diverse. The assemblage is dominated by *Apteodinium tectatum*, *Hystrichokolpoma rigaudiae*, *Operculodinium centrocarpum* and *Spiniferites* spp., while *A*. cf. *australiense*, *Cleistosphaeridium placacanthum*, *Dapsilidinium pseudocolligerum* and *Spiniferites pseudofurcatus* are common (Enclosure 2).

Severe caving is indicated by the presence of e.g. Cannosphaeropsis passio, Cerebrocysta poulsenii, Cousteaudinium aubryae, Habibacysta tectata, Labyrinthodinium truncatum, Palaeocystodinium miocaenicum/minor and Unipontodinium aquaductum. In addition, reworking of Jurassic, Cretaceous and Palaeogene deposits is indicated by the presence of Cribroperidiunium spp., Chatangiella spp., Apectodinium spp., Deflandrea cf. heterophlycta, Deflandrea spp. and Wetzeliella spp. (Enclosure 1).

Age

Burdigalian (Early Miocene) (Fig. 3).

Depositional environment

This interval is characterised by a diverse and abundant dinocyst assemblage and relatively few freshwater algae, however with an increasing abundance upwards, especially of *Pediastrum*. The interval is interpreted as representing a marine depositional setting with minor, but upwards increasing, freshwater influx.

Lithostratigraphy

Based on a combination of the dinocyst stratigraphy, the geophysical log pattern and the lithology of the samples, the major part of this interval is correlated with the Danish Arnum Formation. The uppermost part (from 252 m) is correlated with the Odderup Formation (Fig. 2).

The Cousteaudinium aubryae Zone, 246 m - 231 m

Dinocyst zonation

This interval is referred to the Cousteaudinium aubryae Zone (Dybkjær & Piasecki 2010) due to the combined first occurrence of Cousteaudinium aubryae and last occurrence of E.

insigne in the sample at 243–246 m and the last occurrence of *Cousteaudinium aubryae* in the sample at 228–231 m (Enclosure 1).

Dinocyst assemblage

The abundance and diversity of dinocysts are generally lower than in the interval below. The assemblage is dominated by *Polysphaeridium zoharyi* and *Spiniferites* spp., while *Apteodinium tectatum*, *Hystrichokolpoma rigaudiae* and *Operculodinium centrocarpum* are common (Enclosure 2).

The presence of *Labyrinthodinium truncatum* and *Palaeocystodinium miocaenicum/minor* is interpreted as being a result of caving during the drilling process. In addition, reworking of Palaeogene deposits is indicated by the presence of *Diphyes ficusoides*, *Deflandrea* spp. and *Wetzeliella* spp. (Enclosure 1). In addition, the presence of *Exochosphaeridium insigne* within this interval is here interpreted as the result of reworking of deposits referred to the dinocyst zone immediately below this one.

Age

Burdigalian (Early Miocene) (Fig. 3).

Depositional environment

This interval is characterised by a sparse dinocyst assemblage. The abundances of dinocysts and freshwater algae are about equal, with an increasing abundance of the freshwater algae *Pediastrum* upwards. The interval is interpreted as representing a marine depositional setting with a relatively high and upwards increasing freshwater influx. This is supported by high abundances of wood particles, cuticle and bisaccate pollen.

Lithostratigraphy

Based on a combination of the dinocyst stratigraphy, the geophysical log pattern and the lithology of the samples, this interval is correlated with the Danish Odderup Formation (Fig. 2).

The Labyrinthodinium truncatum Zone, 231 m – 186 m

Dinocyst zonation

This interval is referred to the *Labyrinthodinium truncatum* Zone (Dybkjær & Piasecki 2010) due to the last occurrence of *Cousteaudinium aubryae* in the sample at 228–231 m and the first occurrence of *Unipontodinium aquaductum* in the sample at 183–186 m (Enclosure 1). Due to severe caving, the first occurrence of *Labyrinthodinium truncatum* which define the lower boundary of this zone, cannot be pointed out in the present study.

Dinocyst assemblage

The abundance and diversity of dinocysts are generally low within this interval. The assemblage is dominated by *Apteodinium tectatum*, *Hystrichokolpoma rigaudiae*, *Operculodinium centrocarpum*, *Spiniferites pseudofurcatus* and *Spiniferites spp.*, while *Apteodinium tectatum*, *Cleistosphaeridium placacanthum*, *Dapsilidinium pseudocolligerum*, and *Lingulodinium machaerophorum* are common (Enclosure 2).

