Special core analysis for DONG E&P A/S Well: Sofie-1

Overburden and electrical properties

Niels Springer

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND MINISTRY OF THE ENVIRONMENT

Special core analysis for DONG E&P A/S Well: Sofie-1

Overburden and electrical properties

Niels Springer Core Laboratory

Released 17.11.2008

Contents

1.	Introduction	2
2	Sampling and analytical procedures	3
2.1	Plug quality screening	3
2.2	Overburden measurements	3
2.3	Resistivity index measurements	3
2.4	Core conductivity measurements	4
2.5	Cation Exchange Capacity measurement	4
2.6	Grain size analysis	4
3	Flow diagram of the analytical procedures	7
4	Analytical Methods	8
4.1	Overburden measurements	8
4.2	Formation resistivity factor	9
4.3	Resistivity index	10
4.4	Core conductivity	10
5	Results	12
5.1	Conventional core analysis data	13
5.2	Overburden data	14
5.3	Resistivity index data	27
5.4	Core conductivity	38
5.5	Cation Exchange Capacity	51
5.6	Grain size	52
6 R	References	57
7 P	Plug quality screening	58

Enclosure: - Data on CD-ROM

Req. no.: 09251-514 File: Sofie_SCALrep.doc Sofie-1_images.doc Sofie-1_NOB.xls Sofie-1_Co-Cw.xls Sofie-1_RI.xls Sofie-1_CEC.xls

1. Introduction

By request of DONG E&P A/S, GEUS Core Laboratory has performed special core analysis on the Sofie-1 well, Danish North Sea.

The experimental programme was specified in an e-mail attachment from Mr. Christian Høier, dated December 8, 2003 and a contract ref. R-055/04 was finally signed on January 26, 2004. The following analytical programme has been carried out:

- Screening of plugs for SCAL
- Porosity, permeability and formation resistivity factor at overburden conditions
- Resistivity index at overburden conditions
- Core conductivity at reservoir conditions
- Cation exchange capacity (CEC)
- Grain size distribution

Preliminary SCAL data have been reported in writing and at meetings during the period March to December 2004.

2 Sampling and analytical procedures

In collaboration with DONG E&P A/S and based on the conventional core analysis data ¹ in total 31 plugs, covering both the upper and lower reservoir section in the Sofie-1 well, were selected for the special core analysis (SCAL) study, ref. table 2.1. Cleaned plugs as well as preserved plugs were included in the study. It was observed that the preserved plugs were kept in simulated formation water in glass bottles without any fixation. This sometimes caused peculiar plug shapes due to wear of the soft sandstone during handling and shipping of the storage boxes.

2.1 Plug quality screening

27 plugs were X-ray CT-screened at the scanning facility at Department of Chemical Engineering, the Technical University of Denmark. Two longitudinal cuts perpendicular to each other is recorded for each plug. Scanning images are attached chapter 7.

2.2 Overburden measurements

6 plug samples were measured, 4 existing CCAL plugs and 2 preserved plugs (postfix "P"). The "P" plugs were not analyzed for He-porosity and gas permeability before test, but were cold flush cleaned in a core holder and saturated with simulated formation brine directly while placed in the core holder. The former CCAL plugs were vacuum and pressure saturated with simulated formation brine (table 2.2), and all 6 plugs were then mounted in single electrical core holders at 10 bar hydrostatic confining pressure. The samples were flushed with 10 PV's of fresh brine and left to settle for 4-9 days before measurement started.

Each sample underwent a full measurement cycle during one working day. The computer controlled pump was set to step from one overburden pressure till the next during 30 minutes. The sample was then left to settle for 15 minutes before the compressibility was read from a graduated tube. The electrical impedance was recorded, and brine flow of 900 ml/h was started. During a period of 20 min the liquid permeability was recorded. The pump was then set to step till the next overburden pressure etc.

The client requested the overburden study be conducted at the following 5 hydrostatic confining stresses: 27, 80, 113, 140 and 177 bar. Overburden data are presented in section 5.2.

2.3 Resistivity index measurements

From inspection of the scanning images 6 very homogeneous plugs were selected for the electrical measurements, table 2.1. One preserved plug was cold flush cleaned as explained above, the remaining 5 cleaned plugs were vacuum and pressure saturated in simulated formation brine (table 2.2), and all plugs were then left to equilibrate in an anaerobic jar for several weeks.

Measurement of the resistivity index was performed in single resistivity cells with a 5 bar (nominel air-water BT specification) porous plate installed in the downstream end of the plug. Silver electrodes short circuited the porous plate to avoid series impedance effects. A hydrostatic confining pressure of 113 bar was applied, and during the following 9 weeks, 6 drainage steps was measured by gas displacement when drainage and resistivity equilibrium was observed at each step.

After completion of the measurements the plug samples were weighed and Dean Starked to obtain a proper determination of the end-point water saturation and check material balance. Finally plugs were remeasured for conventional core analysis data. Data for the resistivity index 'RI' and saturation exponent 'n' are contained in section 5.3.

2.4 Core conductivity measurements

The client requested that 4 samples be measured at 4 different brine concentrations derived from the Sofie formation brine composition. Brine conductivity was measured at 3 different frequencies 5, 10 and 20 kHz. A minor (but normal) increase in conductivity was observed, but data read at 10 kHz was preferred because of the low phase distortion (< -1 deg). For each brine 3 readings of consecutive conductivity and phase angle was recorded, but only the last 2 readings were used in the following calculations. This is due to a necessary chemical equilibrium time. Each reading was taken after a settling time of 3 hours. Pore volume compressibility was measured during a one hour stepwise pressure ramp from the initial 10 bar to 50, 70, 90 and 113 bar hydrostatic confining pressure; produced liquid downstream was read from a graduated glass tube at time = 20, 15, 15 and 10 minutes after pressure ramp start.

Brine data and C_o/C_w diagrams are contained in section 5.4

2.5 Cation Exchange Capacity measurement

Cation exchange capacity (CEC) was determined by exchange with sodium at pH 8.2, washing out of excess sodium chloride and exchange of sodium by ammonium. Exchanged sodium was determined by ICP-MS analysis.

The CEC measurements was performed on the same set of plugs used in the C_o/C_w study. CECdata are presented in section 5.5.

2.6 Grain size analysis

The analyses are carried out according to Danish Standard DS 405.9 extended by sieves to $\frac{1}{2}$ phi scale. Grain size data are presented in section 5.6

Table 2.1. Sofie-1, list of samples and SCAL measurements carried out in the study.

SCAL plugs for overburden study :	Depth, m	Comment :
62	1875.20	
75	1878.47	
83	1880.47	
87	1881.46	
119P	1889.40	preserved plug
131P	1892.40	preserved plug

SCAL plugs for CoCw + CEC :		
67	1876.45	
88	1881.71	
127P	1891.40	preserved plug
139P	1894.40	preserved plug

SCAL plugs for resistivity study :		
64	1875.69	
76	1878.65	
84	1880.70	
101	1885.10	
131	1892.47	shrink tubing
143P	1895.40	OK, but trim

SCAL plugs for grain size :		
73V	1878.04	
89V	1882.03	
129V	1892.03	
145V	1896.03	

Additional plugs :		
63	1875.46	
63P	1875.40	preserved plug
67P	1876.40	preserved plug
68	1876.70	
71P	1877.40	
72	1877.71	
91	1882.48	pyrite
92	1882.68	-frc
132	1892.72	shrink tubing
147P	1896.40	-frc + pyrite ?
151P	1897.39	pyrite ?

Table 2.2. Sofie simulated formation water analysis supplied by DONG E&P. Measured physical properties appear below.

Element	Concentration	Compound	Gram compound per		
	mg/L		1 liter	3 liter	5 liter
Na total	28237.0				
Na+	28194	NaCl	71.67	215.00	358.34
Na+	43	NaHCO3	0.16	0.48	0.79
K+	242.5	KCI	0.46	1.39	2.31
Mg2+	592.5	MgCl2, 6H2O	4.95	14.86	24.77
Ca2+		CaCl2	0.00	0.00	0.00
Ca2+	4955.0	CaCl2, 2H2O	18.18	54.53	90.88
Sr2+	637.5	SrCl2, 6H2O	1.94	5.82	9.70
Ba2+		BaCl2, 2H2O	0.00	0.00	0.00
CI-	54707				
HCO3-	115.0				

TDS:	89487 mg/L	~	1.531 mol/L NaCl eqv.
pH:	7.3 @ 23 C		

Comments: Used for Sofie-1 Co/Cw study

Physical data:	Resistivity R _{w:}	0.082	Ωm @ 25 °C
	Calculated R _{w:}	0.082	Ωm @ 25 °C
	Density d _{w:}	1.0595	g/cc @ 25 °C
	Calculated d _{w:}	1.057	g/cc @ 25 °C
	Viscosity µ _{w:}	1.165	cP @ 25 °C

3 Flow diagram of the analytical procedures

Electrical measurements are performed at 25 ± 1 °C, and to the guidelines established by the Society of Core Analysts ². A temperature log may be provided on request.

4.1 Overburden measurements

Liquid permeability: The plug is mounted in a special Hassler core holder and a net confining pressure of 400 psi applied to the sleeve (or as specified by the client). The required fluid and fluid upstream pressure is delivered from a constant flow rate pump, and the back pressure is regulated within the range 30-75 psi to secure that residual gas is in solution. The flow rate is measured both gravimetrically and volumetrically, and the mean value used for calculation of the liquid permeability. Very low flow rates, e.g. when testing cap-rock seal capacity, is measured gravimetrically by continous reading from an electronic balance.

Porosity: The initial porosity is determined at room conditions. Archimedes test is applied to the fully saturated plug sample, and in combination with the sample grain density the porosity is calculated. During testing the sample pore volume decreases as overburden increases. This is observed as an amount of liquid expelled from the sample, constantly monitored using an electronic Mettler balance connected to a PC. The final reading is taken when a stable level has been reached on the balance. The porosity reduction is calculated as the relative decrease in the initial porosity:

$$\begin{split} \mathcal{O}_{i} &= \frac{V_{pi}}{V_{bi}} \\ \mathcal{O}_{i+\Delta p} &= \frac{V_{pi} - \Delta V_{p}}{V_{bi} - \Delta V_{p}} \end{split}$$

The porosity reduction is then given as:

$$\frac{\mathscr{O}_{i+\Delta p}}{\mathscr{O}_{i}} \cdot 100\% = \frac{V_{pi} - \Delta V_{p}}{V_{bi} - \Delta V_{p}} \cdot \frac{V_{bi}}{V_{pi}} \cdot 100\%$$

Where Q_i = initial porosity

V_{pi} = initial pore volume

V_{bi} = initial bulk volume

 $\mathcal{Q}_{i+\Delta P}$ = new porosity induced by a certain change Δp in confining stress.

 ΔV_p = change in pore volume due to the change in confining stress.

The initial change in the pore volume that occurs from room conditions to the lowest confining stress applied in the study, is extrapolated from a liquid production curve (produced liquid vs effective confining stress).

In this study the produced liquid was measured at effective confining stresses of 10, 27, 80, 113, 140 and 177 bar. From these measurements the liquid production curve was fitted using a third degree polynomium.

