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Abstract

Foraminiferal palaeoecological analyses carried out on the Late Maastrichtian of the M-10X
well (Dan Field) and the E-5X well (Tyra SE Field), demonstrate similar trends, although
some differences occur. Both wells are dominated by planktic Foraminifera, of which the
small, biserial Heterohelix globulosa is by far the most common species. In addition, both
wells are characterised by an outer shelf benthic fauna comprising only very few aggluti-
nated species. The faunal and palaeoenvironmental changes observed during the Late
Maastrichtian period were in most places, especially in the lower part, not very distinct, and
it is believed that the palaeoenvironment during the majority of the interval was a mostly
stable, deep outer shelf environment characterised by mainly pelagic sedimentation under
temperate, aerobic to slightly dysaerobic conditions.

The combined use of planktic/benthic (P/B) ratio and epifaunal/infaunal ratios, and the pa-
laeoecological significance of both benthic and planktic taxa have revealed that small but
important palaeoenvironmental changes occurred during the interval. Based on this, the
faunal succession has been subdivided into 6 different biofacies, each typified by charac-
teristic faunal indices. The development of biofacies indicates that the palaeoenvironment
was relatively stable during the lower part of the analysed interval in both M-10X and E-5X,
but that more unstable and fluctuating conditions appeared during the latest Maastrichtian
of both wells. The influx of abundant Pseudotextularia elegans (three acmes) together with
the typical Tethyan species Abathomphalus mayaroensis and Pseudoguembelina hariaen-
sis (in E-5X only) indicate that relatively warmer conditions prevailed during the latest part
of the Late Maastrichtian

High-resolution sampling was undertaken in a short interval in the lower part of the M-10X
core to investigate palaeoecological changes across laminated—-bioturbated chalk cycles;
only minor faunal differences were observed. There seems to be no clear correlation be-
tween changes in the planktic foraminiferal fauna and the nature of the sediment (laminated
versus bioturbated chalk). Only very sporadic benthic Foraminifera were observed in this
interval.
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Introduction

Foraminiferids are unicellular marine organisms that have often been used as watermass
indicators both in the present-day oceans and in ancient sediments. The actual assem-
blage of foraminiferids observed at a specific time and locality (Recent) or in a specific
sample (fossil) is the result of the interaction between biological — e.g. food supply — physi-
cal and chemical factors such as temperature, dissolved oxygen, salinity and turbidity
(Hemleben et al. 1989). Every species, or occasionally genus, is adapted to a certain range
of these factors; this forms the basis of the following interpretation of changing palaeoenvi-
ronments in the Upper Maastrichtian interval of the Dan and Tyra SE fields.
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Location and geological setting

The M-10X well is situated in the Dan Field of the southern Salt Dome Province, located in
the southern part of the Danish Central Graben (Fig. 1). The Dan Field developed over a
diapiric structure, which explains its overall circular structure. The E-5X well is situated in
the Tyra SE Field located in the Central Graben approximately 30 km NW of the Dan Field
in an area known as the Southern Compression Zone Province (Oakman & Partington
1998). In this area, the structures were initially formed by the inversion of a major Jurassic
half-graben. The Maastrichtian biostratigraphy and chronology used in this study is shown
in Fig. 2.

The Maastrichtian Tor Formation and the Danian Ekofisk Formation of the Central Graben
form the uppermost part of the Chalk Group, a thick succession of calcareous, mainly pe-
lagic deposits, which were deposited during the Late Cretaceous to Early Paleocene (Ce-
nomanian-Danian). The Maastrichtian chalk consists of very fine-grained calcium carbon-
ate. About 90% of the sediment grains are < 63 pm across. The grains are derived from
mainly coccoliths, which constitute up to 60% of the grains between 5 and 20 um (Hakans-
son et al. 1974). In addition, most grains with a diameter of < 5 um (about 90% of the frac-
tion < 63 um) are remains of disintegrated coccoliths. Foraminifera, bryozoans and frag-
ments of other calcareous organisms constitute the majority of the chalk sediment > 63 um
in size (Hakansson et al. 1974).

