Special core analysis for Hess Denmark. Well: Rigs-4

Electrical properties and permeability at overburden stress conditions

Niels Springer & Hans Lorentzen

G E U S

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND MINISTRY OF CLIMATE AND ENERGY

Special core analysis for Hess Denmark. Well: Rigs-4

Electrical properties and permeability at overburden stress conditions

Niels Springer & Hans Lorentzen

GEUS Core Laboratory

Confidential report

Copy No.

To be released 31.07.2015

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND MINISTRY OF CLIMATE END ENERGY

Contents

1.	Introduction	2
2	Sampling and analytical procedures	3
2.1	Plug quality screening	3
2.2	Preparation and initial characterization	3
2.3	Electrical properties and liquid permeability	3
3	Flow diagram of the analytical procedures	9
4	Analytical Methods	10
4.1	Insoluble residue and amount of quartz in the residue	10
4.2	Conventional measurements	10
4.3	Overburden measurements	11
4.4	Formation resistivity factor	11
4.5	Core conductivity	12
4.6	Resistivity index	13
5	Results	14
5.1	Mineralogy	15
5.2	Conventional core analysis	16
5.3	Electrical properties5.3.1Formation Resistivity Factor5.3.2Liquid permeability5.3.3Core conductivity C_o/C_w 5.3.4Resistivity Index5.3.5FRF, C_o/C_w , RI, Archie 'm' and 'n' scatter diagrams	18 18 18 18 19 19
6	References	34
7	Plug quality screening	35

Enclosure: - Data on CD-ROM

Req. no.: 09201-594 File: Rigs-4_SCALrep.doc Rigs-4_electrical.xls

1. Introduction

At the request of Hess Denmark ApS, GEUS Core Laboratory has performed special core analysis on samples from the Rigs-4 well, the South Arne Field, Danish North Sea.

The experimental programme was specified in e-mail communications with Ms. Cathrine Børkop during August-September 2008. The following analytical programme was finally agreed on in a contract dated November 6, 2008:

- X-ray CT-screening of plugs for SCAL
- Standard core analysis on plugs for SCAL
- Determination of insoluble residue and clay mineralogy
- Liquid permeability at overburden conditions
- Electrical properties at overburden conditions

Preliminary data have been reported to Hess DK by e-mail comm. during the period January 2009 to April 2010.

2 Sampling and analytical procedures

The resistivity study was carried out on 8 plug samples taken from the Tor and Hod Formation chalk in the Rigs-4 well. Earlier resistivity studies conducted for Hess DK is the South Arne Field and Rigs-3 studies completed in 2005 and 2007. The equipment and techniques are essentially the same as used in the former studies.^{1, 2}

2.1 Plug quality screening

A total of 20 plugs of 38 mm diameter were received from Core Laboratories[®] UK, table 2.1, and later delivered to the scanning facility at Department of Chemical Engineering, the Technical University of Denmark. During the X-ray CT-screening, two longitudinal cuts perpendicular to each other are recorded for each plug. Scanning images and details of the instrumental settings are given in chapter 7.

2.2 Preparation and initial characterization

Hess DK preselected 7 plugs for the resistivity study, 3 plugs representing the Tor Fm chalk and 4 plugs representing the Hod Fm chalk. In agreement with GEUS Core Laboratory it was decided to include a fifth Hod Fm plug to obtain the maximum possible spread in porosity when measuring the Formation Resistivity Factor to get the best accuracy in the calculation of the cementation exponent 'm'. All plugs had previously been Soxhlet cleaned during the conventional core analysis (CCAL) study but went through an additional cold flush cleaning with methanol and toluene before special core analysis (SCAL) test. The plugs were then dried at 110 °C and analyzed for routine poro-perm. A determination of the insoluble residue (ISR) and clay mineral composition was included with the experimental programme, but plug trims were not at hand; therefore a copy set of 38 mm diameter plugs were drilled close to the original plugs, cleaned and analyzed for ISR and clay mineralogy. CCAL and mineralogical data are presented in chapter 5.

2.3 Electrical properties and liquid permeability

Samples were vacuum and pressure saturated in simulated formation brine for a week, table 2.2, and left to equilibrate in brine under a slight vacuum in an anaerobic jar for another week before electrical measurement commenced. The samples were then installed in single resistivity cells and a hydrostatic confining pressure of 145 psi [1 MPa] was applied. Approx. 2-3 PV's of fresh brine was flushed through the samples to displace air from the core holder. Pressure was then increased to 1200 psi [8.2 MPa] hydrostatic conf. P and the sample left to settle until the next day. The amount of liquid expelled was used to calculate the porosity reduction. Liquid flow was then started and when stable conditions was observed, consequtive readings of flowrate and differential pressure were recorded. Liquid flow was now stopped and during the next week a number of resistivity readings were taken to determine the formation resistivity factor FRF.

The resistivity index RI to an air-brine system was measured by a technique developed for low permeability samples by Springer et al. ³ Applying this technique, Hess DK requested samples be measured at 3 different water saturations viz. 50%, 40% and 20%. Subsequently samples were flushed with 5-10 PV's of 2x, 2.5x and 5x diluted formation brine (table 2.3-2.5) in core holders for approx. one week. The core holders were then dismantled and the samples left to settle in an anaerobic jar under a slight vacuum for another week in the subject diluted brine. Samples were then removed from the vacuum jar and left to evaporate under laboratory conditions until a precalculated weight had been reached and the original brine concentration re-established, ie. the diluted brines were up-concentrated 2x, 2.5x and 5x. The samples had now attained 50%, 40% or 20% water saturation respectively, and were ready to be measured for the resistivity index RI at overburden conditions. The RI (air-brine system) was measured with the samples mounted in single resistivity cells during a period of one week until stable readings were obtained. The advantage of using an air-brine system is that an even saturation distribution can be obtained within the plug samples during 1-2 weeks³.