The presence of Achomosphaera andalousiense and Habibacysta tectata is interpreted as being a result of caving during the drilling process. In addition, reworking of Jurassic and Palaeogene deposits is indicated by the presence of e.g. *Cribroperidinium* spp., *Alicocysta* spp., *Areoligera gippingensis*, *Cordosphaeridium cantharellus*, *Deflandrea* spp. and *Diphyes* spp. (Enclosure 1).

Age

Langhian (Middle Miocene) (Fig. 3).

Depositional environment

This interval is characterised by a rather sparse dinocyst assemblage and high relative abundances of freshwater algae, especially *Pediastrum*. The interval is interpreted as representing a nearshore marine depositional setting with a high freshwater influx. This is supported by high abundance of wood particles, cuticles and non-saccate and bisaccate pollen.

Lithostratigraphy

Based on a combination of the dinocyst stratigraphy, the geophysical log pattern and the lithology of the samples, this interval is correlated with the Danish Odderup Formation (Fig. 2).

The Unipontodinium aquaductum Zone, 186 m – 132 m

Dinocyst zonation

This interval is referred to the *Unipontodinium aquaductum* Zone (Dybkjær & Piasecki 2010) due to the first occurrence of *Unipontodinium aquaductum* in the sample at 183–186 m and the first occurrence of *Achomosphaera andalousiensis* in the sample at 129–132 m. The location of the upper boundary is further supported by the last occurrence of *Unipontodinium aquaductum* in the sample at 132–135 m (Enclosure 1).

Dinocyst assemblage

The abundance and diversity of dinocysts are very high within this interval. The assemblage is dominated by Hystrichokolpoma rigaudiae, Operculodinium centrocarpum and Spiniferites while Cleistosphaeridium placacanthum, spp., Dapsilidinium pseudocolligerum, Labyrinthodinium truncatum, Lingulodinium machaerophorum, Palaeocystodinium miocaenicum/minor and Polysphaeridium zoharvi are common (Enclosure 2).

The presence of Achomosphaera andalousiense and Barssidinium evangelineae are interpreted as being a result of caving during the drilling process. In addition, reworking of Jurassic and Palaeogene deposits are indicated by the presence of e.g. *Cribroperidinium* spp., *Gonyaulacysta helicoidea*, *Areosphaeridium dictyoplokus*, *Charlesdowniae* spp. and *Deflandrea* spp. (Enclosure 1).

Age

Langhian to early Serravallian (Middle Miocene) (Fig. 3).

Figure 4: Stratigraphic summary for the Westerlangstedt-BR1 borehole.

Depositional environment

This interval is characterised by a rich and diverse dinocyst assemblage, while the abundance of freshwater algae generally is low. In a few samples, at 174 m and 135 m, however, relatively high abundances of *Pediastrum* were found. The interval is interpreted as representing a fully marine depositional setting with a generally low, but somewhat variegating freshwater influx.

Lithostratigraphy

Based on a combination of the dinocyst stratigraphy, the geophysical log pattern and the lithology of the samples, the lower part of this interval (up to 164 m) is correlated with the Danish Odderup Formation, while the upper part is correlated with the Hodde Formation (Fig. 2).

The Achomosphaera andalousiense Zone, 132 m – 117 m

Dinocyst zonation

This interval is referred to the *Achomosphaera andalousiense* Zone (Dybkjær & Piasecki 2010) due to the first occurrence of *Achomosphaera andalousiense* in the sample at 129–132 m and the last occurrence of *Cannosphaeropsis passio* in the sample at 17–20 m (Enclosure 1), see further the discussion concerning the location of the base of the *Gramocysta verricula* Zone, p. 16.

Dinocyst assemblage

The abundance and diversity of dinocysts are very high within this interval. The assemblage is dominated by *Hystrichokolpoma rigaudiae*, *Operculodinium centrocarpum* and *Spiniferites* spp., while *Habibacysta tectata*, *Labyrinthodinium truncatum*, *Lingulodinium machaerophorum*, *Mini dino 4* KD, *Spiniferites pseudofurcatus* and *Spiniferites solidago* are common (Enclosure 2).

The presence of *Barssidinium evangelineae* is interpreted as being a result of caving, while reworking of Jurassic deposits is indicated by the presence of *Cribroperidinium* spp. (Enclosure 1).

Age

Serravallian (Middle Miocene) (Fig. 3).

Depositional environment

This interval is characterised by a rich and diverse dinocyst assemblage, while freshwater algae occur very sporadic. The interval is interpreted as representing a fully marine depositional setting.

Lithostratigraphy

Based on a combination of the dinocyst stratigraphy, the geophysical log pattern and the lithology of the samples this interval is correlated with the Danish Ørnhøj Formation (Fig. 2).