The chalks of north-west Europe were deposited in a temperate epicontinental shelf sea
(Surlyk 1997), which extended from the Atlantic Ocean and the North Sea in the west
across Denmark, The Netherlands, Belgium, France and northern Germany to Poland in
the east. It is suggested that the Central Graben area was situated more than 300 km from
the nearest shore during the Maastrichtian (see palaeogeographical map by Ziegler 1990).
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Fig. 1. Late Cretaceous structural framework of the Danish Central Graben showing the position
of the M-10X and E-5X wells within the Dan and Tyra SE Fields, respectively.
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Material and methods

The 139 analysed samples were collected from the M-10X and E-5X drill cores. Fifty grams
of each sample were washed through a 0.063 mm sieve. The fraction between 0.063 and
0.5 mm was subsequently separated in heavy liquid (p = 1.8 g/cm®) to reduce the amount
of sediment to pick. Splits containing c. 100-200 foraminiferal specimens (when possible)
were analysed by use of a light microscope, identified, counted and stored in microfossil
slides. It was shown by Fatela & Taborda (2002) that counting 100 individuals has satis-
factory statistical reliability in most palaeoceanographic studies, although the 95% confi-
dence level error is about twice the size it would be if 300 specimens were counted.

For this study, 139 samples covering the Upper Maastrichtian to Lower Danian interval
were examined, 103 from M-10X and 36 from E-5X (Appendices I-1V). An approximately
222 feet (68 m) thick section was studied from M-10X, including a very closely sampled
interval from the lower part. The studied interval in E-5X was 165 feet (c. 50 m) thick. The
variable fossil abundance in the samples has only allowed for quantitative data analysis in
a number of the analysed samples. Samples with less than 30 foraminiferal specimens
have not been used for P/B (planktic/benthic) ratio and biofacies calculations and samples
with less than 15 benthic specimens have not been used to calculate the epifaunal/infaunal
ratio. Thus, 67 samples from M-10X and 3 samples from E-5X were excluded from calcula-
tion of the epifaunal/infaunal ratio. In particular, the closely sampled interval between
6619.41" and 6612.33" in M-10X was characterised by a very low abundance of benthic
foraminiferids.
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Faunal characteristics

The calcareous microfauna in the 0.063-1 mm fraction of the investigated intervals is
dominated by small, calcareous planktic and benthic foraminiferids while calcispheres are
only locally common. Remains of inoceramid bivalves, ostracods and siliceous radiolarians
and diatoms are present in scattered occurrences.

Planktic Foraminifera are much more common than benthic Foraminifera in both M-10X
and E-5X, representing c. 82% and 70% respectively, of the total foraminiferal fauna in the
two wells. Thus, the planktic/benthic (P/B) ratio is below 50% in only 14 out of 139 samples
(Figs 3 and 4).

The benthic fauna is characterised by two main groups of calcareous Foraminifera: an epi-
faunal to shallow infaunal deposit feeding group dominated by Cibicidoides, Cibicides,
Stensioeina, Gavelinella, Osangularia and Pullenia, and an infaunal group of deposit feed-
ers dominated by buliminids, Brizalina, Pyramidina and Bolivinoides. Agglutinated Fora-
minifera occur only very sparsely.

Foraminiferids have been known to be useful in palaeoecological interpretations for several
decades (e.g. Bandy 1960), and many taxa are known to prefer particular palaeoenviron-
ments restricted by e.g. salinity, temperature, oxygen, the nature of the sea-floor sediments
and food-supply, some of which are depth-related parameters. They have been widely used
as palaeobathymetric indicators, by comparing fossil assemblages with recent analogues.
Other methods include calculation of the planktic/benthic (P/B) ratio, the epifaunallinfaunal
ratio and calculation of diversity indices.

Recent isotopic and morphological studies on planktic Foraminifera have shown that differ-
ent taxa lived in different levels of the water-column. It has been known for some decades
that Cretaceous planktic taxa preferred different palaesoenvironments (e.g. Malmgren, 1981;
Haslett, 1994), but the understanding of Cretaceous planktic foraminiferal palaeoecology
has expanded greatly with the recent improvements in stable isotope analyses of foraminif-
eral tests (e.g. Keller et al. 2002b; Abramovich et al. 2003).