			Plugs	CT scanning	RI and FF
Fm	Core depth	Plug	Issues	GEUS	GEUS
Tor	2865.00	HS1		x	
Tor	2865.16	1H1			
Tor	2865.40	1H2	Homogeneous, oil stained	x	(x)
Tor	2865.71	1H3	Heterogeneous, not fully oilstained,	x	(x)
Tor	2866.00	HS2		x	
Tor	2866.40	2H2		x	
Tor	2867.00	HS3		x	
Tor	2867.14	3H1			
Tor	2867.40	3H2	Homogeneous, oil stained,	x	(x)
Tor	2867.67	3H3	Heterogeneous, not fully oilstained,	x	
Hod	2908.74	44H3	Homogeneous, oil stained	x	(x)
Hod	2910.00	HS32		x	
Hod	2910.19	46H1			
Hod	2910.44	46H2	Homogeneous, oil stained	x	(x)
Hod	2910.70	46H3	Homogeneous, oil stained	x	(x)
Hod	2910.94	46H4	Homogeneous, oil stained	x	
Hod	2911.00	HS33		x	
Hod	2911.18	47H1	Homogeneous, oil stained		
Hod	2911.40	47H2	Homogeneous, oil stained	x	(x)
Hod	2912.00	HS34		x	
Hod	2912.15	48H1			
Hod	2912.40	48H2	Homogeneous, oil stained	х	(x)

Homogeneous, oil stained

Homogeneous, oil stained

Homogeneous, oil stained

Table 2.1. Rigs-4 resistivity study; list of former routine core analysis plugs received for screening. Samples selected for resistivity measurement after CT-screening are indicated (x).

Х

х

х

Hod

Hod

Hod

2912.70

2913.70

2914.42

48H3

49H3

50H2

Table 2.2. South Arne simulated formation water analysis. Measured physical properties appear below.

			Subject brin	ne: Syd Arne form	nation brine
Element	Concentration	Compound	(Gram compound p	ber
	mg/L		1 liter	3 liter	5 liter
Na total	32930				
Na+	32930	NaCl	83.707	251.122	418.54
Na+	0	NaHCO3	0.000	0.000	0.00
K+	522	KCI	0.995	2.986	4.98
Mg2+	665	MgCl2, 6H2O	5.561	16.683	27.81
Ca2+		CaCl2	0.000	0.000	0.00
Ca2+	5667	CaCl2, 2H2O	20.787	62.362	103.94
Sr2+	0	SrCl2, 6H2O	0.000	0.000	0.00
Ba2+		BaCl2, 2H2O	0.000	0.000	0.000
CI-	63220				
HCO3-	0.0				

TDS:	103004 mg/L	~1.763 mol/L NaCl eqv.
pH:	@ 23 C	

Comments: Slightly modified compared to the brine used in the 2005 study

Physical data:	Resistivity Rw :	0.075	ohmm @ 25.0 °C
	Calculated Rw :	0.074	ohmm @ 25.0 °C
	Density dw :	1.068	g/cc @ 25.0 ⁰C
	Calculated dw :	1.066	g/cc @ 25.0 ⁰C
	Viscosity:	1.093	cP @ 25 ℃

Element	Concentration	Compound		Gram compound per			
	mg/L		1 liter	3 liter	5 liter		
Na total	16465						
Na+	16465	NaCl	41.854	125.561	209.27		
Na+	0	NaHCO3	0.000	0.000	0.00		
K+	261	KCI	0.498	1.493	2.49		
Mg2+	333	MgCl2, 6H2O	2.781	8.342	13.90		
Ca2+		CaCl2	0.000	0.000	0.00		
Ca2+	2834	CaCl2, 2H2O	10.394	31.181	51.97		
Sr2+	0	SrCl2, 6H2O	0.000	0.000	0.00		
Ba2+		BaCl2, 2H2O	0.000	0.000	0.000		
CI-	31610						
HCO3-	0.0						

Subject brine: SA formation brine - 50%

TDS:	51502 mg/L	~	0.881	mol/L NaCl eqv.
pH:	@ 23	С		

Comments: Slightly modified from original SA brine and diluted 2 times

Physical data:	Resistivity Rw :	0.129	ohmm @ 25.0 °C
	Calculated Rw :	0.130	ohmm @ 25.0 ºC
SA brine 50%	Density dw :	1.032	g/cc @ 25.0 ℃
	Calculated dw :	1.032	g/cc @ 25.0 ℃
	Viscosity:		cP @ 25 ℃

Core Laboratory

Table 2.4. South Arne simulated formation water analysis diluted 2.5 times to allow a final water saturation of 40% in the resistivity index study. Measured physical properties appear below.

Element	Concentration	Compound		Gram compound per			
	mg/L		1 liter	3 liter	5 liter		
Na total	13172						
Na+	13172	NaCl	33.483	100.449	167.41		
Na+	0	NaHCO3	0.000	0.000	0.00		
K+	209	KCI	0.398	1.195	1.99		
Mg2+	266	MgCl2, 6H2O	2.224	6.673	11.12		
Ca2+		CaCl2	0.000	0.000	0.00		
Ca2+	2267	CaCl2, 2H2O	8.316	24.947	41.58		
Sr2+	0	SrCl2, 6H2O	0.000	0.000	0.00		
Ba2+		BaCl2, 2H2O	0.000	0.000	0.000		
CI-	25288						
HCO3-	0.0						

Subject brine: Syd Arne brine 40%

TDS:	41202	mg/L	~	0.705	mol/L	NaCl eqv.	
pH:		@ 23 C					

Comments: Slightly modified from original SA brine, and diluted 2.5 times

Physical data:	Resistivity Rw :	0.159	ohmm @ 25.0 ºC
0.4.1.1.4004	Calculated Rw :	0.158	ohmm @ 25.0 ºC
SA brine 40%	Density dw :	1.026	g/cc @ 25.0 ℃
	Calculated dw :	1.025	g/cc @ 25.0 ℃
	Viscosity:		cP @ 25 ℃

Element	Concentration	Compound		Gram compound per	
	mg/L		1 liter	3 liter	5 liter
Na total	6586				
Na+	6586	NaCl	16.741	50.224	83.71
Na+	0	NaHCO3	0.000	0.000	0.00
K+	104	KCI	0.198	0.595	0.99
Mg2+	133	MgCl2, 6H2O	1.112	3.337	5.56
Ca2+		CaCl2	0.000	0.000	0.00
Ca2+	1133	CaCl2, 2H2O	4.156	12.468	20.78
Sr2+	0	SrCl2, 6H2O	0.000	0.000	0.00
Ba2+		BaCl2, 2H2O	0.000	0.000	0.000
CI-	12643				
HCO3-	0.0				

Subject brine: Syd Arne brine - 20%

TDS:	20599	mg/L ~	0.352	mol/L	NaCl eqv.
pH:		@ 23 C			

Comments: Slightly modified from original SA brine and diluted 5 times

Physical data:	Resistivity Rw :	0.286	ohmm @ 25.0 ºC
	Calculated Rw :	0.293	ohmm @ 25.0 ºC
SA brine 20%	Density dw :	1.012	g/cc @ 25.0 ℃
	Calculated dw :	1.011	g/cc @ 25.0 ℃
	Viscosity:		cP @ 25 ℃

3 Flow diagram of the analytical procedures

4 Analytical Methods

Electrical measurements are performed at $25 \pm \frac{1}{2}$ °C, and to the guidelines established by the Society of Core Analysts ⁴. A temperature log may be provided on request and included with the attached CD-ROM.