Westerlangstedt

Figure 5: Correlation between the Miocene succession in the Westerlangstedt-BR1 borehole and the Danish lithostratigraphy of Rasmussen *et al.* (in press).

The *Gramocysta verricula* Zone/*Amiculosphaera umbracula* Zone, 117 m – 87 m

Dinocyst zonation

This interval is referred to the *Gramocysta verricula* and the *Amiculosphaera umbracula* Zones (Dybkjær & Piasecki 2010). The last occurrence of *Cannosphaeropsis passio* in the sample at 117–120 m is here interpreted as indicating the base of the *Gramocysta verricula* Zone. The first occurrence of *Gramocysta verricula*, defining the base of the zone, is often a problematic marker, as it is absent in offshore settings. It is thus necessary to use alternative markers, as done here. The location of the base of the *Gramocysta verricula* Zone is further supported by the last occurrence of *Cerebrocysta poulsenii* in the sample at 123–126 m and of *Cleistosphaeridium placacanthum* in the sample at 120–123 m. Sporadic occurrences of *Gramocysta verricula* were recorded from the samples at 105–108 m and 93–96 m (Enclosure 1).

Dinocyst assemblage

The abundance and diversity of dinocysts are generally high within this interval, but decreases upwards. The assemblage is dominated by *Hystrichokolpoma rigaudiae*, *Operculodinium centrocarpum* and *Spiniferites* spp. and in addition *Labyrinthodinium truncatum* dominates in the sample at 90–93 m, while *Homotryblium tenuispinosum* dominates in the uppermost sample, at 87–90 m. *Achomosphaera andalousiense*, *Dapsilidinium pseudocolligerum*, *Habibacysta tectata*, *Labyrinthodinium truncatum*, *Lingulodinium machaerophorum* and *Operculodinium piasecki* are common (Enclosure 2).

The presence of *Barssidinium evangelineae* is interpreted as being a result of caving, while reworking of Jurassic and Palaeogene deposits is indicated by the presence of e.g. *Cribroperidinium* spp., *Oligosphaeridium patulum*, *Apectodinium* spp., *Cordosphaeridium cantharellus* and *Wetzeliella* spp. (Enclosure 1).

Age

Serravallian to Tortonian (Middle to Late Miocene) (Fig. 3).

Depositional environment

This interval is characterised by a rich and diverse dinocyst assemblage, however with a decreasing trend upwards. At the same time the abundance of freshwater algae increases in the upper part of the interval. The interval is interpreted as representing a fully marine depositional setting with a minor, upwards increasing influx of freshwater.

Lithostratigraphy

Based on a combination of the dinocyst stratigraphy, the geophysical log pattern and the lithology of the samples this interval is correlated with the Danish Gram Formation (Fig. 2).

Conclusion

The dinocyst zonation of Dybkjær & Piasecki (2010), developed for the Danish Miocene succession was successfully applied to the studied succession from the Westerlangstedt-BR1 borehole. The following dinocyst zones were found: 372 m – 339 m: The *Sumatradinium hamulatum* Zone (Lower Miocene)

339 m – 285 m: The Cordosphaeridium cantharellus Zone (Lower Miocene)

285 m – 246 m: The Exochosphaeridium insigne Zone (Lower Miocene)

246 m – 231 m: The Cousteaudinium aubryae Zone (Lower Miocene)

231 m – 186 m: The *Labyrinthodinium truncatum* Zone (Middle Miocene)

186 m – 132 m: The *Unipontodinium aquaductum* Zone (Middle Miocene)

132 m – 117 m: The Achomosphaera andalousiense Zone (Middle Miocene)

117 m – 87 m: The *Gramocysta verricula* Zone/*Amiculosphaera umbraculum* Zone (Middle to Upper Miocene).

Caving of Upper Miocene and Pliocene/Pleistocene material was found throughout the studied succession and also reworking of especially Jurassic and Palaeogene palynomorphs was observed.

Based on a combination of the dinocyst stratigraphy, the lithology of the samples and the geophysical log-pattern, the studied succession is correlated with the Danish lithostratigraphy defined by Rasmussen *et al.*, (in press);

1) 372.4 m (TD)–348 m: The Klintinghoved Formation

- 2) 348 m–292 m: The Bastrup Formation
- 3) 292 m–252 m: The Arnum Formation
- 4) 252 m–164m: The Odderup Formation
- 5) 164 m–132 m: The Hodde Formation
- 6) 132 m–117 m: The Ørnhøj Formation
- 7) 117 m–80 m: The Gram Formation

The studied succession was inserted in a log-correlation panel striking north-south, from the Danish Rødding borehole to the Westerlangstedt borehole (Fig. 6). Except for the distinctly thicker succession in the Tinglev borehole, located within the Tønder Graben, the thicknesses of the Miocene formations in the Danish boreholes and the Westerlangstedt borehole are comparable and the correlation is straight forward.