The present study has taken advantage of several of these methods, and the combined
results have led to the palaeoenvironmental interpretation presented below.
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Limiting factors

The behaviour and habitats of living foraminiferids are controlled by several physical,
chemical and biological parameters, and it is usually a combination of these limiting factors
that affects the composition of the different foraminiferal assemblages. The limiting factors
influenced the foraminiferid throughout its life, whereas taphonomical processes influenced
the tests (both individuals and assemblages) from their deposition to the present day dis-
covery. It is beyond the scope of the present paper to consider taphonomy in detail, but it
may be mentioned that some of the important processes, which also have had an effect on
the foraminiferal assemblages presented here, include post-mortem transportation, sorting,
dissolution and physical damage.

Temperature

Temperature is one of the most important limiting factors, and it had a strong effect on the
large-scale palaeogeographic distribution of Foraminifera and other organisms in the
Maastrichtian period. Temperature is in general latitudinally dependent; biogeographical
provinces (e.g. the Tethyan Province and the Boreal Province during the Maastrichtian) are
founded primarily using this phenomenon.

Oxygen

Oxygen is essential for cellular respiration in organisms and vital in the marine realm. It is
renewed to the deep parts of the sea by widespread ocean circulation patterns. Cold sur-
face waters sink downwards near the poles and move towards the equatorial areas as
bottom and intermediate watermasses.

It has been suggested that a greatly expanded oxygen minimum layer existed in regions of
the Cretaceous seas compared to that of present-day oceans (Schlanger & Jenkyns 1976).
It was situated above the well-oxygenated deep-sea pelagic sediments and below the well-
oxygenated, mixed surface waters. This situation was believed to develop a temporary and
local oxygen minimum zone (“anoxic”) near the shelf margin in water depths as shallow as
300-400 m but often down to ¢. 1000 m, and was especially well-developed during trans-
gressive periods (Nyong & Olsson 1984). It was characterised by the deposition of organic-
rich sediments. Dark, organic-rich clays or shales deposited in an anoxic palaeoenviron-
ment do not occur in the cored intervals analysed in the present study, and it is suggested
that the Maastrichtian palaeoenvironments in E-5X and M-10X shifted between dominantly
aerobic settings (in general between 6 and 1 ml Oy/l) and weakly dysaerobic conditions
(approximately or below 1 ml O/l). Kaiho (1991) and Kaiho et al. (1993) used the epifau-
nal/infaunal ratio of benthic Foraminifera as a tool for calculating the relative amount of
dissolved oxygen at the sea bottom. Kaiho (1991) concluded that benthic faunas of the
oxygen minimum zone (< 0.1 ml Oy/I) mainly consist of elongate-flattened genera such as
Bolivina, and unornamented, elongate—conical types such as Bulimina and Buliminella. The
epifaunalf/infaunal ratio is further described below.
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Water depth

Water depth affects the distribution of species indirectly through a number of depth-related
parameters, e.g. temperature, light intensity, salinity, oxygen and food supply. For example,
light penetration decreases with depth and thus limits autotrophic and symbiotic activity to
the photic zone.

The base of the photic zone often extends down to 150 m below sea level in the tropics but
markedly less towards higher latitudes. In the present-day North Sea, the photic zone is
only about 20 m thick (Johns & Reid 2001). Whereas the majority of plankton preferred to
live in the photic zone, carnivores and deposit feeders thrived beneath the photic zone.