4.1 Insoluble residue and amount of quartz in the residue

The sample is crushed and dried, and calcite is removed by using a buffered acetic acid at pH 4.5. This mild dissolution of the calcite is carried out in order to avoid dissolution of non – calcite minerals. The amount of insoluble residue is given as a weight percent rel. to the original dry sample weight.

X – ray diffraction (XRD) is carried out on randomly oriented specimens using a Philips 1050 goniometer with Co - K α radiation (pulse – high selection and Fe – filter). The amount of quartz in the residue is determined using quartz 4.5 - 45 μ m in size as a standard. The result is given as a weight percent rel. to the insoluble residue.

4.2 Conventional measurements

GEUS Core Laboratory follow the procedures established by API in their recommended practice for core-analysis procedure (API RP 40, 2nd ed. 1998).

He-porosity and grain density: Room condition porosity is measured on cleaned and dried samples in an unconfined sample cup. The method uses Boyle's Law to determine sample grain volume in a double cell Helium porosimeter with digital readout. Bulk volume is measured by submersion of the plug in a mercury bath using Archimedes principle. The porosity is then obtained by subtraction of the measured grain volume from the measured bulk volume.

Grain density is calculated from the grain volume measurement and the weight of the cleaned and dried sample. The Helium porosimeter is calibrated against a number of massive stainless steel plugs with known volume before plug samples are measured.

Un-corrected gas permeability : The plug is mounted in a Hassler core holder, and a confining pressure of 400 psi [2.8 MPa] applied to the sleeve. The specific permeability to gas is measured by flowing nitrogen gas through a plug of known dimensions at differential pressures between 0 and 1 [barg]. No back pressure is applied. The readings of the digital gas permeameter are checked regularly by measurement of permeable steel reference plugs.

Klinkenberg corrected gas permeability : The Klinkenberg corrected gas permeability, sometimes termed the equivalent liquid permeability, is calculated from gas permeability measurements performed at 3 different mean pressures in the plug sample. The plug is mounted in a Hassler core holder, and a confining pressure of 400 psi [2.8 MPa] is applied to the sleeve. Nitrogen gas pressures of 2, 4 and 7 [barg] (3, 5 and 8 [bara]) are applied at the upstream end of the plug, and the downstream pressure is regulated until a suitable flow is obtained. The differential pressure is kept approx. constant in order to maintain a similar flow regime during the 3 measurements. When a steady state is reached, the upstream pressure, the differential pressure across the plug and the flow reading is recorded. A linear regression of permeability on inverse mean pressure is performed for the 3 measurements, and the intercept on the permeability axis is the Klinkenberg corrected gas permeability.

Klinkenberg corrected gas permeabilities are only reported down to approx. 0.1 mD on normal routine terms. However, on request measurements can be carried out to a lower limit of 0.01 mD. The performance of the digital gas permeameter is checked regularly by measurements of permeable steel reference plugs.

4.3 Overburden measurements

The following field data were supplied by Hess DK:

Gross overburden pressure:	8260 psi
Reservoir pressure:	6260 psi
Net confining pressure:	2000 psi

which translates to a hydrostatic confing pressure of ~1200 psi in the electrical properties study.

Porosity: The initial porosity is determined at room conditions. Archimedes test is applied to the fully saturated plug sample, and in combination with the sample grain density the porosity is calculated. During testing the sample pore volume decreases as overburden increases. This is observed as an amount of liquid expelled from the sample into a graduated tube, or constantly monitored using an electronic Mettler balance connected to a PC. The final reading is taken after a fixed time or when a stable level has been reached on the balance. The porosity reduction is calculated as the relative decrease in the initial porosity:

$$egin{aligned} egin{split} ec{ec{P}}_i &= rac{V_{pi}}{V_{bi}} \ ec{ec{P}}_{i+\Delta p} &= rac{V_{pi} - \Delta V_p}{V_{bi} - \Delta V_p} \end{aligned}$$

The porosity reduction is then given as:

$$\frac{\emptyset_{i+\Delta p}}{\emptyset_{i}} \cdot 100\% = \frac{V_{pi} - \Delta V_{p}}{V_{bi} - \Delta V_{p}} \cdot \frac{V_{bi}}{V_{pi}} \cdot 100\%$$

Where \mathcal{Q}_i = initial porosity

 V_{pi} = initial pore volume V_{bi} = initial bulk volume $\mathcal{O}_{i+\Delta P}$ = new porosity induced by a certain change Δp in confining stress. ΔV_{p} = change in pore volume due to the change in confining stress.

The initial change in the pore volume that occurs from room conditions to the lowest confining stress applied in the study is extrapolated from a liquid production curve (produced liquid vs effective confining stress).

4.4 Formation resistivity factor

In a "clean" formation (non-shaly) the formation factor F is described by Archie's equation:

$$F = \frac{R_0}{R_w} = \frac{a}{\emptyset^m}$$

Where

For a plug sample F is calculated from the following formula:

$$F = \frac{1}{R_w} \cdot \frac{z \cdot A}{L}$$

Where

 R_w = resistivity of brine in ohm-m z = impedance of plug sample in ohm @ S_w = 100% A = area of the plug in m² L = length of plug in m

Rearranging Archie's equation for the formation factor:

$$\log F = -m \log \emptyset + \log a$$

produces a straight-line relationship in a double logarithmic diagram where F is plotted as a function of \emptyset . The constant 'a' is then determined as the intercept and the cementation exponent 'm' as the slope of the best fit straight line. Values for 'm' are usually preferred for a = 1, which is expected from theoretical grounds. Therefore a set of regression constants are given for a regression line which has been biased through (1,1).

The measurement of F is performed with the plug mounted in a 2-electrode resistivity core holder at an overburden pressure >400 psi. The plug is allowed to settle for more that 24 hours. The porosity reduction/pore volume compressibility is recorded consecutively. The plug resistance is measured as the impedance to an AC signal of 5-20 kHz frequency depending on rock properties (minimum phase angle). Data logging is performed using the HP 4276A LCZ-meter controlled by a PC. The resistivity of the brine is measured in a conductivity meter (Radiometer Analytical CDM 210). The measured formation brine resistivity is checked against a model calculated resistivity.