Figure 6: Log-correlation panel showing the Miocene succession in the boreholes; Rødding, Rødekro, Hellevad, Tinglev and Westerlangstedt. Notice how the Tønder Graben results in a distinct thickening of the Odderup Formation in the Tinglev borehole.

References

- Dybkjær, K. & Piasecki, S., 2010: Neogene dinocyst zonation for the eastern North Sea Basin, Denmark. Review of Palaeobotany and Palynology **161**, 1–29.
- Rasmussen, E.S., Dybkjær, K. & Piasecki, S., in press: Lithostratigraphy of the Upper Oligocene – Miocene succession in Denmark. Geological Survey of Denmark and Greenland Bulletin **21**.

Enclosures

- Enclosure 1: Rangechart for the Westerlangstedt-BR1 borehole. The chart presents; the lithostratigraphic subdivision (based on the Danish lithostratigraphy by Rasmussen et al., in press), the chronostratigraphy, the dinocyst zonation (Dybkjær & Piasecki, 2010), the dinocyst events, the relative abundances of the recorded *in situ* and caved dinocyst species, the presumed reworked dinocysts, the freshwater algae, acritarchs and other marine algae, all in percentages of the total number of dinocysts, freshwater algae, acritarchs and other marine algae ("OM"). Occurrences marked by a "C" means that it is interpreted as being the result of caving. Occurrences marked by a "?" means that the indentification of the specimen to species or genus is questionable.
- Enclosure 2: Rangechart for the Westerlangstedt-BR1 borehole, presenting the absolute abundances of *in situ* and caved dinocysts in percentage of the total number of *in situ* and caved dinocysts. Occurrences marked by a "C" means that it is interpreted as being the result of caving. Occurrences marked by a "?" means that the indentification of the specimen to species or genus is questionable.

							% within discipline (50mm=100%) In-Situ,Caved occurrences	
Depth					Events		1Achomosphaera alcicornu2Achomosphaera andalousiensis4Achomosphaera andalousiensis44Achomosphaera ramulifera3Achomosphaera sp- 2 kd, verrucat41Apteodinium cf. australiense81Apteodinium spiridoides37Apteodinium spiridoides37Apteodinium forcentum4Barssidinium graminosum38Barssidinium spiridoides38Barssidinium spiridoides39Barssidinium pliocentum54Carnosphaera spp.52Cerebrocysta poulsenii53Cerebrocysta satchelliae54Cerebrocysta satchelliae55Cleistosphaeridium placacanthum69Cordosphaeridium cantharellus	24 Cordosphaeridium minimum
	Lithostratigraphy	, hronoefendiarahi	cillollosuaugraphy	Dinocyst zonation		res)	a alcicomu a alcicomu a sp- 2 kd, verrucat angelineae seudocolligerum/pastielsii seudocolligerum/pastielsii seudocolligerum/pastielsii seudocolligerum/pastielsii arata nectilum nactaum m truncatum m truncatum m choanophorum	centrocarpum
	Formation	Period/Epoch	Age	Zone		ample depth is BASE of depth ra Samples (metr	Achomosphaera Achomosphaera Achomosphaera Achomosphaera Barssidinium ev Barssidinium ps Habibacysta tec Homotryblium pl Hystrichokolporr Hystrichosphaer 1 Impagidinium pa Lingulodinium m 3 Lingulodinium m	5 Operculodinium
80m- - - 100m- -	Quatemary Bost	Quaternary eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	Tortonian	erricula-A. umbracula	-108 -Base of Gramocysta verricula	90 93 96 		29 79 8
- - 120m- -	Wrnhøj Formation	110.0	usillian	Achomosphaera andalousiense	 120 Top of Cannosphaeropsis passio 123 Top of Cleistosphaeridium placacanthum 126 Top of Palaeocystodinium miocaenicum/minor, Top of Carebrocysta poulsenii 	114 117 120 123 123	III 76 36 ² / ₂ II 38 46 1 II 76 II 38 75 1 37C II 45 11 46C II II II	10 12 14
- 140m- - - 160m- -	182 Hodde Formation 194.0	locene	Jan 200	odinium aquaeductum	Cannosphaeropsis passio, common -132 VBase of Achomosphaera andalousiensis -135 Top of Unipontidinium aquaeductum	132 135 141 147 153 159 162 165	1 1 1 10	8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 8 7 8 8 7 8
- - 180m -		Middle Mi	Langhian	Unipont	-186 -186 Base of Unipontidinium aquaeductum	171 174 180 186	10 12 43 12 137 143 12 147 147 147 142 147 142 147 142 147 142 147 142 147 142 147 142 147 142 147 142 147 <td>12 3 8 12</td>	12 3 8 12
- 200m- - - 220m-	Odderup Formation			syrinthodinium truncatu		192 198 204 210 216 219	43 43C 81 1	
- - - 240m-		231	231	201 Cousteaudinium aubryae	-231 Top of Cousteaudinium aubryae -240 ∠Base of Cerebrocysta poulsenii	225 231 234 234 240		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
- - - 260m—	382			m insigne	-246 Base of Cousteaudinium aubryae Top of Exochosphaeridium insigne	246 252 258 261	44C 88 1C 11 194 175 194 194 194 194 194 194 194 194	2 10
- - - 280m—	num Formation			xochospaeridiu		267 267 273 279	1 5C 5 11 11 11 11 10 10 10 10 10 10 10 10 10	
-	292.0	ocene	alian	285 Sinjjaue	-285 ▼ Top of Cordosphaeridium cantharellus	285 291 294	34C 34C 34 1C 1 37C 173 173 177 170 173 46C 45C 45 1 45C 1	2) 8 8
- - 320m-	up Formation	Lower Mi	Burdig	sphaeridium canth		303 312 315 321	4C. 48 48C 45 1 46C 45 1 48 48C 45 1 48 48C 45 1 52 52 1 52	
- - 340m—	Bastn			539 CO CO CO CO CO CO CO CO CO CO CO CO CO	-339 Base of Exochosphaeridium insigne	327 333 336 339 342	46 92 46 92 46C 95 47 10 10 95 1 45C 95 47 9 10 96 47 96 97 10 96 1 45C 48 9 9 10	48 48
-	3.			dinium		345 348 351		