Substratum and food supply

There is a broad generalised correlation between community distribution and grain size and
between sediment type and feeding mechanism in benthic organisms. Sanders (1956)
showed that deposit feeders are more abundant than suspension feeders in muddy sedi-
ments, while the opposite situation occurs in sandy sediments. The reason for this is that
fine-grained organic matter (food) accumulates at the sea bottom together with mud parti-
cles in low energy areas but is removed from coarse-grained sands in agitated waters. De-
posit-feeding Foraminifera were much more common in the Maastrichtian chalk of the
North Sea than suspension feeders partly because the primarily soft and fine-grained mud
on the bottom of the Late Cretaceous North Sea contained more food than the overlying
bottom waters. The fine-grained, soft and “soupy” surface layer of the muddy chalk sea
may also have had an obstructing influence on the feeding apparatus of many suspension
feeders (Rhoads & Young 1970). In addition, it was shown by Jones & Charlock (1985) that
agglutinated suspension feeders dominate the middle bathyal to abyssal environments
(depths from ¢. 1000 m to >2250 m), while agglutinated deposit feeders are more common
in inner neritic to upper bathyal environments at depths from ¢. 100 m to 1000 m. The very
low abundance of agglutinated Foraminifera in E-5X and M-10X indicates a low influx of
terrigenous material, which is consistent with the present palaesogeographic maps (e.g.
Ziegler 1990) that place the southern Central Graben area far from the nearest shoreline.

Salinity

It is suggested that most Maastrichtian North Sea Foraminifera were stenohaline and thus
had a narrow tolerance range concerning salinity. They occupied offshore habitats more
than 300 km from the nearest shoreline, and thus were never subjected to significant
changes in salinity.

Nutrients

It has been proposed that the soft, muddy sea bottom recorded by the upper Lower Maas-
trichtian chalks at Riigen, North Germany, was characterised by oligotrophic conditions
(Reich 2000). It was confirmed by Schigler (2004, this report) based on dinoflagellate
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studies and Sheldon (2004, this report) on calcareous nannoplankton that similar conditions
with relatively low nutrient levels prevailed in most — but not all — of the Upper Maastrichtian
deposits analysed in the drill cores included in the present study.

GEUS 1



Palaeoecological methods

P/B ratios

P/B ratios are expressed as (P / (P + B))*100, where P = number of planktic Foraminifera
and B = number of benthic Foraminifera. Thus, the P/B ratios show the percentages of
planktic Foraminifera in the total foraminiferal assemblages. The P/B ratio have been used
as a proxy for palaeodepth estimates for almost fifty years (e.g. Barr 1961; Flexer 1971)
and it has been shown that the ratio usually increases with depth although the absolute
values may be different at different locations (Gibson 1989). Present-day studies have
shown that the P/B-ratios display a steady increase with depth in slope environments. Off-
shore Puerto Rico, Schmucker (2000) observed the minimum P/B ratio at 435 m water
depth (the shallowest sample), where the P/B was 63%. At 1813 m water depth, the P/B-
ratio increased to 99%. Higher values at shallower depths were reported by Gibson (1989)
who observed 20% planktic Foraminifera at a minimum depth of 70 m, 50% at 85 m and
70% at 100 m offshore the present-day, temperate, Atlantic coast of USA. Gibson (1989)
concluded that this area was characterised by a slow increase in P/B ratios across the in-
ner shelf (from shoreline to 80-100 m), which exhibited a lowered salinity and higher tur-
bidity. Further from the shore, at depths from 80 m to 200 m or slightly deeper, the outer
shelf was typified by a very rapid increase in P/B ratios. The third, or slope to deep oceanic
segment was characterised by a relatively slow increase in P/B ratios. Alegret & Thomas
(2001) studied the benthic assemblages from the K-T boundary beds in Mexico and re-
ported P/B ratios at about 80-90%, which they interpreted as characterising an open oce-
anic, probably upper or middle bathyal palaeoenvironment.

Although the P/B ratio is a fairly reliable method for palaeobathymetric interpretations
across the shelf-slope transition and further offshore, it should be kept in mind that waves
and currents may cause significant transportation and mixing of the microfaunal assem-
blages on the continental shelf. Thus, the P/B ratio should only be taken as a very rough
method of estimating the palaeodepth in these palaeoenvironments, and should be sup-
ported by other methods.