4.5 Core conductivity

Excess conductivity due to Cation Exchange Capacity (CEC) effects from conductive clay minerals can be corrected for by measuring the conductivity of plug samples to a range of different brine salinities as described by Waxman & Smits⁷ or the two-salinity method described by Worthington¹⁰. The corrected Archie formation resistivity factor F* and the BQ_v factor in the Waxman-Smits equation is calculated from linear regression:

$$C_o = \frac{1}{F^*} \cdot (BQ_v + C_w)$$

where

 C_o = Conductivity of 100% saturated sample C_w = Conductivity of brine

 F^* and BQ_v is determined from the slope and intercept of the regression line in a C_o vs C_w diagram.

Measurements of core conductivity are performed at overburden conditions at 25 °C or at reservoir conditions in an owen as required. Samples are installed in single resistivity core holders and flushed with 10 PV's of a specified brine or NaCl solution. Overburden or reservoir pressure is applied and pore volume compressibility recorded as the samples are left overnight to equilibrate. The first conductivity reading is then taken. The samples are now flushed with 3 PV's of the same brine and left to stabilize for at least 24 hours before the second conductivity is recorded. Consecutive readings may be taken during the following week.

The procedure is repeated for each brine or NaCl solution. The two-electrode method is normally applied and the conductivity measured to an AC signal of 5-20 kHz frequency until minimum phase angle have been detected. Data logging is performed using the HP 4276A LCZ-meter controlled by a PC.

4.6 Resistivity index

In a "clean" formation (non-shaly) Archie determined experimentally that the water saturation could be expressed by the following equation:

$$S_w^n = \frac{FR_w}{R_t} = \frac{R_o}{R_t} = \frac{1}{RI}, \qquad RI = \frac{R_t}{R_o}$$

where

 $\begin{array}{l} S_w = \text{water saturation} \\ n &= \text{saturation exponent} \\ F &= \text{formation resistivity factor} \\ RI = \text{resistivity index} \\ R_0 = \text{resistivity of sample} @ S_w = 100\% \text{ in ohm-m} \\ R_t = \text{resistivity of sample} @ S_w < 100\% \text{ in ohm-m} \\ R_w = \text{resistivity of brine in ohm-m} \end{array}$

Rearranging Archie's equation for the water saturation :

$$RI = S_w^{-r}$$

and

 $\log(RI) = -n \, \log(S_w)$

In a double logarithmic diagram consecutive values of $S_{\rm w}$ and RI shall produce a straight line from which the saturation exponent 'n' can be determined as the slope.

The measurement of RI is performed with the plug mounted in a resistivity core holder at an overburden pressure >400 psi. The plug is allowed to settle for more that 24 hours. The porosity reduction/pore volume compressibility can not normally be measured but is estimated from other sources, preferebly an overburden experiment. The two-electrode method is normally applied and the resistance measured as the impedance to an AC signal of 5-20 kHz frequency depending of the resistivity cell design and the type of rock (minimum phase angle). Data logging is performed using the HP 4276A LCZ-meter controlled by a PC.

Drainage of the sample may be carried out using a porous plate, and therefore the measurement of RI is conveniently combined with air/brine or oil/brine capillary pressure experiments. For low permeability material this may take very long time and often uneven saturation profiles are generated in the samples that will affect the resistivity measurement. For such low permeability samples a different desaturation technique may be applied ³. A diluted formation brine is used and the samples allowed to evaporate under room conditions to a precalculated weight whereby a specific water saturation is obtained and the original brine concentration restored. A homogeneous brine distribution is normally obtained within a week due to diffusion and capillary forces. The non-wetting phase is air.

5 Results

Nomenclature

L D A BV PV	 sample length sample diameter sample area bulk volume pore volume 	[cm] [cm] [cm ²] [cc] [cc]	F or FRF F* RI m m*	 formation resistivity factor intrinsic formation factor resistivity index cementation exponent intrinsic porosity exponent 	
ΔP	V– pore volume cha	nge [ml]	n	 – saturation exponent 	
GD	– grain density	[g/cc]	а	 Archie constant, or a dimensional correction factor in compressibility calculations 	
V	– volume	[ml]	R _o	- resistivity of water saturated sample	[Ω m]
ΔV Ø S _w ⁱ imp τ	 volume change porosity water saturation final water saturat Subscript for "initi impedance tortuosity 	[ml] [pct or frc] [pct or frc] tion [pct or frc] al" [ohm]	R _w C _o C _w Z _o Z _t nd/na WW _{calc}	$\label{eq:second} \begin{array}{ll} - \mbox{ resistivity of formation water}[\Omega m] \\ - \mbox{ core conductivity } [S/m] \\ - \mbox{ formation water conductivity}[S/m] \\ - \mbox{ impedance of water saturated sample} \\ - \mbox{ impedance of sample at $S_w < 1$ \\ - \mbox{ not determined/analyzed} \\ - \mbox{ wet weight calculated from plug volution} \\ \mbox{ and core analysis data} \\ - \mbox{ wet weight measured} \end{array}$	e[Ω] [Ω] me [g] [g]

5.1 Mineralogy

The insoluble residue is mainly quartz, approx. 2 wt-% is other minerals ie. clay and pyrite. The clay type is identified as smectitic minerals (sm in table 5.1 below), most probably the illite-smectite-chlorite mixed-layer minerals described previously ^{5, 6}.

Table 5.1. Rigs-4 resistivity study; insoluble residue (ISR), quartz content and clay type in the insoluble residue in Hod Fm chalk. Dry clean sample material analyzed was 40 – 60 [g] per plug sample.

Plug ID	Plug ID Depth		Qz in ISR *	Clay XRD of ISR
	[m]		[wt-%]	
M1	2895.36	12.1	9.8	sm
M2	2906.47	7.6	5.3	sm
M3	2910.25	5.6	3.4	sm
M4	2911.55	4.4	2.8	sm
M5	2913.57	5.1	2.8	sm

Analytical data by GEUS Clay Minerals Lab * rel to whole rock sample weight

5.2 Conventional core analysis

Tables 5.2 and 5.3 below lists the routine core analysis data measured before the SCAL test. The plug set was measured twice, as received after routine (Soxhlet) cleaning and after cold flush cleaning in single core holders at GEUS Core Laboratory.