8

Pore volume compressibility: The pore volume compressibility is calculated from the data recorded during the porosity reduction experiment as follows:

$$C_p = \frac{1}{V_p} \cdot \frac{dV_p}{dp_{eff}}$$

where: C_p = Pore volume compressibility [vol/vol*bar] V_p = Sample pore volume at a certain effective confining stress (ECS) dV_p = Incremental change in pore volume resulting from an incremental change in ECS dp_{eff} = Incremental change in ECS

The relationship dV_p/dp_{eff} is obtained by numerical (or graphical) differentiation of the liquid production curve.

4.2 Formation resistivity factor

In a "clean" formation (non-shaly) the formation factor F is described by Archie's equation:

$$F = \frac{R_0}{R_w} = \frac{a}{\emptyset^m}$$

Where

For a plug sample F is calculated from the following formula:

$$F = \frac{1}{R_w} \cdot \frac{z \cdot A}{L}$$

Where

 $\begin{array}{l} R_w = \mbox{ resistivity of brine in ohm-m} \\ z = \mbox{ impedance of plug sample in ohm } @ \ S_w = 100\% \\ A = \mbox{ area of the plug in } m^2 \\ L = \mbox{ length of plug in } m \end{array}$

Rearranging Archie's equation for the formation factor:

$$\log F = -m \log \emptyset + \log a$$

produces a straight-line relationship in a double logarithmic diagram where F is plotted as a function of \emptyset . The constant 'a' is then determined as the intercept and the cementation exponent 'm' as the slope of the best fit straight line. Values for 'm' are usually preferred for a = 1, which is expected from theoretical grounds. Therefore a set of regression constants are given for a regression line which has been biased through (1,1).

The measurement of F is performed with the plug mounted in a 2-electrode resistivity core holder at an overburden pressure >300 psi. The plug is allowed to settle for more that 3 hours. The porosity reduction/pore volume compressibility is recorded consecutively. The plug resistance is measured as the impedance to an AC signal of 5-20 kHz frequency depending on rock properties (minimum phase angle). Data logging is performed using the HP 4276A LCZ-meter controlled by a PC. The resistivity of the brine is measured in a specially designed standard cell. The standard cell is

GEUS

calibrated using a suitable conductivity standard solution delivered by a recognised chemical company. The measured formation brine resistivity is checked against a model calculated resistivity.

4.3 Resistivity index

In a "clean" formation (non-shaly) Archie determined experimentally that the water saturation could be expressed by the following equation:

$$S_w^{\ n} = \frac{FR_w}{R_t} = \frac{R_o}{R_t} = \frac{1}{RI}, \qquad RI = \frac{R_t}{R_o}$$

where

 S_w = water saturation n = saturation exponent F = formation resistivity factor RI = resistivity index R_0 = resistivity of sample @ S_w = 100% in ohm-m R_t = resistivity of sample @ S_w < 100% in ohm-m R_w = resistivity of brine in ohm-m

Rearranging Archie's equation for the water saturation :

and

$$\log(RI) = -n \, \log(S_w)$$

 $RI = S^{-n}$

In a double logarithmic diagram consecutive values of S_w and RI should produce a straight line from which the saturation exponent 'n' can be determined as the slope.

The measurement of RI involves desaturation in a porous plate cell, therefore the measurement of RI is conveniently combined with air/brine or oil/brine capillary pressure experiments The measurement of RI is performed with the plug mounted in a resistivity core holder at an overburden pressure >300 psi. The plug is allowed to settle for more that 3 hours. The porosity reduction/pore volume compressibility can not normally be measured but is estimated from other sources, preferebly an overburden experiment. The two-electrode method is normally applied and the resistance measured as the impedance to an AC signal of 5-20 kHz frequency depending of the resistivity cell design and the type of rock (minimum phase angle). Data logging is performed using the HP 4276A LCZ-meter controlled by a PC.

When the desaturation (capillary pressure measurement) is conducted in single sample cells, the advantage is that the experiment does not need to be interrupted to determine the water saturation, which is necessary in the traditional multi sample pressure pot experiment. The disadvantage is that the water saturation is not precisely determined due to a difficult correction for dead volumes and surplus water that has to be drained from the cell before the sample starts draining. The effect of the porous plate, which can be significant, must be corrected for. This problem has been solved by a special electrode arrangement that electrically bypasses the porous plate. After completion of the RI measurement the porous plate is removed and the end point resistance checked to make sure that the porous plate measurement is not biased.

4.4 Core conductivity

Excess conductivity due to Cation Exchange Capacity (CEC) effects from conductive clay minerals can be corrected for by measuring the conductivity of shaly sand samples to a range of different brine salinities as described by Waxman & Smits³ or the two-salinity method described by

Worthington⁴. The corrected Archie formation resistivity factor F^* and the BQ_v factor in the Waxman-Smits equation is calculated from linear regression:

$$C_o = \frac{1}{F^*} \cdot (BQ_v + C_w)$$

where

 C_o = Conductivity of 100% saturated sample C_w = Conductivity of brine

F* and BQ_v is determined from the slope and intercept of the regression line in a C_o vs C_w diagram.

Measurements of core conductivity are performed at overburden conditions at 25 °C or at reservoir conditions in an owen as required. Samples are installed in single resistivity core holders and flushed with 20 PV's of a specified brine or NaCl solution. Overburden or reservoir pressure is applied and pore volume compressibility recorded as the samples are left overnight to equilibrate. The first conductivity reading is then taken. The samples are now flushed with 5 PV's of the same brine and left to stabilize for 3 hours before the second conductivity is recorded. Another 5 PV's of brine are flushed through the samples and after 3 hours stabilization time a final conductivity are recorded.

The procedure is repeated for each brine or NaCl solution. The two-electrode method is normally applied and the conductivity measured to an AC signal of 5-20 kHz frequency until minimum phase angle have been detected. Data logging is performed using the HP 4276A LCZ-meter controlled by a PC.

Samples passing a core conductivity analysis may later be used for wet chemical determination of CEC.

Nomenclature

- L - sample length F or FRF - formation resistivity factor [cm] D - sample diameter [cm] F* - intrinsic formation factor - sample area RI А [cm²] - resistivity index BV - bulk volume - cementation exponent [cc] m PV - pore volume - intrinsic porosity exponent [cc] m* Δ PV– pore volume change [ml] n - saturation exponent GD - grain density [g/cc] - Archie constant, or a dimensional а correction factor in compressibility calculations V - volume - resistivity of water saturated sample [Ω m] [ml] R_{o} Δ V – volume change R_w - resistivity of formation water [ml] [Ωm] C_{o} - core conductivity Ø - porosity [pct or frc] [S/m] - formation water conductivity S_w - water saturation [pct or frc] C_{w} [S/m] S_{wf} - final water saturation [pct or frc] - impedance of water saturated sample [Ω] Z_{o} - Subscript for "initial" Zt - impedance of sample at $S_w < 1$ [Ω]
- imp impedance [ohm]

GEUS

5.1 Conventional core analysis data

Table 5.1 below lists the routine core analysis data measured before or after the SCAL tests as required. The He-porosity figure from table 5.1 is not always used directly in the following SCAL test; the initial porosity figure may be a mean value between the He-porosity and an Archimedes porosity that is routinely measured on saturated plugs before the SCAL test is initiated.

Sample	Depth	Gas Perm	Porosity	Grain Dens	Type of SCAL test
ID	meters	mD	%	g/cc	
62	1875.20	228	29.80	2.734	Net Overburden Study
75	1878.47	378	34.12	2.749	
83	1880.47	371	34.24	2.775	
87	1881.46	404	34.53	2.734	
119P	1889.40	311	32.75	2.742	
131P	1892.40	344	35.46	2.758	
67	1876.45	317	31.76	2.777	Co/Cw and CEC Study
88	1881.71	375	33.99	2.733	
127P	1891.47	363	35.52	2.755	
139P	1894.49	393	35.12	2.742	
64	1875.69	264	31.39	2.783	Resistivity Study
76	1878.65	346	34.23	2.774	
84	1880.70	410	34.03	2.764	
101	1885.10	329	33.95	2.726	
131	1892.47	398	34.87	2.742	
143P	1895.45	410	35.31	2.744	

Table 5.1. CCAL data measured for the plugs used in the Sofie-1 SCAL study.

5.2 Overburden data

The electrical behaviour of the glauconitic sandstone @ Sw = 100% was much in line with a "clean" sandstone in the sense of Archie. The measured impedance vs. frequency decreased slightly as frequency rose and so did the phase angle that furthermore was close to zero or slightly negative in the 10-20 kHz frequency band. This behaviour is in line with a normal sedimentary rock.

Two samples showed a peculiar trend for the formation factor as confining pressure rose, plug no. 87 and 131P. There is no obvious explanation for this. Plug 131P furthermore showed an unstable permeability reading and a very high reduction in liquid permeability at the higher confining pressures. It was believed that this sample experienced pore collapse at pressures above 80 bar, but He-porosity measured after test could not confirm this. There is no significant difference between the He-porosity and the Archimedes porosity measured before test for plug 131P.

Table 5.2 below show the measured cementation exponents as a function of net confining stress; diagrams are given in the following.

Table 5.2. Sofie-1, calculated cementation exponent 'm' data obtained during the overburden study. No significant difference between the two formations (Frigg U1 and U2) could be observed with the modest number of samples analyzed.

Plug no. :	Depth	Formation	'm' values @ hydrostatic overburden stress :					
	m		27 bar	80 bar	113 bar	140 bar	177 bar	
64	1875.69							
76	1878.65							
84	1880.70	Fligg 02	Fligg 02		2.04	2.03	2.02	2.02
101	1885.10		2.03	2.03				
131	1892.47	Eriga I I1						
143P	1895.45	Tingg OT						

For an explanation to abbreviations used in the tables below, please refer to the nomenclature list at the top of section 5.

Room condition data:

Net overburden data:

Plug no.	Depth		CCAL	data @ ro	om cond.	
	m	Lcaliper [cm]	Acalc [cm ²]	BVi [cc]	PVi [cc]	Øi [%]
62	1875.20	4.601	11.00	50.60	15.10	29.85
75	1878.47	4.725	10.97	51.81	17.60	33.97
83	1880.47	4.781	10.95	52.36	17.90	34.18
87	1881.46	4.740	10.95	51.92	17.90	34.47
119P	1889.40	4.466	10.83	48.38	15.86	32.79
131P	1892.40	4.222	10.76	45.43	16.05	35.32

27 bar hydrostatic confining pressure :

Plug no.	Depth	Plug por	osity data	@ 27 bar	Plug perm	eability data	a @ 27 bar	Plug resistivity data @ 27 bar			
	m	$\Delta PV [cc]$	PV [cc]	Ø [%]	L [cm]	A [cm ²]	K _i [mD]	Z ₀ [ohm]	Phase [deg]	FRF	
62	1875.20	0.46	14.64	29.21	4.587	10.93	225	40.67	-0.21	11.82	
75	1878.47	0.43	17.17	33.42	4.712	10.90	152	32.05	-0.27	9.05	
83	1880.47	0.46	17.44	33.60	4.767	10.89	323	32.50	-0.19	9.05	
87	1881.46	0.44	17.46	33.91	4.727	10.89	272	32.18	0.04	9.04	
119P	1889.40	0.45	15.41	32.16	4.452	10.77	260	32.87	-0.24	9.69	
131P	1892.40	0.43	15.62	34.70	4.209	10.69	151	30.30	-0.39	9.39	

80 bar hydrostatic confining pressure :