Epifaunal/infaunal ratio in benthic Foraminifera

Kaiho (1991) established a dissolved oxygen index based upon the ratio between aerobic
and anaerobic calcareous benthic Foraminifera: Ol = (aerobic / (aerobic + anaerobic) *100).
Aerobic morphotypes were characterised by spherical, planoconvex and lenticular forms,
and were supposed to prefer environments with > 0.5 ml O, /I. These forms were epifaunal
or shallow infaunal and lived within 0-2 cm below the sea-bottom. The anaerobic morpho-
types (or dysaerobic in Kaiho et al. 1993) were typically elongated—flattened (such as Boli-
vinoides and Brizalina) or elongate—conical such as Bulimina, Praebulimina, and Pleuros-
tomella. This group was infaunal and was believed to live down to 7-15 cm below the sea
floor in an environment with very little dissolved oxygen (< 0.1 ml O /I sensu Kaiho 1991).
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Kaiho (1991) and Kaiho et al. (1993) were thus of the opinion that dissolved oxygen was
the main controlling factor of the epifaunal/infaunal ratio.

Dominance of infaunal taxa was recorded from areas with a high content of organic carbon
flux to the ocean floor by Bernard (1986), and this indicates that at least two factors — dis-
solved O; in bottom waters and organic carbon at the ocean floor — controlled the epifau-
nal/infaunal ratio within the upper 15 cm of the sediment. It is possible to test these models
relatively easily in deep water areas with only little variation in additional chemical and
physical factors, but the epifaunal/infaunal ratio must be used with care in marginal marine
and shelf environments, where factors other than food supply and oxygen also affect the
distribution of Foraminifera (Murray, 2001). The primarily very deep shelf environment that
characterised the Danish Central Graben area during the Maastrichtian was situated per-
haps up to 3-400 km from the nearest shore, and it is supposed that both dissolved oxygen
and food supply had an effect on the epifaunal/infaunal ratio in this palaeoenvironment.

The epifaunal/infaunal ratios of E-5X and M-10X (Figs 3 and 4) are based on the habitat
preferences of benthic foraminiferal morphogroups reported by Widmark (1995) and Alegret
et al. (2003).

Depth ranking in planktic Foraminifera

The upper part of the water column in oceans

Oceanographers refer to the surface layer of the oceans with consistent hydrographic
properties, as the surface mixed layer. This layer serves as a transfer of heat and fresh-
water between the atmosphere and the ocean. Usually, it spans the uppermost 50-150 m
of the water column, but can be deeper in winter when cooling at the sea surface produces
convective overturning of water, releasing heat stored in the ocean to the atmosphere. The
underlying thermocline is a zone of rapid temperature transition, where temperature de-
creases rapidly with depth. The thermocline is situated below the layer of active mixing and
is commonly shallow in spring and summer, deep in autumn, and disappears in winter.

Palaeoecological significance of planktic Foraminifera

The majority of planktic Foraminifera live in the upper 200-400 m of the water column but
prefer different depth ranges. Thus, it has been known for decades that some planktic spe-
cies occupied the surface layers of the oceans and other species were deeper-dwelling
(e.g. Malmgren 1981; Haslett 1994). The understanding of Cretaceous planktic foraminif-
eral palaeoecology has expanded greatly in recent years (e.g. Keller et al. 2002b; Abramo-
vich et al. 2003) and some of the knowledge concerning the planktic species observed in
the present study is presented below. In short, the planktic fauna within the investigated
interval in E-5X and M-10X consist mainly of small specimens of ecological generalists
(Keller et al. 2002b). Heterohelix globulosa in particular, but also Hedbergella mon-
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mouthensis and Globigerinelloides spp. are common. The triserial genus Guembelitria is
rare in both wells, but is relatively more common in M-10X than in E-5X. Keeled globotrun-
canids were observed only in E-5X.

Abramovich et al. (2003) distinguished between three main groups of planktic foraminiferids
based on depth ranking: Deep dwellers, thermocline dwellers and mixed layer dwellers.
The depth ranking subdivision was based on isotopic measurements and the assumption
that 5'®0 values of foraminiferal calcite generally increase with depth due to decreasing
temperatures (Fairbanks et al. 1982) and 5'°C values decrease with depth because of se-
lective removal of ">C by photosynthesis in the photic zone and accumulation of 2C in
deeper water due to decay of organic material.