Table 5.2. Rigs-4 resistivity study; conventional steady state gas and Klinkenberg corrected gas permeability measured on routine core analysis plug set (Soxhlet cleaned) received from Core Laboratories [®] UK. Gas permeability was measured @ 400 psi confining sleeve pressure.

Sample	Fm	Depth	Gas Perm	Klink.Perm	Klink.Corr	Porosity	Grain Dens
ID		[m]	[mD]	[mD]	Coef.	[%]	[g/ccm]
1H2	Tor	2865.40	0.81	0.380	0.998		
1H3		2865.71	0.71	0.394	0.999		
3H2		2867.40	0.30	0.082	0.994		
3H3		2867.67	0.50	0.283	0.999		
44H3	Hod	2908.74	nd	nd	nd		
46H2		2910.44	0.20	0.021	0.995		
46H3		2910.70	0.23	0.049	0.992		
47H2		2911.40	0.47	0.156	0.993		
48H2		2912.40	0.18	0.029	0.963		

Table 5.3. Rigs-4 resistivity study; conventional core analysis data measured after additional cold flush,miscible liquids cleaning of plugs selected for the electrical study. Gas permeability was measured400 psi confining sleeve pressure. He-porosity was measured un-confined.

Sample	Fm	Depth	Gas Perm	Klink.Perm	Klink.Corr	Porosity	Grain Dens
ID		[m]	[mD]	[mD]	Coef.	[%]	[g/ccm]
1H2	Tor	2865.40	0.81	0.366	1.000	23.14	2.713
1H3		2865.71	0.75	0.441	1.000	20.84	2.713
3H2		2867.40	0.30	0.091	0.993	19.28	2.711
44H3	Hod	2908.74	0.118	nd	nd	17.17	2.710
46H2		2910.44	0.20	0.021	0.998	21.65	2.709
46H3		2910.70	0.24	0.058	0.994	21.34	2.712
47H2		2911.40	0.46	0.167	0.996	24.76	2.709
48H2		2912.40	0.18	0.007	1.000	19.22	2.711

The He-porosity figure from table 5.3 is not always used directly in the following SCAL test; the initial porosity figure may be a mean value between the He-porosity and an Archimedes porosity that is routinely measured on saturated plugs before the SCAL test is initiated.

Scatter diagrams are shown in fig. 5.1.

Figure 5.1. Rigs-4 resistivity study; conventional core analysis data measured after additional cold flush, miscible liquids cleaning of plugs selected for the electrical study. Gas permeability was measured @ 400 psi confining sleeve pressure. He-porosity was measured un-confined.

Core Laboratory

5.3 Electrical properties

The scanning images in chapter 7 show Tor Formation plugs are fairly homogeneous and clay and silica content is known to be low. The Hod Formation plugs are unusually homogeneous with insoluble residue (mainly quartz) of 5-12 wt-%, ref. table 5.1. Measurement of sample resistivity was technically uncomplicated, and there is no reason to suspect that a fixed regression through (1,1) in a double logaritmic plot is not valid for the samples. However, some unexpected resistivity index data was obtained for the Rigs-4 chalk (ref. comments below).

5.3.1 Formation Resistivity Factor

Results are listed in figures 5.2-5.5 below; raw data are included with the attached CD-ROM. "Best estimate" regression analysis data are listed in table 5.4. The following resistivity index study used a special evaporation technique³ that required saturating the plugs with different diluted formation brines. That allowed measuring the FRF and 'm' at 3 different brine salinities to check for possible excess conductivity effects due to the insoluble residue in the Hod Fm chalk, table 5.4

Table 5.4. Archie's cementation exponent 'm' for the Tor and Hod Fm chalk in the Rigs-4 well. For the Hod Fm 'm' was determined for 3 different brine salinities.

Chalk formation	Archie's 'm' from linear regression	Formation water salinity [mg/L]
Tor Fm	1.98	103,000
Hod Fm	2.00	103,000
	1.98	51,500
	1.97	20,600

5.3.2 Liquid permeability

The overburden liquid permeability at $S_w = 1$ was measured during the FRF study; data and scatter diagrams are given in figure 5.6.

5.3.3 Core conductivity C_o/C_w

Table 5.5 is a listing of calculated conductivity values for the 5 Hod Fm samples; single sample diagrams are presented in figures 5.7-5.11 below. The three different brine formulations and measured and calculated physical properties are given in table 2.2-2.5. If the calculated and measured conductivity (resistivity) differs, the measured value is preferred in the calculations.

Table 5.5. Rigs-4, Hod Fm chalk. Archie data corrected for excess conductivity; measurements performed in a temperature controlled laboratory @ 25 °C. Regression analysis gives $m^* = 2.01$.

Plug	Depth	Ø _{113 bar}	F *	m *	BQv
no.	m	%			
44H3	2908.74	16.6	36.63	2.01	0.509
46H2	2910.44	21.4	22.88	2.03	0.176
46H3	2910.70	20.9	23.42	2.02	0.279
47H2	2911.40	24.2	17.18	2.00	0.271
48H2	2912.40	19.0	26.95	1.98	0.062

5.3.4 Resistivity Index

The study involved measurement of RI at three water saturation steps: 50, 40 and 20 % S_w using a special evaporation technique³. This was done to cut experimental time that may otherwise be very long for porous plate drainage of very low permeable samples. The evaporation method was introduced to overcome some well established side effects with the traditional methods (porous plate and centrifuge), eg. uneven saturation profiles in the plugs (centrifuge, porous plate until drainage equilibrium has been obtained) and a drainage threshold that may be high (> 60% S_w) due to limitations in the porous plate specs. This means that the slope of the regression line (ie. the saturation exponent 'n') cannot be determined with sufficient accuracy. However, the evaporation method depends on an air-brine system (a favourable mobility ratio) to obtain fast equilibrium in the plugs. According to Worthington et al. ^{8,9} this may introduce bias in the measurements when rocks with a significant micro-porosity and/or multimodal pore size distribution are measured.

Results are listed in figure 5.12-5.15; raw data are included with the attached CD-ROM. "Best estimate" regression analysis data are listed in table 5.6 below.

Chalk formation	Archie's 'n' from linear	@ S _w
	regression	[%]
Tor Fm	1.81	multi sample data
	2.11	50
	1.96	40
	1.70	20
Hod Fm	1.80	multi sample data
	2.13	50
	1.92	40
	1.70	20

Table 5.6. Archie's saturation exponent 'n' for the Tor and Hod Fm chalk in the Rigs-4 well.