 rinspnaera nimera Gramocysta verricula Habibacysta spp. Habibacysta tectata Habibacysta tectata Heteraulacacysta tectata Homotryblium plectilum Hystrichokolpoma "reductum" Hystrichokolpoma salacia Hystrichosphaeropsis obscura Hystrichosphaeropsis cf. obscura Hystrichosphaeropsis cf. obscura Hystrichosphaeropsis cf. obscura Hystrichosphaeropsis cf. obscura Hystrichosphaeridium multiplexum Hystrichosphaeropsis cf. obscura Hystrichosphaeropsis cf. obscura Hystrichosphaeropsis cf. obscura Lapyrinthodinium spp. Labyrinthodinium truncatum Lingulodinium machaerophorum 	 Meifrasphaeridium choanophorum Mini dino 1 KD Mini dino 7 KD Mini dino 7 KD Mini dino 7 KD Menatosphaeropsis labyrinthus Nematosphaeropsis spinitum centrocampum Operculodinium centrocampum Operculodinium sp. 3 de Verteuli & Norris 199 Operculodinium pisasotii Denculodinium sp. Palaeocystodinium micosenicum/minor Palaeocystodinium micosenicum/minor Pentadinium laticinclum inaginatum Polyspheendium sp. Polyspheendium sp. Polyspheendium sp. Polyspheendium appinitum Spinifierites speaudoturcatus Spinifierites speaudoturcatus Sumstradinium handigin Sumatradinium handigin Unidentifiable dinofagelatte cysts Unidentifiable dinofagelatte cysts 	 Alescoysta spin Alescoysta spin Alescoysta spin Alescoysta spin Alescoysta spin Alescontinum australiense Alescosphaeridium spin Areoligera spin Areoligera spin Areoligera spin Areoligera spin Areoligera spin Areoligera spin Cratharsteinian spin Crathorsprintium spin Condosphaeridium spin Consultation spin<!--</th--><th>16 Spinidinium spp. 11 Unidentifiable dinoflagellate cysts 15 Wetzeliella gochtii 19 Wetzeliella symmetrica 109 Morgeotia laetevirens 11 Botryococcus spp. 12 Lecaniella spp. 13 Mougeotia laetevirens 14 Ovoidites spp. 17 Pseudokomewuia aff. granulata 18 Schizocystia sp. 16 Tetraporina spp.</th>	16 Spinidinium spp. 11 Unidentifiable dinoflagellate cysts 15 Wetzeliella gochtii 19 Wetzeliella symmetrica 109 Morgeotia laetevirens 11 Botryococcus spp. 12 Lecaniella spp. 13 Mougeotia laetevirens 14 Ovoidites spp. 17 Pseudokomewuia aff. granulata 18 Schizocystia sp. 16 Tetraporina spp.
19 rencuratospiratera acunocoronata 20 Spiniferites pseudofurcatus 21 Spiniferites spp. 22 Unidentifiable dinoflagellate cysts 23 Unidentifiable dinoflagellate cysts 24 Cordosphaeridium minimum 25 Habibacysta spp. 26 Spiniferites solidago 27 Spiniferites solidago 28 Batiacasphaera spp. 29 Gramocysta verricula 31 Mini dino 4 KD 33 Surculosphaeridium laticinctum 34 Barssidinium plocenicum 35 Apteodinium tectatum	38 Barssidinium graminosum 39 Impagidinium spp. 40 Apteodinium cl. australiense 41 Apteodinium cl. australiense 42 Apteodinium cl. australiense 43 Apteodinium cl. australiense 44 Xumatradinium hamulatum 45 Aumercodinium cl. australiense 46 Sumatradinium hamulatum 47 Tuberculodinium vancampoae 48 Sumatradinium vancampoae 49 Pyxidinopsis psilatum 51 Pyxidinopsis psilatum 52 Hystrichostrogylon spp. 53 Hystrichostrogylon spp. 54 Pentadinium laticinctum imaginatum 55 Pentadinium aquaeductum 56 Pentadinium spidoides 57 Pentadinium aquaeductum 58 Palaeocystodinium solitum 59 Impeliosphaerafiliera 51 Pentadinium aquaeductum 52 Operculodinium spidoides 53 Pentadinium aquaeductum 54 Pentadinium appia 55 Pentadinium apraedoxum 66 <	61 Apteodinium australiense 64 Spinifierities crassivariabilis 68 Invertocysta lacrymosa 68 Invertocysta lacrymosa 69 Hystrichosphaeridium insigne 69 Hystrichosphaeridium cantharellus 60 Hystrichosphaeridium placacanthum 7 Certosphaeridium placacanthum 8 Apteodinium spin 7 Delfandrea spin 8 Apteodinium spin 105 Cerebrocysta satchelliae 105 Cerebrocysta satchelliae 106 Cordosphaeridium placacanthum 11 Apteodinium spin 11 Unidentificable dinoffagellate cysts 12 Senoniasphaera jurassica 13 Apteodinium spp. 14 Unidentificable dinoffagellate cysts 15 Senoniasphaera jurassica 16	75 Wetzellella gocnul 80 Eatonicysta ursulae 81 Cordosphaeridium gracile 89 Cordosphaeridium spp. 109 Wetzeliella symmetrica 1 Botryococcus spp. 2 Lecaniella spp. 3 Mougeotia laetevirens 4 Ovoidites spp. 5 Pediastrum spp.
61 4. 61 4. 79 4. 79 4. 79 4. 79 4. 70 <td< th=""><th>M M</th><th></th><th>1 1</th></td<>	M M		1 1
77. 38. 37. 37. 38. 37. 3	1 1	1	1 1