The ratio between Guembelitria (G) and Heterohelix (H) was used as a palaeobathymetric
indicator by Keller et al. (1993) based on data from the latest Maastrichtian of Nye Klav,
Denmark. They reported high G/H values (increasing from less than 10% to c. 35%) about
0.7 m below the K-T boundary, which was interpreted as a shallowing peak. All samples
studied in the present study showed a G/H ratio lower than 12% (in average 2.2% in E-5X
and 2.0% in M-10X), and the abundance of Guembelitria is too small to allow the use of the
G/H ratio in the present study.

Deep dwellers

This group is characterised by their heavily calcified tests, thickened keels and large size
(Keller et al. 2002b). It occupied the relatively deep waters below the thermocline. Late
Maastrichtian species from this group observed in the present study include Abathompha-
lus mayaroensis and Globotruncanella havanensis (Abramovich et al. 2003).

Thermocline dwellers

The depth of the thermocline varies during the year and differs from low latitudes to high
latitudes. The present day thermocline at the Goban Spur area near the NW European
shelf break (c. 300 km southwest of Ireland and 600 km west of Brittany, France) ranges
from 40 m to 60 m below the sea surface during the Spring bloom (Hydes et al. 2001), but
the annual depth of the thermocline varies considerably. In the central Arabian Sea, the
January thermocline usually ranges from 100 m to 150 m (Wiggert et al. 2002).

The foraminiferids living in this zone probably included most keeled globotruncanids, Globi-
gerinelloides spp. and Heterohelix globulosa (Abramovich et al. 2003), but their mutual
habitats changed between localities and climate modes. Heterohelix globulosa probably
lived slightly deeper in the colder waters of the South Atlantic than at equatorial localities
(Abramovich et al. 2003), and a similar situation may be expected for the Maastrichtian
succession of the temperate North Sea.
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Mixed layer dwellers

The mixed layer dwellers lived within the usually warmer waters above the thermocline.
Pseudoguembelina (including P. hariaensis which was observed in E-5X in the present
study) probably lived in the shallowest parts of the mixed layer (Abramovich et al. 2003),
possibly sharing this part of the water column with Guembelitria (Keller et al. 2002b). The
relative abundance of Guembelitria, however, was influenced also by ecological stress, as
this genus is interpreted as a opportunistic disaster genus which showed increasing abun-
dance during periods of severe biotic stress (Keller & Pardo in press). 5'%0 records suggest
that Rugoglobigerina and Pseudotextularia inhabited depths slightly deeper than Pseu-
doguembelina within the lower part of the mixed layer (Abramovich et al. 2003).

It was suggested by Troelsen (1955) that Pseudotextularia elegans and the keeled globo-
truncanid Rosita contusa found within the Kjglby Gard Marl in northern Jutland, were
brought to Denmark during the Late Maastrichtian by a warm current from a southern di-
rection, because these taxa were more common in subtropical and tropical areas.
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Foraminiferal Biofacies of the Upper Maastrichtian
succession and their palaeoenvironmental signifi-
cance

This chapter comprises an interpretation of the palaeoenvironment during Late Maastrich-
tian times in E-5X and M-10X. The interpretation is based on a combination of the palaeoe-
cological methods summarised above including P/B (planktic/benthic) ratios, epifau-
nal/infaunal ratios, and palaeoenvironmental significance of selected depth-dependent
benthic and, to a lesser degree, planktic Foraminifera (Figs 3, 4). The palaeoecological
interpretations by van Morkhoven et al. (1986), Murray (1991), Sikora & Olsson (1991),
Schmitz et al. (1992), Widmark & Speijer (1997), Widmark (2000) and Alegret & Thomas
(2001, 2004) have been followed to a great extent concerning the benthic assemblages.
The combined results from all these methods form the basis for the following subdivision in
biofacies (or foraminiferal assemblages) and the subsequent palaeoenvironmental inter-
pretation.

Biofacies 1

Characteristics

Biofacies 1 has a very high dominance of planktic Foraminifera, resulting in P/B ratios usu-
ally higher than 92% (average 96%). Very small, biserial planktic specimens of Heterohelix
globulosa is by far the most common species and constitute 87% on average of the total
foraminiferal fauna. H. globulosa has been interpreted as a ecological generalist, which
tolerated significant fluctuations in temperature and/or salinity, oxygen and nutrients (Keller
2002b). Sporadic occurrences of Gavelinella spp. comprise the dominating benthic compo-
nent, but never exceeds 3% of the total foraminiferal fauna. The amount of indeterminable
Foraminifera is large due to the generally small size and poor preservation.