Plug no.	Depth	Plug por	osity data	@ 80 bar	Plug perme	eability data	a @ 80 bar	Plug resistivity data @ 80 bar			
	m	$\Delta {\sf PV} $ [cc]	PV [cc]	Ø [%]	L [cm]	A [cm ²]	K _i [mD]	Z ₀ [ohm]	Phase [deg]	FRF	
62	1875.20	0.81	14.29	28.71	4.576	10.88	191	42.12	-0.18	12.21	
75	1878.47	0.67	16.93	33.10	4.705	10.87	99	33.07	-0.25	9.32	
83	1880.47	0.68	17.22	33.31	4.760	10.86	244	33.41	-0.19	9.29	
87	1881.46	0.84	17.06	33.39	4.714	10.83	233	34.38	-0.01	9.64	
119P	1889.40	0.82	15.04	31.63	4.441	10.71	197	34.51	-0.26	10.15	
131P	1892.40	0.80	15.25	34.16	4.197	10.63	111	31.13	-0.15	9.62	

113 bar hydrostatic confining pressure :

Plug no.	Depth	Plug porc	sity data (2 113 bar	Plug perme	Plug permeability data @ 113 bar			Plug resistivity data @ 113 bar		
	m	$\Delta \text{PV} [\text{cc}]$	PV [cc]	Ø [%]	L [cm]	A [cm ²]	K _i [mD]	Zo [ohm]	Phase [deg]	FRF	
62	1875.20	0.91	14.19	28.57	4.573	10.86	175	42.87	-0.18	12.42	
75	1878.47	0.75	16.85	33.00	4.702	10.86	74	33.47	-0.30	9.42	
83	1880.47	0.83	17.07	33.12	4.756	10.84	196	33.64	-0.21	9.35	
87	1881.46	0.96	16.94	33.24	4.711	10.82	192	33.73	-0.01	9.44	
119P	1889.40	0.95	14.91	31.44	4.437	10.69	157	35.14	-0.26	10.33	
131P	1892.40	0.95	15.10	33.94	4.193	10.61	64	29.57	-0.02	9.12	

140 bar hydrostatic confining pressure :

Plug no.	Depth	Plug porc	sity data	@ 140 bar	Plug perme	ability data	@ 140 bar	Plug res	Plug resistivity data @ 140 bar		
	m	$\Delta PV [cc]$	PV [cc]	Ø [%]	L [cm]	A [cm ²]	K _i [mD]	Z ₀ [ohm]	Phase [deg]	FRF	
62	1875.20	1.01	14.09	28.42	4.570	10.85	139.6	43.42	-0.17	12.57	
75	1878.47	0.83	16.77	32.89	4.700	10.85	55.6	33.76	-0.25	9.50	
83	1880.47	0.93	16.97	32.99	4.753	10.82	136.4	33.85	-0.19	9.40	
87	1881.46	1.06	16.84	33.10	4.708	10.80	135.3	33.46	-0.02	9.36	
119P	1889.40	1.05	14.81	31.30	4.434	10.68	117.8	35.56	-0.28	10.44	
131P	1892.40	1.08	14.97	33.74	4.189	10.59	38.8	28.90	0.00	8.91	

177 bar hydrostatic confining pressure :

Plug no.	Depth	Plug porc	sity data (@ 177 bar	Plug perme	ability data	@ 177 bar	Plug resistivity data @ 177 bar		
	m	$\Delta \text{PV} [\text{cc}]$	PV [cc]	Ø [%]	L [cm]	A [cm ²]	K _i [mD]	Zo [ohm]	Phase [deg]	FRF
62	1875.20	1.13	13.97	28.25	4.567	10.83	115.2	44.12	-0.21	12.76
75	1878.47	0.94	16.66	32.75	4.696	10.83	48.8	34.10	-0.24	9.59
83	1880.47	1.03	16.87	32.86	4.750	10.81	92.0	34.19	-0.21	9.49
87	1881.46	1.16	16.74	32.97	4.705	10.79	93.9	33.51	-0.03	9.37
119P	1889.40	1.15	14.71	31.15	4.431	10.66	92.2	35.92	-0.27	10.54
131P	1892.40	1.23	14.82	33.52	4.184	10.56	27.4	28.96	-0.05	8.92

15

@ 25 °C

Formation br	ine data:
Brine R _w :	0.082 ohmm
Viscosity :	1.165 cP

@ 25 °C

Company: DONG E&P A/S Well: Sofie-1 GEUS Core Lab, 25.05.2004

Recording data for resistivity cells:

Plug and cell impedance measured @ 5, 10 & 20 kHz (only 10 kHz data is given in the tables below)

Intrinsic cell impedance:

0.32 ohm

Plug no.		Imp dat	ta @ 27 bar		Perm data @	27 bar	Compressibility data @ 27 bar			
	Imp1 [ohm]	lmp2 [ohm]	Phase1 [deg]	Phase2 [deg]	Flow rate [ml/h]	Δ P [bar]	BV [cc]	∆ BV [%]	а	
62	40.99	40.99	-0.21	-0.21	900	0.55	50.14	0.91	0.0030	
75	32.56	32.18	-0.29	-0.24	900	0.84	51.38	0.83	0.0028	
83	33.35	32.29	-0.20	-0.18	900	0.4	51.90	0.88	0.0029	
87	31.16	33.83	0.06	0.02	900	0.47	51.48	0.85	0.0028	
119P	33.19	33.19	-0.27	-0.21	900	0.47	47.93	0.93	0.0031	
131P	28.95	32.29	-0.40	-0.37	900	0.77	45.00	0.95	0.0032	

Plug no.		Imp dat	ta @ 80 bar		Perm data @	80 bar	Compressibility data @ 80 bar		
	Imp1 [ohm]	lmp2 [ohm]	Phase1 [deg]	Phase2 [deg]	Flow rate [ml/h]	Δ P [bar]	BV [cc]	∆ BV [%]	а
62	42.55	42.32	-0.19	-0.17	900	0.65	49.79	1.60	0.0053
75	33.52	33.26	-0.26	-0.24	900	1.29	51.14	1.29	0.0043
83	33.97	33.49	-0.20	-0.17	900	0.53	51.68	1.30	0.0043
87	35.60	33.80	-0.01	-0.01	900	0.55	51.08	1.62	0.0054
119P	34.90	34.76	-0.26	-0.25	900	0.62	47.56	1.69	0.0056
131P	32 76	30.13	-0.29	0	900	1 05	44 63	1 76	0.0059

Plug no.		Imp data	a @ 113 bar		Perm data @	113 bar	Compressibility data @ 113 ba		
	Imp1 [ohm]	Imp2 [ohm]	Phase1 [deg]	Phase2 [deg]	Flow rate [ml/h]	Δ P [bar]	BV [cc]	Δ BV [%]	а
62	43.28	43.10	-0.18	-0.17	900	0.71	49.69	1.80	0.0060
75	33.84	33.73	-0.28	-0.32	900	1.72	51.06	1.45	0.0048
83	34.11	33.80	-0.23	-0.19	900	0.66	51.53	1.59	0.0053
87	34.54	33.55	-0.01	-0.01	900	0.67	50.96	1.85	0.0062
119P	35.45	35.47	-0.25	-0.26	900	0.78	47.43	1.96	0.0065
131P	30.65	29.12	-0.04	0	900	1.81	44.48	2.09	0.0070

Notice: Unstable permeability reading for plug 131P @ 140 bar conf. P

Plug no.		Imp dat	a @ 140 bar		Perm data @	140 bar	Compressibility data @ 140 ba		
	Imp1 [ohm]	Imp2 [ohm]	Phase1 [deg]	Phase2 [deg]	Flow rate [ml/h]	Δ P [bar]	BV [cc]	Δ BV [%]	а
62	43.80	43.67	-0.17	-0.17	900	0.89	49.59	2.00	0.0067
75	34.15	34.00	-0.26	-0.24	900	2.3	50.98	1.60	0.0053
83	34.25	34.09	-0.19	-0.19	900	0.95	51.43	1.78	0.0059
87	34.04	33.52	-0.01	-0.02	900	0.95	50.86	2.04	0.0068
119P	35.98	35.77	-0.28	-0.27	900	1.04	47.33	2.17	0.0072
131P	29.48	28.96	0.00	0.00	900	3.01	44.35	2.38	0.0079

Notice: Unstable permeability reading for plug 131P @ 177 bar conf. P

Plug no.		Imp data	a @ 177 bar		Perm data @	177 bar	Compressibility data @ 177 ba		
	Imp1 [ohm]	Imp2 [ohm]	Phase1 [deg]	Phase2 [deg]	Flow [ml]	Δ P [bar]	BV [cc]	Δ BV [%]	а
62	44.50	44.38	-0.20	-0.21	900	1.08	49.47	2.23	0.0074
75	34.51	34.33	-0.23	-0.25	900	2.62	50.87	1.81	0.0060
83	34.58	34.44	-0.21	-0.20	900	1.41	51.33	1.97	0.0066
87	34.00	33.65	-0.03	-0.03	900	1.37	50.76	2.23	0.0074
119P	36.33	36.15	-0.26	-0.27	900	1.33	47.23	2.38	0.0079
131P	29.40	29.16	-0.10	0	900	4.26	44.20	2.71	0.0090

Subject: Overburden measurements Compressibility data

Company: DONG E&P A/S Well: Sofie-1 GEUS Core Lab, 25.05.2004

Initial confining pressure: Final confining pressure: 10 bar hydrostatic 177 bar hydrostatic

Plug no.	Depth	CCAL d	ata @ roo	m cond.	[ml] re	[ml] read from graduated glass tube @ given pressure			essure	PV ₀ from plot	∆ PV177bar	
	m	BV, cc	PV1, cc	Ø,%	10	27	80	113	140	177	[ml]	[ml]
62	1875.20	50.60	15.10	29.85	4.00	4.30	4.65	4.75	4.85	4.97	3.84	1.13
75	1878.47	51.81	17.60	33.97	1.25	1.48	1.72	1.80	1.88	1.99	1.05	0.94
83	1880.47	52.36	17.90	34.18	2.65	2.90	3.12	3.27	3.37	3.47	2.44	1.03
87	1881.46	51.92	17.90	34.47	3.50	3.78	4.18	4.30	4.40	4.50	3.34	1.16
119P	1889.40	48.38	15.86	32.79	1.85	2.15	2.52	2.65	2.75	2.85	1.70	1.15
131P	1892.40	45.43	16.05	35.32	6.81	7.10	7.47	7.62	7.75	7.90	6.67	1.23

Core Laboratory

Sofie-1, Formation Resistivity Factor (FRF) data were measured at five increasing net confining stresses as shown in the diagrams below.