Well N Interval Scale Chart date Enclosure	ame : W : 80m - 373m : 1:1000 : 04 Novembe 2	esterlan r 2010	gstedt - Karen Dybkja	BR1 er																
Depth					Events			1 Achomosphaera alcicornu 2 Achomosphaera andalousiensis	44 Achomosphaera ramulifera	3 Achomosphaera sp- 2 kd, verrucat 41 Apteodinium cf. australiense	81 Apteodinium australiense	37 Apteodinium fectatum	4 Darssidinium evangerineae 38 Barssidinium graminosum	34 perssiantum pilocenicum 65 Barssidinium spp.	28 Batiacasphaera spp.	48 Cannosphaeropsis passio 54 Cerebrocysta poulsenii	105 Cerebrocysta satchelliae	52 Cleistosphaeridium placacanthum	89 Cordosphaeridium cantharellus 24 Cordosphaeridium minimum	72 Cousteaudinium aubryae
	tion Lithostratigraphy	/Epoch	Chronostratigraphy	Dinocyst zonation			aASE of depth range SS (metres)	mosphaera alcicornu mosphaera andalousiensis	mosphaera sp- 2 kd, verrucat	idinium əvangelinəaə İldinium pseudocolligerum/pastielsii	acysta tectata trublium olactilum	stryblium tenuispinosum		chokolpoma rigaudiae	•		ichosphaeropsis obscura	jidinium patulum	inthodinium truncatum	lodinium machaemohorum
80m-	Lorman	Quaternary	Age	Zone	and the Sec		Sample depth is E Sample	Barren 1 Achor	3 Achor	5 Dapsi	6 Habib	B Homo		9 Hystri	, ,		10 Hystri	11 Impag	12 Labyn	
- - - - - - - - - - - - - - - - - - -	ees Without Services Without Services Wi	eco eueocei Mioocei A	Serravallian Tortonian	Achomosphaera andalousiense	-108 - Base of Gramocysta verricula -120 - Top of Cannosphaeropsis passio -123 - Top of Cleistosphaeridium placacanthum -126 - Top of Palaeocystodinium miocaenicum/mino Cerebrocysta poulsenii Cannosphaeropsis passio, common -132 - Base of Achomosphaera andelouviejensis	r, Top of	90 93 96 102 108 114 117 120 123 126 132	45 91 94 11 47 11 77 11 11	95 195 1 1 8 1 1 8 4		2 91 3 47 	1 1 1 1 1 1 1 1 1 1 1			9 18 18 18 18 		h 47	46 1 47 9		11 6 11 6 11 8 11 8 11 8 11 8 11 11 8 11 11 8 11 11
- 140m- - - 160m- - - - 180m-	Hodde Formation	Middle Miocene	141.0	Unipontodinium aquaeductum	-135 Top of Unipontidinium aquaeductum		135 135 141 147 153 159 162 165 165 171 174 180	63 46€	}4		1 1 1 1 1 1 1 1 1 1 1 1 1 1	55 47 96					63 42 1 41 41 45 96 92	94	2	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
- 200m- - - 220m- - -	Odderup Formation		Langhi	Labyrinthodinium: truncatum	-186 - Base of Unipontidinium aquaeductum		186 192 198 204 210 216 219 225 231	1 72C			0 00 172C	þ 			2 74 2 2 3 2 3 3 4 2 3 3 4 3 3 3 3 3 3 3 3)))	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4)
240m- - 260m- - - 280m-	Arnum Formation			246 246 246 246 246 246 246 246 246 246	-240 ▲ Base of Cerebrocysta poulsenii -246 ← Base of Cousteaudinium aubryae Top of Exochosphaeridium insigne		234 240 245 252 258 261 267 273 279	96C			1 71C	271 171					76 1 1 153		; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;	
- 300m- - - 320m- -	Bastrup Formation	Lower Miocene	Burdigalian	Cordosphaeridium cantharellus	^{−285} Top of Cordosphaeridium cantharellus		285 291 294 303 312 315 321 327 333 329	arc arc bc				137 15								
340m- - - 360m- - -	Mintughoved	380.0	380.0	Sumatradinium hamulatum 338	-339 ▲ Base of Exochosphaeridium insigne		338 339 342 345 348 351 351 354 357 360 363 366 369 372				hC hC hC						le1			