Observations: The core conductivity study show close to zero intercept in the C_0/C_w plot for brines covering the salinity range of approx. 20,000 – 100,000 mg/L indicating no shale effect and a negligible surface conductivity for a fully saturated rock. This conclusion may, however, not be valid for brine saturations < 100%^{8,9}.

The resistivity index study show a systematic decreasing 'n' with S_w for both the Tor and Hod Formation chalk, a behaviour normally seen for shaly sands but not to be expected for a clean chalk with a uni-model pore size distribution. It is not likely to be an instrumental artefact, but rather a rock property of the microporous chalk or an effect of the method used to desaturate the samples (or both).⁹

5.3.5 FRF, C_o/C_w , RI, Archie 'm' and 'n' scatter diagrams

Relevant tables and scatter plots are included with pages 20-33 below.

Subject: Formation Resistivity Factor data Company : Hess DK Overburden FRF data and cementation exponent 'm'

Reservoir unit: Tor Fm

Regression 'm': 1.98

GEUS Core Lab, 01.09.2009

Well	Plug no.	Depth	Overburden data @ 1200 psi confining P				
		[m]	K _I [mD]	Ø [%]	FRF	τ	Archie 'm'
Rigs-4	1H2	2865.40	0.22	22.65	19.39	4.4	2.00
	1H3	2865.71	0.11	20.43	23.35	4.8	1.98
	3H2	2867.40	0.07	18.81	26.48	5.0	1.96

Well: Rigs-4

20

Figure 5.3. Archie's cementation exponent 'm' for the Hod Fm chalk relative to the simulated formation brine composition given in table 2.2.

Subject: Formation Resistivity Factor data	Well: Rigs-4
Company : Hess DK	
Overburden FRF data and cementation exponent 'm'	GEUS Core Lab, 01.09.2009

Reservoir unit: Hod Fm

Regression 'm' : 2.00 normal brine conc.

Well	Plug no.	Depth	Overburden data @ 1200 psi confining P					
		[m]	Kı [mD]	Ø [%]	FRF	τ	Archie 'm'	
Rigs-4	44H3	2908.74	0.013	16.64	35.19	5.9	1.99	
	46H2	2910.44	0.027	21.37	22.67	4.8	2.02	
	46H3	2910.70	0.031	20.92	23.09	4.8	2.01	
	47H2	2911.40	0.083	24.19	16.88	4.1	1.99	
	48H2	2912.40	0.028	18.98	26.79	5.1	1.98	

21

Figure 5.4. Archie's cementation exponent 'm' for the Hod Fm chalk relative to a 2x diluted formation brine composition given in table 2.3.

Subject: Formation Resistivity Factor data	Well: Rigs-4
Company : Hess DK	
Overburden FRF data and cementation exponent 'm'	GEUS Core Lab, 01.09.2009

Reservoir unit: Hod Fm

Regression 'm' : 1.98 ¹/₂ brine conc.

Well	Plug no.	Depth	Overburden data @ 1200 psi confining P					
		[m]	Kı [mD]	Ø [%]	FRF	τ	Archie 'm'	
Rigs-4	44H3	2908.74	0.013	16.64	34.19	5.7	1.97	
	46H2	2910.44	0.027	21.37	21.74	4.6	2.00	
	46H3	2910.70	0.031	20.91	22.04	4.6	1.98	
	47H2	2911.40	0.083	24.19	16.35	4.0	1.97	
	48H2	2912.40	0.028	18.98	26.55	5.0	1.97	

Figure 5.5. Archie's cementation exponent 'm' for the Hod Fm chalk relative to a 5x diluted formation brine composition given in table 2.4.

Subject: Formation Resistivity Factor data	Well: Rigs-4
Company : Hess DK	
Overburden FRF data and cementation exponent 'm'	GEUS Core Lab, 01.09.2009

Reservoir unit: Hod Fm

Regression 'm' : 1.97 $^{1}/_{5}$ brine conc.

Well	Plug no.	Depth	Overburden data @ 1200 psi confining P					
		[m]	Kı [mD]	Ø [%]	FRF	τ	Archie 'm'	
Rigs-4	44H3	2908.74	0.013	16.64	32.07	5.3	1.93	
	46H2	2910.44	0.027	21.37	22.53	4.8	2.02	
	46H3	2910.70	0.031	20.91	22.42	4.7	1.99	
	47H2	2911.40	0.083	24.19	16.25	3.9	1.96	
	48H2	2912.40	0.028	18.98	26.68	5.1	1.98	

Figure 5.6. Specific liquid permeability measured for the Tor and Hod Fm chalk in the Rigs-4 well.

Subject: Liquid permeabilityWell: Rigs-4Company : Hess DKOverburden poro-perm data

Reservoir unit : Tor and Hod Fm

Plug no.	Fm	Depth	Plug data @ 1200 psi				
		[m]	K _I [mD]	Ø [%]	FRF	Archie 'm'	
1H2	Tor	2865.40	0.217	22.6	19.39	2.00	
1H3		2865.71	0.107	20.4	23.35	1.98	
3H2		2867.40	0.065	18.8	26.48	1.96	
44H3	Hod	2908.74	0.013	16.6	35.19	1.99	
46H2		2910.44	0.027	21.4	22.67	2.02	
46H3		2910.70	0.031	20.9	23.09	2.01	
47H2		2911.40	0.083	24.2	16.88	1.99	
48H2		2912.40	0.028	19.0	26.79	1.98	

	—
@ overburden conditions (1200 psi)	
Company : Hess DK	GEUS Core Lab, 01.07.2010

Plug no. :	44H3	m* :	2.01	Conventional data
Depth [m]:	2908.74			k _g [mD]: 0.12
Fm	Hod			Ø _{i(He)} [%]: 17.2

Br	ine concentra	ation Bri	ne cond	luctivity	Core	condu	ctivity
Κ	[mg/L]	Cw	@ 25 °C	[S/m]	Co @	25 °C	[S/m]
	20	600		2 50			0 1 1

103,000	13.33	0.38
51,500	7.75	0.23
20,600	3.50	0.11

Ø _{1200 psi} :	0.166
1/F* :	0.0273
BQv :	0.509
F* :	36.63
m* :	2.01

103,000

Subject: Core conductivity measurements	Well: Rigs-4
@ overburden conditions (1200 psi)	
Company : Hess DK	GEUS Core Lab, 01.07.2010

Plug no. :	46H2	m* :	2.03	Conventiona	al data
Depth [m]:	2910.44			k _g [mD]:	0.20
Fm	Hod			Ø _{i(He)} [%]:	21.7

Brine concentration	Brine cor	nductivity	Core condu	uctivity
K [mg/L]	Cw @ 25	°C [S/m]	Co @ 25 °C	[S/m]
20,600		3.50		0.16
51,500		7.75		0.36

Ø _{1200 psi} :	0.214
1/F* :	0.0437
BQv :	0.176
F* :	22.88
m* :	2.03

13.33

0.59

Figure 5.9. Determination of F* and m* in Hod Fm chalk in the Rigs-4 well.