Porosity (Fraction)

Porosity (Fraction)

GEUS

Porosity (Fraction)

Core Laboratory

GEUS

Porosity (Fraction)

Company: DONG E&P A/S Well: Sofie-1

Plug no: Depth [m] : Formation:	62 1875.20 Frigg U2					Conventiona Kg [mD] : He-Ø [%] :	ıl 228 29.9
	Confining pr	essure [bar]		Reduction in	Cp	F	
	hvdrostatic	uniaxial *	K⊢[mD]	% of initial He-Ø [%]	% of initial	[bar ⁻¹]	

nyarootatio	annaxiai	[=]	<i>70</i> 01 1111111	e ≈ [,•]	<i>/</i> 0 01 1111111	[**:]	
27	43.5	225	100	29.21	97.8	8.43E-04	11.82
80	129.0	191	85	28.71	96.2	2.75E-04	12.21
113	182.3	175	78	28.57	95.7	1.45E-04	12.42
140	225.8	140	62	28.42	95.2	1.76E-04	12.57
177	285.5	115	51	28.25	94.6	4.22E-04	12.76

Company: DONG E&P A/S Well: Sofie-1

Plug no :	75		Conventional	
Depth [m] :	1878.47		Kg [mD] :	378
Formation :	Frigg U2		He-Ø [%]:	34.0
	Confining pressure [bar]	Reduction in	Cn	F

						- F	-
hydrostatic	uniaxial *	K [mD]	% of initial	He-Ø [%]	% of initial	[bar ⁻¹]	
				-			
27	43.5	152	100	33.42	98.4	7.16E-04	9.05
80	129.0	99	65	33.10	97.5	2.31E-04	9.32
113	182.3	74	49	33.00	97.1	1.22E-04	9.42
140	225.8	56	37	32.89	96.8	1.47E-04	9.50
177	285.5	49	32	32.75	96.4	3.52E-04	9.59

Company: DONG E&P A/S Well: Sofie-1

Plug no: Depth [m] : Formation:	83 1880.47 Frigg U2						Conventiona Kg [mD] : He-Ø [%] :	ıl 371 34.2
	Confining p	ressure [bar]		Reduc	tion in		Cp	F
	budraatatia	uniovial *	K [mD]	0/ of initial		0/ of initial	[bor ⁻¹]	

Tiyurustatic	uniaxiai		70 UI II IIII ai		70 UI II	[bai]	
27	43.5	323	100	33.60	98.3	4.83E-04	9.05
80	129.0	244	76	33.31	97.5	2.29E-04	9.29
113	182.3	196	61	33.12	96.9	1.65E-04	9.35
140	225.8	136	42	32.99	96.5	1.68E-04	9.40
177	285.5	92	28	32.86	96.1	2.57E-04	9.49

Company: DONG E&P A/S Well: Sofie-1

Plug no:	87		Conventiona	al
Depth [m] :	1881.46		Kg [mD] :	404
Formation:	Frigg U2		He-Ø [%] :	34.5
	Confining pressure [bar]	Reduction in	Cp	F

hydrostatic	uniaxial *	K⊢[mD]	% of initial	He-∅ [%]	% of initial	[bar ⁻ ']	
27	43.5	272	100	33.91	98.4	7.12E-04	9.04
80	129.0	233	86	33.39	96.9	2.64E-04	9.64
113	182.3	192	70	33.24	96.4	1.25E-04	9.44
140	225.8	135	50	33.10	96.0	9.64E-05	9.36
177	285.5	94	34	32.97	95.7	1.83E-04	9.37

Company: DONG E&P A/S Well: Sofie-1

Plug no : Depth [m] : Formation :	119P 1889.40 Frigg U1		Conventional Kg [mD] : He-Ø [%] :	311 32.8
		Deduction in		-

Comming p	ressure [bar]		Reduc	Cp	Г		
hydrostatic	uniaxial *	K [mD]	% of initial	He-Ø [%]	% of initial	[bar ⁻¹]	
27	43.5	260	100	32.16	98.1	7.98E-04	9.69
80	129.0	197	76	31.63	96.5	2.71E-04	10.15
113	182.3	157	60	31.44	95.9	1.00E-04	10.33
140	225.8	118	45	31.30	95.5	5.63E-05	10.44
177	285.5	92	36	31.15	95.0	1.39E-04	10.54

* corrected according to Teeuw (1971)

Company: DONG E&P A/S Well: Sofie-1

Plug no :	131P	Conventional	
Depth [m] :	1892.40	Kg [mD] :	344
Formation :	Frigg U1	He-Ø [%]:	35.3

Contining p	ressure [bar]		Reduc		Cp	F	
hydrostatic	uniaxial *	K⊢[mD]	% of initial	He-Ø [%]	% of initial	[bar ⁻¹]	
27	43.5	151	100	34.70	98.3	7.61E-04	9.39
80	129.0	111	74	34.16	96.7	3.10E-04	9.62
113	182.3	64	43	33.94	96.1	1.85E-04	9.12
140	225.8	39	26	33.74	95.5	1.78E-04	8.91
177	285.5	27	18	33.52	94.9	3.12E-04	8.92

5.3 Resistivity index data

Measurement of sample resistivity was uncomplicated, and there is no reason to suspect that a fixed regression through (1,1) in a double logaritmic plot is not valid for these samples. A formation factor cannot be determined from these measurements because the small area of the silver electrodes affect the measured impedance. This bias is the same for all drainage measurements and is therefore eliminated when RI is calculated. Sample pore volume reduction cannot be measured either because of surplus water in the porous plate and core holder during mounting of the plug, and gas in the inlet tubing. A pore volume reduction figure has been estimated from the net overburden study instead.

Experimental data are contained in the tables below and RI data presented in the diagrams. It was observed that the final data point measured at Sw \sim 45% falls systematically above the regression line for the first 5 drainage points in all samples. Therefore it was decided to present two regressions and diagrams for each sample. The corresponding 'n' values are shown in table 5.3 below.

Table 5.3. Calculated 'n' values for Sofie-1 samples. Data for 5 and 6 data point regressions are given as explained above. No significant difference in 'n' value is observed between the two formations.

Plug no. :	Depth	Regression data for the saturation exponent						
	m	Formation	'n' (5 point)	'n' (6 point)				
64	1875.69		1.90	2.02				
76	1878.65	Eriga 112	1.93	2.03				
84	1880.70	Fligg UZ	1.85	1.97				
101	1885.10		1.82	1.98				
131	1892.47	Eriga I I1	1.93	2.07				
143P	1895.45	Fligg UT	1.80	1.97				

For an explanation to abbreviations used in the tables below, please refer to the nomenclature list at the top of section 5.

In the tables below, the green column S_w designates the water saturation read from a graduated glass during the drainage experiment. After experiment a Dean Stark extraction supplied the yellow S_{wf} water saturation. An overall evaluation of data finally resulted in the blue column S_w' figures that have been used in the regression analysis to obtain the saturation exponent data.

Subject: Resistivity Index measurements Electrical measurements at overburden conditions

Room condition data:

Plug no.	Depth		CCAL data @ room cond.									
	m	Lcaliper [cm]	Dcaliper [cm]	Wet wt [g]	Dry wt [g	BVcaliper [CC]	BVi(Hg) [CC]	PVi [cc]	Øi [%]	GD [g/cc]		
64	1875.69	4.752	3.767	117.70	nd	52.96	52.68	16.66	31.62	2.783		
76	1878.65	4.776	3.754	114.15	nd	52.86	52.33	18.00	34.40	2.774		
84	1880.70	4.782	3.767	115.18	nd	53.30	52.78	17.99	34.09	2.764		
101	1885.10	4.351	3.735	101.53	nd	47.67	47.07	16.03	34.05	2.726		
131	1892.47	4.478	3.707	102.35	nd	48.33	47.58	16.60	34.88	2.742		
143P	1895.45	3.680	3.719	84.41	nd	39.98	39.25	13.82	35.26	2.744		

Net overburden data @ 113 bar:

Plug no.	Depth	Plug	g porosity o	data	Plug resistivity data @ Sw = 100 %				
	m	$\Delta PV [cc]^*$	PV [cc]	Ø [%]	L [cm]	A [cm ²]	Z₀ [ohm]	Phase [deg]	
64	1875.69	0.99	15.67	30.31	4.722	10.95	52.49	-0.72	
76	1878.65	0.90	17.10	33.25	4.749	10.83	42.44	-0.76	
84	1880.70	0.80	17.19	33.08	4.758	10.93	42.25	-1.17	
101	1885.10	0.71	15.32	33.04	4.329	10.71	41.89	-1.45	
131	1892.47	0.88	15.72	33.66	4.450	10.49	38.16	-2.36	
143P	1895.45	0.74	13.08	33.97	3.657	10.53	31.19	-0.81	

* estm. from the NOB study

Drainage data @ Pc = 0.08 bar (air-brine system)

Plug no.	Depth	Depth Data read from graduated tub				Plug resistivity data @ Sw given in column below					
	m	Vw (0) [cc]	Vw (t) [cc]	ΔVw [cc]	Sw [%]	Sw' [%]		Zt [ohm]	Phase [deg]	RI	
64	1875.69	2.85	5.80	2.95	81.2	80.8		76.09	-0.97	1.45	
76	1878.65	3.25	7.18	3.93	77.0	76.1		71.00	-0.80	1.67	
84	1880.70	2.82	7.45	4.63	73.1	71.7		76.28	-1.00	1.81	
101	1885.10	3.30	7.05	3.75	75.5	72.5		73.39	-1.24	1.75	
131	1892.47	3.70	8.00	4.30	72.6	73.2		69.66	-1.98	1.83	
143P	1895.45	2.15	5.80	3.65	72.1	72.1		56.58	-0.80	1.81	

Drainage data @ Pc = 0.10 bar (air-brine system)

Plug no.	Depth	Data read	from gradu	lated tube	Plug resistivity data @ Sw given in column below					
	m	Vw (0) [cc]	Vw (t) [cc]	ΔVw [CC]	Sw [%]	Sw' [%]		Zt [ohm]	Phase [deg]	RI
64	1875.69	2.85	6.00	3.15	79.9	79.5		79.53	-0.78	1.52
76	1878.65	3.25	7.20	3.95	76.9	76.0		71.93	-0.66	1.69
84	1880.70	2.82	8.05	5.23	69.6	68.2		84.90	-0.68	2.01
101	1885.10	3.30	7.18	3.88	74.7	71.7		75.80	-0.99	1.81
131	1892.47	3.70	8.38	4.68	70.2	70.8		73.05	-1.48	1.91
143P	1895.45	2.15	6.75	4.60	64.8	69.8		59.23	-0.49	1.90

@ 25 °C

@ 25 °C

Drainage data @ Pc = 0.11 bar (air-brine system)

Plug no.	Depth	Data read	from gradu	ated tube	Plug	Plug resistivity data @ Sw given in column below				
	m	Vw (0) [cc]	Vw (t) [cc]	ΔVw [cc]	Sw [%]	Sw' [%]	Zt [ohn	n] Phase [deg]	RI	
64	1875.69	2.85	7.25	4.40	71.9	71.5	99.1	8 -0.97	1.89	
76	1878.65	3.25	8.40	5.15	69.9	69.0	87.0	.0.75	2.05	
84	1880.70	2.82	9.08	6.26	63.6	62.2	101.5	-0.64	2.40	
101	1885.10	3.30	8.00	4.70	69.3	66.3	88.1	1 -0.99	2.10	
131	1892.47	3.70	8.95	5.25	66.6	67.2	82.4	-1.30	2.16	
143P	1895.45	2.15	7.67	5.52	57.8	62.8	71.9	-0.46	2.31	

Drainage data @ Pc = 0.13 bar (air-brine system)

Plug no.	Depth	Data read	irom gradu	ated tube	Plug resistivity data @ Sw given in column below					
	m	Vw (0) [cc]	Vw (t) [cc]	ΔVw [cc]	Sw [%]	Sw' [%]		Zt [ohm]	Phase [deg]	RI
64	1875.69	2.85	7.90	5.05	67.8	67.4		113.41	-0.82	2.16
76	1878.65	3.25	8.92	5.67	66.8	65.9		96.02	-0.84	2.26
84	1880.70	2.82	9.50	6.68	61.1	59.7		111.60	-0.62	2.64
101	1885.10	3.30	8.50	5.20	66.1	63.1		98.12	-1.01	2.34
131	1892.47	3.70	9.30	5.60	64.4	65.0		89.27	-1.00	2.34
143P	1895.45	2.15	8.03	5.88	55.0	60.0		78.76	-0.41	2.53