				_			Dinoflagellate Cysts													_																_					_	_																							
Dapsilidinium pseudocolligerum/pastielsii	Distatodinium paradoxum	Exochosphaeridium cf. insigne	Exochosphaeridium insigne	Filifera microornata	Filisphaera filifera	Gramocysta verricula	Habibacysta spp.	Habibacysta tectata	Heteraulacacysta campanula	Homotryblium plectilum	Homotryblium tenuispinosum	"Hystrichokolpoma "reductum"	Hvstrichokolpoma rigaudiae	Hustrichokolooma salacia		Hystrichosphaeropsis obscura	Hystrichosphaeropsis cf. obscura	Hystrichostrogylon spp.	Impagidinium multiplexum	Impagidinium patulum	Impacidinium spo.	Impletosphaeridium insolitum	Invertocvsta lacrumosa	l abvrinthodinium truncatum			Melitasphaeridium choanophorum	Mini dino 1 KD	Mini dino 4 KD	Mini dino 7 KD	Nematosphaeropsis labyrinthus	Nematosphaeropsis spp.	Operculodinium centrocarpum	Operculodinium piaseckii	Operculodinium sp. 3 de Verteuil & Norris 199	Operationary operation of the second s	Defence to division minoremicism minor	Palaancvetordinium novvallansa	Palaeocystodinium son	Pentadinium laticiantum "minor"	Pentadinium laucinctum immilio	Pentedinium laticinctum laticinctum	Periaumum jaucincum jaucincum Dolumbooridium soboori		Providencesis taimavenensis	Pyxiainopsis psilatum	Reuculatosphaera actinocoronata Soiniferites cressiveriabilis	Contraction of accordance	Contractions production cards	Spiniferites son	Sumatradinium drugoli	Currentedinium hemulatum	Surreulosobaeridium Iondifurcatum	Jarcarospriaeriaini vargina vanari Tactatodinium pallitum	Tuberculodinium vancampoae	Unidentifiable dinofiagellate cysts	Uninontidinium aduaeductum								
erophorum 5 L	oanophorum 64 L	ocarpum 66 k	86 4	67	55	ockii 30 0	owellense 25 H	aryi 6 H	58	4 _ 2	tinocoronata 8 H	rcatus 76 /	0		00	10	94	53 //	m 43 1	geliate cysts	inimum 30					13	14	um laticinctum 90	ongifurcatum 31 1	cum 68 /	69 /	19 /	15	16 0		de Verteuil & Norris 199			4 4-4 mnxe		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		32 r assis	19	70 70 minhbarran	lacacannum 51 h	19	10 10 10		z/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/	um imacinatum		nsolitum 22 5	100 00 00 00 00 00 00 00 00 00 00 00 00	47	aductum 23 (les les			f insidne	1.110king		abvrinthus	nensis	Vae