103,000

Subject: Core conductivity measurementsWell: Rigs-4@ overburden conditions (1200 psi)Company : Hess DKGEUS Core Lab, 01.07.2010

Plug no. :	46H3	m* :	:	2.02	Conventional	data
Depth [m]	: 2910.70				k _g [mD]:	0.24
Fm	Hod				Ø _{i(He)} [%]:	21.3

Brine concentration	Brine conductivit	y Core conductivity
K [mg/L]	Cw @ 25 °C [S/m] Co @ 25 °C [S/m]
20,600	3.5	0 0.16
51,500	7.7	5 0.35

Ø _{1200 psi} :	0.209
1/F* :	0.0427
BQv :	0.279
F* :	23.42
m* :	2.02

13.33

0.58

103,000

Subject: Core conductivity measurementsWell: Rigs-4@ overburden conditions (1200 psi)Company : Hess DKGEUS Core Lab, 01.07.2010

Plug no. :	47H2	m* :	2.00	Conventional d	lata
Depth [m]:	2911.40			k _g [mD]: (0.46
Fm	Hod			Ø _{i(He)} [%]:	24.8

Brine concentration	Brine cond	uctivity	Core condu	ictivity
K [mg/L]	Cw @ 25 °C	; [S/m]	Co @ 25 °C	[S/m]
20,600		3.50		0.21
51,500		7.75		0.47

Ø _{1200 psi} :	0.242
1/F* :	0.0582
BQv :	0.271
F* :	17.18
m* :	2.00

13.33

0.79

Subject: Core conductivity measurementsWell: Rigs-4@ overburden conditions (1200 psi)Company : Hess DKGEUS Core Lab, 01.07.2010

Plug no. :	48H2	m* :	1.98	Conventional da	ata
Depth [m]:	2912.40			k _g [mD]: 0.	.18
Fm	Hod			Ø _{i(He)} [%]: 19	9.2

Br	ine concentr	ationBr	ine co	ondu	ictivitv	Core	cond	uctivitv
K.	[ma/l]	C _w	, @ 25	5 °C	[S/m]		0 25 °C	: [S/m]
	[iiig/L]						\$ 2 3 C	
	20	,600			3.50			0.13

20,600	3.50	0.13
51,500	7.75	0.29
103,000	13.33	0.50

Ø _{1200 psi} :	0.190
1/F* :	0.0371
BQv :	0.062
F* :	26.95
m* :	1.98

Figure 5.12. Archie's saturation exponent 'n' for the Tor Fm chalk in the Rigs-4 well.

Subject : Resistivity Index	Well: Rigs-4
Company : Hess DK	
Overburden RI data and saturation exponent 'n'	GEUS Core Lab, 01.03.2010

Reservoir unit: Tor Fm

Regression 'n' : 1.81

Well	Plug no.	Depth	Overbu	Overburden data @ 1200 psi confining P			
		[m]	Ø [%]	Sw [%]	RI	Archie 'n'	
	-						
Rigs-4	1H2	2865.40	22.6	50.9	3.84	1.99	
	1H3	2865.71	20.4	50.8	4.40	2.19	
	3H2	2867.40	18.8	52.2	4.07	2.16	
<u> </u>							
Rigs-4	1H2	2865.40	22.6	40.7	5.64	1.93	
_	1H3	2865.71	20.4	40.8	5.94	1.99	
	3H2	2867.40	18.8	41.6	5.63	1.97	
Rigs-4	1H2	2865.40	22.6	21.0	14.31	1.70	
	1H3	2865.71	20.4	21.2	14.93	1.74	
	3H2	2867.40	18.8	20.9	13.42	1.66	

Multi sample plot:

Figure 5.13. Archie's saturation exponent 'n' for the Tor Fm chalk in the Rigs-4 well; single saturation step data demonstrating decreasing 'n' with S_w .

Figure 5.14. Archie's saturation exponent 'n' for the Hod Fm chalk in the Rigs-4 well.

Subject : Resistivity Index	Well: Rigs-4
Company : Hess DK	
Overburden RI data and saturation exponent 'n'	GEUS Core Lab, 07.01.2010

Reservoir unit: Hod Fm

Regression 'n' : 1.80

Well	Plug no.	Depth	Overburden data @ 1200 psi confining P			
		[m]	Ø [%]	Sw [%]	RI	Archie 'n'
Rigs-4	46H2	2910.44	21.4	52.2	3.36	1.87
	46H3	2910.70	20.9	51.7	4.18	2.17
	47H2	2911.40	24.2	50.0	4.10	2.03
	48H2	2912.40	19.0	51.5	5.06	2.44
Rigs-4	46H2	2910.44	21.4	41.1	5.30	1.87
	46H3	2910.70	20.9	40.5	6.08	2.00
	47H2	2911.40	24.2	41.3	5.24	1.87
	48H2	2912.40	19.0	41.1	5.63	1.95
Rigs-4	46H2	2910.44	21.4	23.3	12.59	1.74
	46H3	2910.70	20.9	21.7	14.08	1.73
	47H2	2911.40	24.2	21.0	12.53	1.62
	48H2	2912.40	19.0	20.9	15.61	1.76

Multi sample plot:

32

Figure 5.15. Archie's saturation exponent 'n' for the Hod Fm chalk in the Rigs-4 well; single saturation step data demonstrating decreasing 'n' with S_w .