Drainage data @ Pc = 0.17 bar (air-brine system)

Plug no.	Depth	Depth Data read from graduated tube				Plug resistivity data @ Sw given in column below					
	m	Vw (0) [cc]	Vw (t) [cc]	ΔVw [cc]	Sw [%]	Sw' [%]	Zt [ohrr] Phase [deg]	RI		
64	1875.69	2.85	8.90	6.05	61.4	61.0	135.5	1 -0.83	2.58		
76	1878.65	3.25	9.88	6.63	61.2	60.3	112.1	0 -0.81	2.64		
84	1880.70	2.82	10.25	7.43	56.8	55.4	128.1	8 -0.63	3.03		
101	1885.10	3.30	9.25	5.95	61.2	58.2	114.1	5 -0.99	2.73		
131	1892.47	3.70	10.00	6.30	59.9	60.5	100.6	7 -0.89	2.64		
143P	1895.45	2.15	8.55	6.40	51.1	56.1	88.2	2 -0.45	2.83		

Drainage data @ Pc = 0.90 bar (air-brine system)

Plug no.	Depth	Depth Data read from graduated tube				Plug resistivity data @ Sw given in column below				
	m	Vw (0) [cc]	Vw (t) [cc]	ΔVw [cc]	Sw [%]	Sw' [%]	Swf [%]	Zt [ohm]	Phase [deg]	RI
64	1875.69	2.85	11.15	8.30	47.0	46.6	46.6	270.83	-0.77	5.16
76	1878.65	3.25	12.30	9.05	47.1	46.2	46.2	223.44	-0.58	5.27
84	1880.70	2.82	12.28	9.46	45.0	43.6	43.6	254.73	-0.60	6.03
101	1885.10	3.30	11.35	8.05	47.4	44.4	44.4	249.23	-0.79	5.95
131	1892.47	3.70	12.02	8.32	47.1	47.7	47.7	206.91	-0.61	5.42
143P	1895.45	2.15	9.95	7.80	40.4	45.4	44.3	183.03	-0.55	5.87

Company: DONG E&P A/S Well: Sofie-1 GEUS Core Lab, 25.09.2004

Recording data for resistivity cells:

Plug and cell impedance measured @ 5, 10 & 20 kHz (the avg. of 10+20 kHz data is given in the tables below)

Formation brine data:

Brine R_w: 0.082ohmm Density dw: 1.059g/cc

Intrinsic cell impedance:

0.32ohm

Plug no.		Imp data	a @ 113 bar		Compressibility data @ 113 bar				
	Imp1 [ohm]	Imp2 [ohm]	Phase1 [deg]	Phase2 [deg]	BV [cc]	Δ BV [%]	а		
64	52.63	52.98	-0.35	-1.09	51.69	1.88	0.0063		
76	42.89	42.62	-1.22	-0.30	51.43	1.72	0.0057		
84	42.24	42.89	-1.72	-0.61	51.98	1.52	0.0051		
101	42.40	42.01	-2.01	-0.88	46.36	1.51	0.0050		
131	38.76	38.2	-3.17	-1.55	46.70	1.85	0.0062		
143P	31.63	31.39	-1.32	-0.29	38.51	1.89	0.0063		

Drainage data @ Pc = 0.08 bar (air-brine system)

Plug no.		Imp data @ given Sw									
	Imp1 [ohm]	lmp2 [ohm]	Phase1 [deg]	Phase2 [deg]							
64	76.15	76.67	-0.95	-0.98							
76	71.37	71.27	-0.79	-0.80							
84	76.27	76.92	-1.01	-0.98							
101	73.75	73.66	-1.20	-1.27							
131	69.93	70.03	-1.96	-1.99							
143P	56.88	56.91	-0.8	-0.8							

Drainage data @ Pc = 0.10 bar (air-brine system)

Plug no.	Imp data @ given Sw				
	Imp1 [ohm]	lmp2 [ohm]	Phase1 [deg]	Phase2 [deg]	
64	80.06	79.64	-1.03	-0.52	
76	72.42	72.07	-0.93	-0.39	
84	85.43	85.01	-0.91	-0.45	
101	76.38	75.85	-1.25	-0.72	
131	73.70	73.03	-1.90	-1.06	
143P	59.67	59.42	-0.72	-0.25	

Core Laboratory

Drainage data @ Pc = 0.11 bar (air-brine system)

Plug no.	Imp data @ given Sw				
	lmp1 [ohm]	lmp2 [ohm]	Phase1 [deg]	Phase2 [deg]	
64	99.50	99.50	-0.97	-0.97	
76	87.62	87.15	-0.99	-0.51	
84	102.11	101.65	-0.82	-0.46	
101	88.74	88.12	-1.22	-0.76	
131	83.06	82.40	-1.65	-0.95	
143P	72.42	72.15	-0.63	-0.29	

Drainage data @ Pc = 0.13 bar (air-brine system)

Plug no.	Imp data @ given Sw			
	Imp1 [ohm]	lmp2 [ohm]	Phase1 [deg]	Phase2 [deg]
64	114.04	113.41	-1.00	-0.63
76	96.64	96.04	-1.07	-0.61
84	112.17	111.67	-0.79	-0.45
101	98.78	98.09	-1.23	-0.78
131	89.87	89.30	-1.26	-0.73
143P	79.22	78.93	-0.56	-0.26

Drainage data @ Pc = 0.17 bar (air-brine system)

Plug no.	Imp data @ given Sw				
	lmp1 [ohm]	lmp2 [ohm]	Phase1 [deg]	Phase2 [deg]	
64	136.21	135.45	-0.98	-0.68	
76	112.76	112.08	-0.99	-0.62	
84	128.78	128.22	-0.76	-0.49	
101	114.87	114.07	-1.18	-0.80	
131	101.27	100.70	-1.10	-0.67	
143P	88.70	88.37	-0.56	-0.33	

Drainage data @ Pc = 0.90 bar (air-brine system)

Plug no.	Imp data @ given Sw				
	lmp1 [ohm]	lmp2 [ohm]	Phase1 [deg]	Phase2 [deg]	
64	271.80	270.50	-0.78	-0.76	
76	224.20	223.32	-0.61	-0.54	
84	255.50	254.60	-0.62	-0.58	
101	250.20	248.90	-0.82	-0.76	
131	207.60	206.86	-0.65	-0.57	
143P	183.70	183.00	-0.56	-0.53	

Subject: Resistivity Index measurements Plug data at @ 25 °C and overburden conditions

Company: DONG E&P A/S Well: Sofie-1

Plug no : 64 Depth [m] : 1875.69 Formation : Frigg U2

Conventional		
Kg :	264	[mD]
He-Ø:	31.4	[%]

|Zo|:

1.876 1.240

1.00

-1.90

Sw	Zt	Phase	RI
[%]	[ohm]	[deg.]	
80.8	76.1	-0.97	1.45
79.5	79.5	-0.78	1.52
71.5	99.2	-0.97	1.89
67.4	113.4	-0.82	2.16
61.0	135.5	-0.83	2.58
46.6	270.8	-0.77	5.16

52.49 [ohm]

32

Subject: Resistivity Index measurements Plug data at @ 25 °C and overburden conditions

Company: DONG E&P A/S Well: Sofie-1

Plug no : 76 Depth [m] : 1878.65 Formation : Frigg U2

Conventional		
Kg :	346	[mD]
He-Ø:	34.2	[%]

Sw	Zt	Phase	RI
[%]	[ohm]	[deg.]	
76.1	71.0	-0.80	1.67
76.0	71.9	-0.66	1.69
69.0	87.1	-0.75	2.05
65.9	96.0	-0.84	2.26
60.3	112.1	-0.81	2.64
46.2	223.4	-0.58	5.27

|Zo|: 42.44 [ohm]

Subject: Resistivity Index measurements Plug data at @ 25 °C and overburden conditions

Company: DONG E&P A/S Well: Sofie-1

Plug no :		84
Depth [m]	:	1880.70

Formation : Frigg U2

Conventional		
Kg :	410	[mD]
He-Ø:	34.0	[%]

Sw	Zt	Phase	RI
[%]	[ohm]	[deg.]	
71.7	76.3	-1.00	1.81
68.2	84.9	-0.68	2.01
62.2	101.6	-0.64	2.40
59.7	111.6	-0.62	2.64
55.4	128.2	-0.63	3.03
43.6	254.7	-0.60	6.03

|Zo|: 42.25 [ohm]

Subject: Resistivity Index measurements Plug data at @ 25 °C and overburden conditions

Company: DONG E&P A/S Well: Sofie-1

5 5

2.117 1.179

-1.000

1.00 -1.82

Plug no :	101
Depth [m] :	1885.10
Formation :	Frigg U2

Sw	Zt	Phase	RI
[%]	[ohm]	[deg.]	
72.5	73.4	-1.24	1.75
71.7	75.8	-0.99	1.81
66.3	88.1	-0.99	2.10
63.1	98.1	-1.01	2.34
58.2	114.2	-0.99	2.73
44.4	249.2	-0.79	5.95

Conventional 329 [mD] Kg: He

₽-Ø	:	33.9	[%]	-

|Zo|: 41.89 [ohm]

35

Subject: Resistivity Index measurements Plug data at @ 25 °C and overburden conditions

Company: DONG E&P A/S Well: Sofie-1

Conventional

5 5

0.672 1.069

2.157 1.143

-0.996

1.00

-1.93

Plug no :	131
Depth [m] :	1892.47
Formation :	Frigg U1

Sw	Zt	Phase	RI
[%]	[ohm]	[deg.]	
73.2	69.7	-1.98	1.83
70.8	73.0	-1.48	1.91
67.2	82.4	-1.30	2.16
65.0	89.3	-1.00	2.34
60.5	100.7	-0.89	2.64
47.7	206.9	-0.61	5.42

Kg : 398 [mD] He-Ø: 34.9 [%]

IZ0I.	38 16	[ohm]
<u> </u> <u></u>	50.10	lound

36

Subject: Resistivity Index measurements Plug data at @ 25 °C and overburden conditions

Company: DONG E&P A/S Well: Sofie-1

Plug no :	143P
Depth [m] :	1895.45
Formation :	Frigg U1

Sw	Zt	Phase	RI
[%]	[ohm]	[deg.]	
72.1	56.6	-0.80	1.81
69.8	59.2	-0.49	1.90
62.8	72.0	-0.46	2.31
60.0	78.8	-0.41	2.53
56.1	88.2	-0.45	2.83
45.4	183.0	-0.55	5.87

Conventional

 Kg :
 410 [mD]

 He-Ø :
 35.3 [%]

|Zo|: 31.19 [ohm]

Core Laboratory

5.4 Core conductivity

Table 5.4.1 is a listing of calculated conductivity values for the complete set of samples; single sample diagrams are presented below.

Measurements were carried out at reservoir temperature 65 °C and hydrostatic overburden pressure 113 bar. Brine conductivity was measured in a calibrated glass conductivity cell at 25 °C and then converted to 65 °C using Arp's equation. The four different brine formulations and measured and calculated physical properties are given in table 5.4.2 below. If the calculated and measured conductivity differs, the calculated value is preferred in calculations and diagrams.