13 Lingulodinium machae	14 Melitasphaeridium chc	15 Operculodinium centro				a 16 Operculodinium piase	* : 17 Palaeocystodinium po	8 Polysphaeridium zoha			* 19 Reticulatosphaera acti	20 Spiniferites pseudofur	21 Spiniferites spp.						* 1 22 Tectatodinium pellitum	23 Unidentifiable dinoflag	Cordosphaeridium mir	רבין Habibacvsta spp.	Spiniferites solidado	and Batiacasobaera son	- 20 Gramowets various	30 Graniocysta Verricula	31 Mini dino 4 KD	32 Pentadinium laticinctu	: 33 Surculosphaeridium lo	34 Barssidinium pliocenic	37 Apteodinium tectatum		2	38 Barssidinium graminos	30 Impagidinium spp.	An Operculadinium sp 3	Antancinium of austra		1 43 Impagidinium multiple	Achomosohaera rami	As Sumatradinium hamul	Tuberculodinium vanc			1 51 Pryxianopsis psilatam	52 Creiscospriaeriaium pre	Hustrichostmaulon sor	Cerebrocvsta poulsen	E Filisohaera filifera	Balaeocvstodinium mi	Entedinium laticinctu	Leo Heteraulacevicea com	Impletosphaeridium in	Sumatradinium druggi	61 Operculodinium spp.	62 Unipontidinium aquae	Apteodinium spiridoide	B4 Distatodinium paradox	Barssidinium spp.	Exochosobaeridium cf	Elifera microornata	Alini dino 7 KD	Nematosphaeropsis la	Pyxidinopsis fairhaven	72 Cousteaudinium aubry
	1				1981 V	47 47 94 94 95 81 1 1	6 1 1 77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 0 1 42			47 			317 118 114					1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	95 1 38 42 42	1 195 181			47	95		4 99 19 19 19 19 19 19 19 19 19 19 19 19 1	н , 15 н 1 7 15 15	47	52 C				47	47 45 ? 48 1	47	6		6C	47	47	94			1 81		38	95 81 1 42	h 63		48	81	41	41	63		163								
	1 1 1 9 9 1 9 2 2 -					94 41 44 48 46 -	1 4 9 46	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			82	8 - 				20 29 33 33 34		3	47 41 88 96 46 -	47 82 48	1 41 88 45		2 3 3 1 1 1 - 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14 11 14 18 55	94		8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				45	9 9				47	82 88 9 96	- 46 -	44	45	44	9 9 1		55 94 82 48 - 46			. 1472	41	47	- 47 -		h 194 - 145 - 146 -	1 54 47 82 88 45 48 92 5	54	47?	94		47	. 47 .	.47.	41 44?
	95					.66 .72 					 74				2		23 28 28		72 1	h 66 1 85 74	66 44		66 74 h				17 17 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17	2 2 1 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	•••••				 1		66		66 17 44								 172 10 10 10 10 10 10 10 10 10 10 10 10 10			h h h		66 2 85 1 44			74				66 72 44								
		4 8 9 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 			94 55		1 1 1 1 1 1 1 1							23	1 () 2 2 ⁻ 1 2 3 2 4 3 2 6 3 3		1	35 h h	66 1 1 1 1 1 1 5	71		1 71 53 1 47 5				6 6 7 7 7 7 7	99 	47			1 1 11			h 37	1 5 5	61			THE PARTY OF THE P	61 - 55 1 - 59 - 74 47?		fice iso					1C 530 .370 .470	2	ic ic ic ic ic ic ic ic ic ic ic ic ic i		61				61C		53							171C
						h		• •								2			 - - -	····											 h											_ [6]	hC									•				1C			h C					••••	
				8											20	3) 3) 29-												?																							0.00				1				IC						