Core Laboratory

6 References

- Springer, Niels: Special Core Analysis for Amerada Hess Denmark. South Arne Field. Electrical properties. Geological Survey of Denmark and Greenland Report no. 24, 2005. Confidential.
- Springer, Niels: Special Core Analysis for Amerada Hess Denmark. Well: Rigs-3, electrical properties and permeability at overburden stress conditions. Geological Survey of Denmark and Greenland Report no. 85, 2007. Confidential.
- N. Springer, U. Korsbech, H.K. Aage: Resistivity Index Measurement without the Porous Plate: A Desaturation Technique Based on Evaporation Produces Uniform Water Saturation Profiles and More Reliable Results for Tight North Sea Chalk. Intl SCA Symp., Pau, (September 2003), paper SCA 2003-38, p. 459-470.
- SCA Guidelines for sample preparation and porosity measurement of electrical resistivity samples, part I-IV. The Log Analyst, **31**, 1 & 2, 1990.
- 5. Lindgren et al.: The structure and diagenetic transformation of illite-smectite and chloritesmectite from North Sea Cretaceous-Tertiary chalk. Clays and Clay Minerals vol. **37**, 2002, 429-450.
- 6. Lindgren et al.: Clay mineralogy of the Central North Sea Upper Cretaceous-Tertiary chalk and the formation of clay-rich layers. Clays and Clay Minerals vol. **56**, 2008, 693-710.
- 7. Waxman, M.H. & Smits, L.J.M.: "Electrical conductivities in oil-bearing shaly sands". SPEJ, **8**, 1968, p. 107-122.
- Worthington, P.F. & Pallatt, N.: "Effect of variable saturation exponent upon the evaluation of hydrocarbon saturation". Paper SPE 20538 presented at the 1990 SPE Annual Technical Conference and Exhibition held in New Orleans, LA, 23–26 September 1990.
- 9. Worthington, P.F et al..: "Influence of microporosity on the evaluation of hydrocarbon saturation". SPEFE, **4**, 1989, p. 203-209.
- Worthington, P.F.: "Characterization of the intrinsic porosity exponent through dual-salinity measurements of electrical conductivity." Intl SCA Symp., Pau, (September 2003), paper SCA 2003-30, p. 361-372.

Scanning parameters

Sellar-ear	Ultra High
120 kV	330 mAs
Time=	2 s
Slice=	4 mm

The images below are close to real plug size and represent 2 longitudinal slices perpendicular to each other through the plug sample. The thickness of each slice is 4 mm. To the right is shown the spectral (grey tone) distribution of an approx. 6 mm broad cut through each slice (cf. the figure below) to visualize the matrix homogeneity and structural elements. The distance axis corresponds to the length of the sample image, the grey scale is in CT units; -1000 represents air (100% porosity), +3000 is dense matrix (0% porosity). The average CT-number and standard deviation for the 2 longitudinal slices is given in the info box; this figure is proportional to the sample porosity. Typical CT-numbers for North Sea chalk are in the range 1200-2500. Homogeneous chalk samples have standard deviations < 80 CT-units on a pixel level (less than ± 1.5 porosity-% variation)

36

Plug HS1, Depth : 2865.00 m 2 perpendicular cuts,

Mean CT number	:	1969
Sdev	:	234
Porosity	:	23.8 [%]
Comment	:	This (vertical) plug contains a stylolite
		seam filled with pyrite

Plug 1H2, Depth : 2865.40 m 2 perpendicular cuts,

Mean CT number	::2	2015
Sdev	:	124
Porosity	:	23.0 [%]

Plug 1H3, Depth : 2865.71 m 2 perpendicular cuts,

Mean CT r	number : 2024
Sdev	: 149
Porosity	: 20.6 [%]

Plug HS2, Depth: 2866.00 m 2 perpendicular cuts,

Mean CT nu	mber : 2170
Sdev	: 129
Porosity	:17.6 [%]

Plug 2H2, Depth : 2866.40 m 2 perpendicular cuts,

Mean CT number	er : 2	2088
Sdev	:	124
Porosity	:	19.1 [%]

Plug HS3, Depth: 2867.00 m 2 perpendicular cuts,

Mean CT number	• :	2156
Sdev	:	107
Porosity	:	17.6 [%]

39

Plug 3H2, Depth : 2867.40 m 2 perpendicular cuts,

Mean CT numb	oer : 2122
Sdev	: 99
Porosity	:19.1 [%]

Plug 3H3, Depth : 2867.67 m 2 perpendicular cuts,

Mean CT numbe	r :	2091
Sdev	:	141
Porosity	:	19.7 [%]

continue overleaf with the Hod Fm plugs

Plug 44H3, Depth: 2908.74 m 2 perpendicular cuts,

Mean CT numb	er : :	2158	
Sdev	:	84	
Porosity	:	16.8	[%]

Plug HS32, Depth: 2910.00 m 2 perpendicular cuts,

Mean CT numb	er : 2078
Sdev	: 71
Porosity	: 20.8 [%]

Core Laboratory

Plug 46H2, Depth: 2910.44 m 2 perpendicular cuts,

Mean CT	number : 2029
Sdev	: 79
Porosity	:21.4 [%]

Plug 46H3, Depth: 2910.70 m 2 perpendicular cuts,

Mean CT nur	mber : 2069
Sdev	: 72
Porosity	: 20.9 [%]

Plug 46H4, Depth: 2910.94 m 2 perpendicular cuts,

Mean CT numbe	r:	1995
Sdev	:	69
Porosity	:	23.2 [%]

Plug HS33, Depth: 2911.00 m 2 perpendicular cuts,

Mean CT numb	er : 1917
Sdev	: 74
Porosity	: 24.6 [%]

Plug 47H2, Depth: 2911.40 m 2 perpendicular cuts,

Mean CT number	:	1931
Sdev	:	72
Porosity	:	24.4 [%]

Plug HS34, Depth: 2912.00 m 2 perpendicular cuts,

Mean CT number	er : :	2131
Sdev	:	110
Porosity	:	19.5 [%]

45

Rigs-4, Hod Fm chalk

Plug 48H2, Depth: 2912.40 m 2 perpendicular cuts,

Mean CT	number :	2125
Sdev	:	74
Porosity	:	19.0 [%]

Plug 48H3, Depth: 2912.70 m 2 perpendicular cuts,

Mean CT	number : 2097
Sdev	: 68
Porosity	: 20.2 [%]

46

Rigs-4, Hod Fm chalk

Plug 49H3, Depth: 2913.70 m 2 perpendicular cuts,

Mean CT numb	er :	2151	
Sdev	:	75	
Porosity	:	18.6	[%]

Plug 50H2, Depth: 2914.42 m 2 perpendicular cuts,

Mean CT nur	nber : 2165
Sdev	: 74
Porosity	:18.0 [%]