Please observe that only the last 2 core conductivity measurements, called imp 2 and imp 3 in the tables below, have been used in the final calculation of core conductivity.

Plug	Depth	Ø _{113 bar}	F *	m *	BQv
no.	m	%			
67	1876.45	30.6	13.35	2.19	0.921
88	1881.71	32.8	11.20	2.17	2.184
127P	1891.40	34.4	10.21	2.18	3.261
139P	1894.40	33.7	9.78	2.10	0.550

Table 5.4.1.

For an explanation to abbreviations used in the tables below, please refer to the nomenclature list at the top of section 5.

Table 5.4.2. Brine concentrations of approx. 40.000, 90.000, 150.000 and 180.000 mg/L were used in the Sofie core conductivity study.

			Core	conducti	vity: 40.000 mg	g/L brine
Element	Concentration	Compound		Gr	am compound p	ber
	mg/L			1 liter	3 liter	5 liter
Na total	12620.0					
Na+	12600	NaCl		32.03	96.09	160.15
Na+	20	NaHCO3		0.07	0.21	0.36
K+	109.0	KCI		0.21	0.62	1.04
Mg2+	265.0	MgCl2, 6H2O		2.22	6.65	11.08
Ca2+		CaCl2		0.00	0.00	0.00
Ca2+	2215.0	CaCl2, 2H2O		8.12	24.37	40.62
Sr2+	285.0	SrCl2, 6H2O		0.87	2.60	4.34
Ba2+		BaCl2, 2H2O		0.00	0.00	0.00
CI-	24452					
HCO3-	52.0					
TDS:	39998	mg/L	~	0.684	mol/L NaCl eqv.	
pH:	7.55	@ 23 C				

Comments: Used for Sofie-1 Co/Cw study

Physical data:	Resistivity R _{w:}	0.160	Ωm @ 25 °C	
	Calculated R _{w:}	0.162	Ωm @ 25 °C	
	Density d _{w:}	1.025	g/cc @ 25 °C	
	Calculated dw:	1.025	g/cc @ 25 °C	
	Viscosity µ _{w:}		cP @ 25 °C	

Calculated brine conductivity @ 65 °C : 11.483 S/m

Table 5.4.2 continued

D		distant series	
Bri	ne	data.	
		uuu.	

Core conductivity : 90.000 mg/L brine

Element	Concentration	Compound	Gr	Gram compound		
	mg/L		1 liter	3 liter	5 liter	
Na total	28237.0					
Na+	28194	NaCl	71.67	215.00	358.34	
Na+	43	NaHCO3	0.16	0.48	0.79	
K+	242.5	KCI	0.46	1.39	2.31	
Mg2+	592.5	MgCl2, 6H2O	4.95	14.86	24.77	
Ca2+		CaCl2	0.00	0.00	0.00	
Ca2+	4955.0	CaCl2, 2H2O	18.18	54.53	90.88	
Sr2+	637.5	SrCl2, 6H2O	1.94	5.82	9.70	
Ba2+		BaCl2, 2H2O	0.00	0.00	0.00	
CI-	54707					
HCO3-	115.0					

TDS:	89487 mg/L	~	1.531 mol/L NaCl eqv.
pH:	7.3 @ 23 C		

Comments: Used for Sofie-1 Co/Cw study

Physical data:	Resistivity R _{w:}	0.082	Ωm @ 25 °C
	Calculated R _{w:}	0.082	Ωm @ 25 °C
	Density d _{w:}	1.0595	g/cc @ 25 °C
	Calculated d _{w:}	1.057	g/cc @ 25 °C
	Viscosity µ _{w:}	1.165	cP @ 25 °C

Calculated brine conductivity @ 65 °C 22.686 S/m

Table 5.4.2 continued

			Core conducti	vity: 150.000 mg	g/L brine
Element	Concentration	Compound	G	ram compound p	ber
	mg/L		1 liter	3 liter	5 liter
Na total	47330.0				
Na+	47257	NaCl	120.13	360.38	600.64
Na+	73	NaHCO3	0.27	.0.80	1.33
K+	406.5	KCI	0.78	2.33	3.88
Mg2+	993.2	MgCl2, 6H2O	8.31	24.92	41.53
Ca2+		CaCl2	0.00	0.00	0.00
Ca2+	8305.6	CaCl2, 2H2O	<u>3</u> 0.47	[′] 91.40	152.33
Sr2+	1068.6	SrCl2, 6H2O	3.25	9.75	16.26
Ba2+		BaCl2, 2H2O	0.00	0.00	0.00
CI-	91699				
HCO3-	192.8				
TDS:	149996	mg/L	~ 2.567	mol/L NaCl eqv.	
pH:	6.63	@ 23 C			
Comment	s: Used for Sofie-	1 Co/Cw study			
Physical	data:	Resistivity Rw	0.056	Ωm @ 25 °C	
		Calculated R.	0.056	Om @ 25 °C	
		Density dw	1.0995	a/cc @ 25 °C	
		Calculated dw:	1.096	g/cc @ 25 °C	
		Viscosity µ _{w:}		cP @ 25 °C	
Calculate	d brine conductiv	vity @ 65 °C	33.218	S/m	

Table 5.4.2 continued

Core conductivity : 180.000 mg/L brine

Element	Concentration	Compound	Gr	Gram compound per			
	mg/L		1 liter	3 liter	5 liter		
Na total	56799.0						
Na+	56712	NaCl	144.16	432.48	720.80		
Na+	87	NaHCO3	0.32	0.96	1.59		
K+	487.8	KCI	0.93	2.79	4.65		
Mg2+	1191.6	MgCl2, 6H2O	9.96	29.89	49.82		
Ca2+		CaCl2	0.00	0.00	0.00		
Ca2+	9966.6	CaCl2, 2H2O	36.56	109.68	182.80		
Sr2+	1282.5	SrCl2, 6H2O	3.90	11.71	19.51		
Ba2+		BaCl2, 2H2O	0.00	0.00	0.00		
CI-	110043						
HCO3-	231.3						

TDS:	180002 mg/L	~	3.080 mol/L NaCl eqv.
pH:	6.74 @ 23 C		

Comments: Used for Sofie-1 Co/Cw study

Physical data:	Resistivity R _{w:}	0.051	Ωm @ 25 °C	
	Calculated R _{w:}	0.050	Ωm @ 25 °C	
	Density d _{w:}	1.118	g/cc @ 25 °C	
	Calculated dw:	1.115	g/cc @ 25 °C	
	Viscosity µ _{w:}		cP @ 25 °C	

Calculated brine conductivity @ 65 °C 37.204 S/m

Subject: Electrical properties Core conductivity measurements @ reservoir conditions

ompany: DONG E&P A/S Well: Sofie-1 GEUS Core Lab, 25.04.2004

Compressibility data:

Initial confining pressure:	10 bar	hydrostatic
Final confining pressure:	113 bar	hydrostatic

Plug no	Depth	CCAL da	ata @ roo	m cond.	ml] read fr	om graduat	ed glass tu	ube @ give	n pressur	PV ₀ from plot	delta PV113 bar
	m	BV, cc	PV1, cc	Ø,%	10	50	70	90	113	[ml]	[ml]
67	1876.45	53.36	16.90	31.68	4.50	4.10	3.99	3.90	3.82	4.65	0.83
88	1881.71	52.18	17.76	34.03	4.06	3.61	3.49	3.40	3.30	4.24	0.94
127P	1891.40	46.05	16.56	35.97	4.75	4.22	4.10	4.00	3.90	4.97	1.07
139P	1894.40	47.25	16.57	35.06	4.26	3.79	3.66	3.56	3.48	4.43	0.95

Subject: Electrical properties	Company: DONG E&P A/S
Core conductivity measurements	Well: Sofie-1
@ reservoir conditions	GEUS Core Lab, 25.04.2004

Room condition data:

Formation brine resistivity, Rw:	0.082 ohmm	@ 25 °C
Confining pressure:	10 bar	hydrostatic

Plug no	Denth	h IACC	ata @ room	cond	Plug resistivity data @ room cond.			
i lag lio	m	BV. cc	PV1. cc	Ø.%	IZ01. ohm	Phase, deg.	FRF	τ
67	1876.45	53.36	16.90	31.68	43.81	-0.60	12.22	3.87
88	1881.71	52.18	17.76	34.03	40.67	-1.12	11.38	3.87
127P	1891.40	46.05	16.56	35.97	32.92	-0.48	9.81	3.53
139P	1894.40	47.25	16.57	35.06	33.25	-0.69	9.87	3.46

Plug and cell impedance measured @ 10 kHz Intrinsic cell impedance: 0.3 ohm

Imp data								
lmp1, ohm	Imp2, ohm	Imp3, ohm	Phase1, deg.	Phase2, deg.	Phase3, deg.			
44.11	44.11	44.11	-0.60	-0.60	-0.60			
40.97	40.97	40.97	-1.12	-1.12	-1.12			
33.22	33.22	33.22	-0.48	-0.48	-0.48			
33.55	33.55	33.55	-0.69	-0.69	-0.69			

Reservoir condition data:

Formation brine resistivity, Rw:	0.044 ohmm	@ 65 °C
Confining pressure:	113 bar	hydrostatic

Plug no.	Depth		Plug data @ reservoir cond.					
	m	Δ PV113 bar, CC	PV113 bar, CC	Ø113 bar, %	L113 bar, CM	A113 bar, cm2		
67	1876.45	0.83	16.07	30.60	4.805	10.93		
88	1881.71	0.94	16.82	32.82	4.740	10.81		
127P	1891.40	1.07	15.49	34.45	4.308	10.44		
139P	1894.40	0.95	15.62	33.73	4.375	10.58		

	Plug compressibility data @ 113 bar								
Lcaliper, CM	Lcaliper, CM Acalc, CM2 BV113 bar, CA BV113 bar, %								
4.830	11.05	52.53	1.56	0.0052					
4.769	10.94	51.24	1.80	0.0060					
4.342	10.61	44.98	2.32	0.0077					
4.405	10.73	46.30	2.01	0.0067					

@ 25 °C

Core conductivity data:

40.000 n	ng/L brine	conductivity	11.626	S/m	@ 65 °C			
Plug no.	Depth		Plug data @ reservoir cond.					
	m	Zol, ohm Phase, deg.			Ro, ohmm	C₀1, S/m		
67	1876.45	45.74	-0.40		1.041	0.961		
88	1881.71	35.27	-0.32		0.804	1.243		
127P	1891.40	28.54	-0.41		0.692	1.446		
139P	1894.40 31.42 -0.56				0.760	1.316		

89.487 mg/L brine conductivity, Cw2:

22.686 S/m @ 65 °C

Plug no.	Depth	Plug data @ reservoir cond.							
	m	Z₀ , ohm	Phase, deg.		R₀, ohmm	C ₀₂ , S/m			
67	1876.45	25.59	-0.30		0.582	1.718			
88	1881.71	20.20	-0.10		0.461	2.171			
127P	1891.40	16.35	-0.20		0.396	2.525			
139P	1894.40	18.54	-0.57		0.448	2.231			

150.000 mg/L brine conductivity, Cw3 :

33.218 S/m @ 65 °C

Plug no.	Depth		Plug data @ reservoir con				
	m	Zo , ohm	Phase, deg.		R₀, ohmm	C₀₃, S/m	
67	1876.45	17.37	-0.20		0.395	2.531	
88	1881.71	13.76	0.11		0.314	3.187	
127P	1891.40	11.44	0.01		0.277	3.607	
139P	1894.40	12.00	-0.30		0.290	3.446	

180.000 mg/L brine conductivity, Cw4 :

36.475 S/m @ 65 °C

Plug no.	Depth		Plug dat	oir cond.		
	m	Z₀ , ohm	Phase, deg.		Ro, ohmm	C₀₄, S/m
67	1876.45	15.17	-0.06		0.345	2.898
88	1881.71	12.48	0.22		0.285	3.514
127P	1891.40	10.30	0.17		0.250	4.007
139P	1894.40	10.51	-0.17		0.254	3.936

Imp data, 40.000 mg/L								
Imp1, ohm	lmp2, ohm	lmp3, ohm	Phase1, deg.	Phase2, deg.	Phase3, deg.			
40.01	46.16	45.91	-0.3	-0.38	-0.41			
34.83	36.07	35.07	-0.31	-0.30	-0.34			
28.07	28.93	28.75	-0.40	-0.42	-0.40			
34.48	32.63	30.81	-0.59	-0.53	-0.55			

		mp data,	89.487 mg/L		
lmp1, ohm	lmp2, ohm	lmp3, ohm	Phase1, deg.	Phase2, deg.	Phase3, deg.
26.27	26.08	25.69	-0.4	-0.30	-0.30
20.84	20.72	20.28	-0.10	-0.10	-0.10
17.61	16.75	16.54	-0.20	-0.20	-0.20
20.27	18.65	19.02	-0.70	-0.50	-0.50

Imp data, 150.000 mg/L							
Imp1, ohm	lmp2, ohm	Imp3, ohm	Phase1, deg.	Phase2, deg.	Phase3, deg.		
18.15	17.72	17.61	-0.20	-0.20	-0.20		
14.18	14.10	14.02	0.10	0.13	0.11		
11.72	11.73	11.75	-0.01	0.03	0.01		
13.03	12.38	12.22	-0.38	-0.27	-0.26		

	h	mp data, 1	80.000 mg/L		
Imp1, ohm	lmp2, ohm	lmp3, ohm	Phase1, deg.	Phase2, deg.	Phase3, deg.
15.84	15.48	15.45	-0.05	-0.03	-0.10
12.88	12.81	12.75	0.22	0.24	0.20
10.85	10.63	10.57	0.20	0.17	0.14
11.17	10.82	10.79	-0.22	-0.12	-0.16

Core Laboratory

@ 65 °C

GEUS

 Plug no :
 67

 Depth, m :
 1876.45

 Formation :
 Frigg U2

Conventional

Kg [mD]: 317 He-Ø [%]: 31.8

Brine concentration	Brine conductivity	Core conductivity	
K [mg/L]	Cw [S/m]	Co [S/m]	
		-	
40,000	11.483	0.96	
89,487	22.686	1.72	
150,000	33.218	2.53	
180,000	37.204	2.90	
		•	

m* :	2.19
F* :	13.35
BQv :	0.921
1/F* :	0.0749
Ø113 bar :	0.306

Subject: Electrical properties Core conductivity measurements at reservoir conditions, 113 bar hydrostatic loading, 65 °C reservoir temperature

Company: DONG E&P A/S Well: Sofie-1 GEUS Core Lab, 25.04.2004

 Plug no :
 88

 Depth, m :
 1881.71

 Formation :
 Frigg U2

Camura		
COUL	Intio	la

Kg	[mD] :	375
He-9	Ø [%]	34.0

Brine concentration	Brine conductivity	Core conductivity	
K [mg/L]	Cw [S/m]	Co [S/m]	
40,000	11.483	1.24	
89,487	22.686	2.17	
150,000	33.218	3.19	
180,000	37.204	3.51	
	-		

m* :	2.17
F* :	11.20
BQv :	2.184
1/F* :	0.0893
Ø113 bar :	0.328

Subject: Electrical properties Core conductivity measurements at reservoir conditions, 113 bar hydrostatic loading, 65 °C reservoir temperature

Company: DONG E&P A/S Well: Sofie-1 GEUS Core Lab, 25.04.2004

Plug no :	127P
Depth, m :	1891.40
Formation	Frigg U1

Conventional

Kg	[mD] :	363
He-	Ø [%]	35.5

Brine conductivity	Core conductivity	
Cw [S/m]	Co [S/m]	
11.483	1.45	
22.686	2.52	
33.218	3.61	
37.204	3.94	
)	Brine conductivity Cw [S/m] 11.483 22.686 33.218 37.204	

m* :	2.18
F* :	10.21
BQv :	3.261
1/F* :	0.0979
Ø113 bar :	0.344

50

Subject: Electrical properties Core conductivity measurements at reservoir conditions, 113 bar hydrostatic loading, 65 °C reservoir temperature

Company: DONG E&P A/S Well: Sofie-1 GEUS Core Lab, 25.04.2004

Plug no :139PDepth, m :1894.40Formation :Frigg U1

Conventional

Kg [mD] :	393
He-Ø [%]	35.1

Brine concentration	Brine conductivity	Core conductivity
K [mg/L]	Cw [S/m]	Co [S/m]
40,000	11.483	1.32
89,487	22.686	2.23
150,000	33.218	3.45
180,000	37.204	3.94
	Ø113 bar :	0.337
	0.1023	

BQv :

F* :

m*	:	2.10

0.550

9.78

5.5 Cation Exchange Capacity

Plugs used in the core conductivity study were cleaned in methanol, dried and forwarded for CEC measurement.

Sample ID	Depth, m	CEC	Adsorped	Adsorped	Adsorped	Adsorped
		Na	Na	K	Mg	Ca
		meq Na/100g	meq Na/100g	meq K/100g	meq Mg/100g	meq Ca/100g
67	1876,45	12	7.4	0.5	0.6	3.2
88	1881,71	17	6.9	0.5	0.8	3.4
127P	1891,47	12	5.0	0.4	0.8	3.5
139P	1894,49	15	6.8	0.5	0.3	2.5

5.6 Grain size

Four vertical routine plugs were cleaned and dried and used for grain size analysis; data are shown in the diagrams below.

Grain Size Distribution

Geological

Sample Id: 73 V Lab. Id: 04008 Submitter: DONG Subject: SOFIE-1 Date: januar 2004 Executed: I. Nørgaard. **Remarks:**

Size Fractions

GEUS Øster Voldgade 10 DK-1350 Copenhagen K Phone: +45 38 14 20 00 Fax: +45 38 14 20 50 Email: GEUS@geus.dk www.geus.dk

The analysis is executed according to DS 405.9 extended by sieves to the 1/2 phi scale

Size Classes (DGF-Bulletin 1 1988)

		Size	Size	Weight	Weight	Cumulated amount in sieve
		mm	Φ	g	%	%
		16.00	-4.00	0.00	0.00	0.00
	Ve	8.00	-3.00	0.00	0.00	0.00
	Gra	4.00	-2.00	0.00	0.00	0.00
		2.80	-1.49	0.00	0.00	0.00
6		2.00	-1.00	0.00	0.00	0.00
Sis		1.40	-0.49	0.00	0.00	0.00
aly		1.00	0.00	0.00	0.00	0.00
N		0.710	0.49	0.00	0.00	0.00
Ρ		0.500	1.00	0.00	0.00	0.00
Ň	g	0.355	1.49	0.00	0.00	0.00
Sie	Sai	0.250	2.00	0.02	0.02	0.02
•		0.180	2.47	4.55	4.56	4.58
		0.125	3.00	42.66	42.78	47.36
		0.090	3.47	26.98	27.05	74.41
		0.075	3.74	5.48	5.49	79.91
		0.063	3.99	2.69	2.70	82.60
		< 0,063	> 3,99	17.35	17.40	100.00

99.73

Total Weight

	•	V	Veight %	
Silt and clay	(< 0,063 mm): 17.40			
Sand, fine	(0,063 mm - 0,	200 mm):	79.32	
Sand, medium	(0,2 mm -	0,6 mm):	3.28	
Sand, coarse	(0,6 mm	n - 2 mm):	0.00	
Gravel	(> 2 mm):	0.00	
Sum:			100.00	
Moments M	easures			
Percentile	Percentile			
Amount in sieve	Amount passing	d(mm)	Φ	
5%	95%	0.18	2.48	
16%	84%	0.17	2.60	
25%	75%	0.15	2.70	
40%	60%	0.13	2.89	
Median 50%	50%	0.12	3.04	
75%	25%	0.09	3.50	
84%	16%			
90%	10%			
95%	5%			
Moments St	atistics			
Mean			2.82	
Sorting				
Skewness				
Kurtosis				
Uniformity Coefficient				

Formulas and notes

Mean (ф16%+φ84%+φ50%) / 3 (Folk and Ward 1957) Sorting (φ84%-φ16%) / 4 + (φ95%–φ5%) / 6,6 (Folk and Ward 1957)

 Uniformity Coefficient (d60% / d10%) (dgf-Bulletin 1988)
 Uniformity coefficient (d60% / d10%) (dgf-Bulletin 1988)

 Skewness (\u03b2646\u03b3+\u03b2684\u03b3+2\u03b2650\u03b2) / (2*(\u03b268-\u03b265\u03b3)) / (2*(\u03b268-\u03b265\u03b3)) / (2*(\u03b268-\u03b265\u03b3)) / (2*(\u03b268-\u03b365)) / (2*(\u03b3658-\u03b365)) / (2*(\u03b3658-\u03b365)) / (2*(\u03b3658-\u03b3658-\u03b365)) / (2*(\u03b3658-\u03b3658-\u03b3658-\u03b3658)) / (2*(\u03b3658-\u03b368-\u03b3658-\u03b3658-\u03b3658-\u03b3658-\u03b3658-\u03b3668-\u03b368-\u03b3658

Mean, sorting, skewness and kurtosis are based on "Amount in sieve". Uniformity coefficient is based on "Amount passing". Size Classes and Percentiles are found by linear interpolation

Grain Size Distribution Geological

Sample Id: 89 V Lab. Id: 04009 Submitter: DONG Subject: SOFIE-1 Date: januar 2004 Executed: I. Nørgaard. **Remarks:**

GEUS Øster Voldgade 10 DK-1350 Copenhagen K Phone: +45 38 14 20 00 Fax: +45 38 14 20 50 Email: GEUS@geus.dk www.geus.dk

The analysis is executed according to DS 405.9 extended by sieves to the 1/2 phi scale

Size Classes (DGF-Bulletin 1 1988)

	Size Fractions					
		Size	Size	Weight	Weight	Cumulated amount in sieve
		mm	Φ	g	%	%
		16.00	-4.00	0.00	0.00	0.00
	Ve	8.00	-3.00	0.00	0.00	0.00
	Gra	4.00	-2.00	0.00	0.00	0.00
		2.80	-1.49	0.00	0.00	0.00
~		2.00	-1.00	0.00	0.00	0.00
Si		1.40	-0.49	0.00	0.00	0.00
<u>S</u>		1.00	0.00	0.00	0.00	0.00
ÿ		0.710	0.49	0.00	0.00	0.00
4		0.500	1.00	0.00	0.00	0.00
Š	p	0.355	1.49	0.00	0.00	0.00
ie.	Sar	0.250	2.00	0.08	0.08	0.08
		0.180	2.47	5.44	5.60	5.68
		0.125	3.00	43.97	45.23	50.91
		0.090	3.47	23.15	23.81	74.72
		0.075	3.74	5.20	5.35	80.07
		0.063	3.99	2.12	2.18	82.25
		< 0,063	> 3,99	17.26	17.75	100.00

97.22

Total Weight

		V	Veight %		
Silt and clay	(< 0,	063 mm):	17.75		
Sand, fine	(0,063 mm - 0,	200 mm):	78.17		
Sand, medium	(0,2 mm -	0,6 mm):	4.08		
Sand, coarse	(0,6 mm	n - 2 mm):	0.00		
Gravel		> 2 mm):	0.00		
Sum:			100.00		
Moments Mo	easures				
Percentile	Percentile				
Amount in sieve	Amount passing	d(mm)	Φ		
5%	95%	0.19	2.41		
16%	84%	0.17	2.58		
25%	75%	0.16	2.68		
40%	60%	0.14	2.85		
Median 50%	50%	0.13	2.99		
75%	25%	0.09	3.49		
84%	16%				
90%	10%				
95%	5%				
Moments Statistics					
Mean			2.78		
Sorting					
Skewness					
Kurtosis					
Uniformity Coefficient					

Formulas and notes

Mean (616%+684%+650%) / 3 (Folk and Ward 1957)

Sorting (\$44%-\$16%) / 4 + (\$45%-\$5%) / 6,6 (Folk and Ward 1957) Kurtosis (\$95% - \$5%) / (2,44 * (\$75% - \$25%)) (Folk and Ward 1957) Uniformity Coefficient (d60% / d10%) (dgl-Bulletin 1988)

Mean, sorting, skewness and kurtosis are based on "Amount in sieve". Uniformity coefficient is based on "Amount passing". Size Classes and Percentiles are found by linear interpolation

Skewness (\u03c616\u03c6+\u03c684\u03c8 - 2*\u03c650\u03c8) / (2*(\u03c684\u03c8-\u03c616\u03c8)) + (\u03c65\u03c8+\u03c695\u03c8 - 2*\u03c650\u03c8) / (2*(\u03c695\u03c8-\u03c65\u03c8)) (Folk and Ward 1957)

54

Grain Size Distribution

Geological

Sample Id:	129 V
Lab. Id:	04010
Submitter:	DONG
Subject:	SOFIE-1
Date:	januar 2004
Executed:	I. Nørgaard.

Remarks:

Size Fractions

GEUS
Øster Voldgade 10
DK-1350 Copenhagen K
Phone: +45 38 14 20 00
Fax: +45 38 14 20 50
Email: GEUS@geus.dk
www.geus.dk

05110

The analysis is executed according to DS 405.9 extended by sieves to the 1/2 phi scale

Size Classes (DGF-Bulletin 1 1988)

		Size	Size	Weight	Weight	Cumulated amount in sieve
		mm	Φ	g	%	%
		16.00	-4.00	0.00	0.00	0.00
	Ve	8.00	-3.00	0.00	0.00	0.00
	Gra	4.00	-2.00	0.00	0.00	0.00
		2.80	-1.49	0.00	0.00	0.00
6		2.00	-1.00	0.00	0.00	0.00
Si		1.40	-0.49	0.00	0.00	0.00
<u>F</u>		1.00	0.00	0.00	0.00	0.00
ÿ		0.710	0.49	0.00	0.00	0.00
4		0.500	1.00	0.00	0.00	0.00
Š	p	0.355	1.49	0.00	0.00	0.00
iei	Sar	0.250	2.00	1.54	1.40	1.40
		0.180	2.47	13.12	11.93	13.33
		0.125	3.00	38.22	34.76	48.10
		0.090	3.47	18.66	16.97	65.07
		0.075	3.74	4.71	4.28	69.36
		0.063	3.99	2.50	2.27	71.63
		< 0,063	> 3,99	31.19	28.37	100.00

109.94

Total Weight

		V	Veight %	
Silt and clay	(< 0,	(< 0,063 mm): 28		
Sand, fine	(0,063 mm - 0,	200 mm):	61.71	
Sand, medium	(0,2 mm -	0,6 mm):	9.92	
Sand, coarse	(0,6 mm	n - 2 mm):	0.00	
Gravel	(> 2 mm):	0.00	
Sum:			100.00	
Moments M	easures			
Percentile	Percentile			
Amount in sieve	Amount passing	d(mm)	Φ	
5%	95%	0.23	2.13	
16%	84%	0.18	2.51	
25%	75%	0.16	2.63	
40%	60%	0.14	2.86	
Median 50%	50%	0.12	3.05	
75%	25%			
84%	16%			
90%	10%			
95%	5%			
Moments St	atistics			
Mean			2.78	
Sorting				
Skewness				
Kurtosis				
Uniformity Coefficient				

Formulas and notes

Mean, sorting, skewness and kurtosis are based on "Amount in sieve". Uniformity coefficient is based on "Amount passing". Size Classes and Percentiles are found by linear interpolation

 Mean (4)16%+494%+450%) / 3 (Folk and Ward 1957)
 Mean, sorting

 Sorting (484%-416%) / 4 + (495%-45%) / 6.6 (Folk and Ward 1957)
 Mean, sorting

 Kurtosis (495% - 45%) / (2.44 * (475% - 425%)) (Folk and Ward 1957)
 Uniformity co

 Dinformity Coefficient (460% / 410%) (4016-Bulletin 1988)
 Size Classes

 Skewness (416%+484% - 2*650%) / (2*(484%-416%)) + (45%+495% - 2*650%) / (2*(495%-45%)) (Folk and Ward 1957)

Grain Size Distribution Geological

145 V

Lab. Id:	04011
Submitter:	DONG
Subject:	SOFIE-1
Date:	januar 2004
Executed:	I. Nørgaard.
Remarks:	

Size Fractions

Sample Id:

		Size	Size	Weight	Weight	Cumulated amount in sieve
		mm	Φ	g	%	%
Sieve Analysis		16.00	-4.00	0.00	0.00	0.00
	Vel	8.00	-3.00	0.00	0.00	0.00
	Gra	4.00	-2.00	0.00	0.00	0.00
		2.80	-1.49	0.00	0.00	0.00
		2.00	-1.00	0.00	0.00	0.00
		1.40	-0.49	0.00	0.00	0.00
		1.00	0.00	0.00	0.00	0.00
		0.710	0.49	0.00	0.00	0.00
		0.500	1.00	0.00	0.00	0.00
	p	0.355	1.49	0.01	0.01	0.01
	Sar	0.250	2.00	0.50	0.50	0.51
		0.180	2.47	9.61	9.67	10.18
		0.125	3.00	42.75	43.00	53.17
		0.090	3.47	20.92	21.04	74.21
		0.075	3.74	5.17	5.20	79.41
		0.063	3.99	2.61	2.62	82.04
		< 0,063	> 3,99	17.86	17.96	100.00

Total Weight

99.43

GEUS Øster Voldgade 10 DK-1350 Copenhagen K Phone: +45 38 14 20 00 Fax: +45 38 14 20 50 Email: GEUS@geus.dk www.geus.dk

The analysis is executed according to DS 405.9 extended by sieves to the 1/2 phi scale

Size Classes (DGF-Bulletin 1 1988)						
		W	/eight %			
Silt and clay	(< 0,063 mm):		17.96			
Sand, fine	(0,063 mm - 0,200 mm):		74.62			
Sand, medium	(0,2 mm - 0,6 mm):		7.42			
Sand, coarse	(0,6 mn	(0,6 mm - 2 mm):				
Gravel	(> 2 mm):		0.00			
Sum:			100.00			
Moments Measures						
Percentile	Percentile					
Amount in sieve	Amount passing	d(mm)	Φ			
5%	95%	0.22	2.20			
16%	84%	0.17	2.53			
25%	75%	0.16	2.63			
40%	60%	0.14	2.82			
Median 50%	50%	0.13	2.95			
75%	25%	0.09	3.51			
84%	16%					
90%	10%					
95%	5%					
Moments Statistics						
Mean			2.74			
Sorting						
Skewness						
Kurtosis						
Uniformity Coefficient						

Formulas and notes

 FOIL
 Bit
 Inclusion

 Mean (\$16%+\$48%+\$50%) / 3 (Folk and Ward 1957)
 Sorting (\$84%+\$16%) / 4 + (\$95%+\$5%) / 6.6 (Folk and Ward 1957)

 Kurtosis (\$95% - \$65%) / (2,44 * (\$75% - \$25%)) (Folk and Ward 1957)
 Uniformity Coefficient (\$60% / \$d10%) (\$dgf-Bulletin 1988)

Mean, sorting, skewness and kurtosis are based on "Amount in sieve". Uniformity coefficient is based on "Amount passing". Size Classes and Percentiles are found by linear interpolation

Skewness (\u03c616\u03c6+\u03c684\u03c8 - 2*\u03c650\u03c8) / (2*(\u03c684\u03c8-\u03c616\u03c8)) + (\u03c65\u03c8+\u03c695\u03c8 - 2*\u03c650\u03c8) / (2*(\u03c695\u03c8-\u03c65\u03c8)) (Folk and Ward 1957)

56

6 References

- 1. Conventional core analysis report, Sofie-1, 5605/13-3. Report no. AF805. Robertson Research International Ltd., 2003
- SCA Guidelines for sample preparation and porosity measurement of electrical resistivity samples, part I-IV. The Log Analyst, **31**, 1 & 2, 1990.
- 3. Waxman, M.H. & Smits, L.J.M.: "Electrical conductivities in oil-bearing shaly sands". SPEJ, **8**, 1968, p. 107-122.
- 4. Worthington, P.F.: "Characterization of the intrinsic porosity exponent through dual salinity measurements of electrical conductivity". *Intl SCA Symp., Pau*, (September 2003), paper SCA-2003-30.

Scanning parameters:

Sellar-ear	Ultra High	
120 kV	330 mAs	
Time=	2 s.	
Slice=	2 mm	
Zoom=	8.0	
Threshold:	JPG-files	
Window:	1200	
Center:	1600	

Rotated 0 deg. 1875.20 [m] overburden exp.

Plug 62 cleaned	
Depth:	
Selected for:	

Rotated 90 deg. 1875.20 [m] overburden exp.

Depth: Selected for: Rotated 0 deg. 1875.46 [m] additional

Selected for:

Depth:

Rotated 90 deg. 1875.46 [m] additional

Plug 88 cleaned Depth: Selected for: Rotated 0 deg. 1881.71 [m] C_o / C_w + CEC

Plug 88 cleaned Depth: Selected for: Rotated 90 deg. 1881.71 [m] C_o / C_w + CEC

Plug 91 cleaned Depth: Selected for: Rotated 0 deg. 1882.48 [m] discarded

Plug 91 cleaned Depth: Selected for: Rotated 90 deg. 1882.48 [m] discarded

Plug 101 cleaned Depth: Selected for: Rotated 0 deg. 1885.10 [m] resistivity exp.

Plug 101 cleaned Depth: Selected for: Rotated 90 deg. 1885.10 [m] resistivity exp.

Rotated 90 deg. 1892.72 [m]

resistivity exp.

Plug 132 cleaned Depth:

Selected for:

Rotated 0 deg. 1892.72 [m]

resistivity exp.

Plug 132 cleaned Depth:

Selected for:

Plug 151P preserved Depth: Selected for: Rotated 0 deg. 1897.39 [m] additional