Only three out of 31 samples within Biofacies 1 contained more than fifteen benthic speci-
mens, which thus precluding reliable calculations of the epifaunal/infaunal ratio of this bio-
facies. The three samples, however, contained between 53% and 83% epifaunal compo-
nents.

Distribution

M-10X: 6647 - 6610’
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Palaeoenvironmental interpretation

The very high P/B ratios (> 90%) indicate normal pelagic deposition in an open oceanic
palaeoenvironment, probably the deepest encountered in the present study. Similar P/B
ratios were reported from upper to middle bathyal palaeoenvironments of northeastern
Mexico (Alegret & Thomas, 2001). Alegret & Thomas, however, reported a higher abun-
dance of benthic Foraminifera typical of bathyal settings. The benthic fauna of the 6647 -
6610" interval is very depleted, which indicates hostile bottom settings. It may have been
caused by relatively high organic carbon flux and/or lowered oxygen conditions during this
period, suggesting that it was probably not only the palaeobathymetric conditions that
caused the very high P/B ratios.

Consequently, Biofacies 1 is interpreted as a relatively deep, outer shelf assemblage,
which may have characterised a basinal, probably dysaerobic palaeoenvironment, relatively
rich in organic carbon. The palaeodepth was deeper than 200 m, possibly as deep as
400-500 m.

Biofacies 2

Characteristics

The P/B ratio is usually high and averages 72% in E-5X and 74% in M-10X, but it varies
notably, especially in M-10X. The epifaunal/infaunal ratio is high and fluctuates from an
average of 64% in M-10X to 77% in E-5X. The benthic fauna of E-5X is generally scanty
and both the diversity and abundance are low. Cibicides succedens is relatively common in
E-5X comprising up to 30% of the benthic fauna, while Osangularia navarroana comprises
up to 17% of the benthic fauna. M-10X is characterised by a relatively rich benthic fauna in
the lower levels of the biofacies unit while the upper 17 feet of this unit is poor in benthic
Foraminifera, probably because of poor bottom conditions or taphonomical processes.
Stensioeina ex gr. beccariformis, Gavelinella spp. and Pyramidina minuta characterise the
lower and middle part of Biofacies 2 of M-10X, the former constituting up to half of the total
benthic assemblage (at 6655.58" in M-10X). Nutalinella spp. was recorded in low numbers
in the middle part of the biofacies. Pyramidina cimbrica is common in the uppermost sam-
ple. Biofacies 2 is characterised by a large amount of indeterminable Foraminifera (espe-
cially in E-5X) due to the generally small size and poor preservation. Calcispheres are rela-
tively common.

Distribution

E-5X: 6975.2"- 6926.6°
M-10X: 6655.6"-6648.5", 6608.1"-6560.8"
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Palaeoenvironmental interpretation

The high frequency of epifaunal elements compared to infaunal may suggest a relatively
low food supply to the sea-bottom floor and/or a well-oxygenated palaeoenvironment,
slightly more pronounced in E-5X than in M-10X. The P/B ratios are lower than those from
Biofacies 1, suggesting slightly shallower palaeodepths and/or more tolerable bottom con-
ditions. The benthic assemblage, including the fairly high occurrence of S. ex gr. beccari-
formis (most notably in the lower and middle part of the interval in M-10X), suggests a rela-
tively deep outer shelf palaesoenvironment, possibly between 200 m and 3-400 m. A rela-
tively deep palaeoenvironment is further shown by the appearance of Nuttallinella spp. in
the middle of Biofacies 2 of M-10X, as this species normally is reported from bathyal set-
tings (e.g. van Morkhoven et al. 1986). The incoming of common Pyramidina cimbrica in
the uppermost Biofacies 2 sample in M-10X (sample 6560.8°) may, according to the pa-
laeoecological interpretation of this species by Schmitz et al. (1992), suggest a shallowing
towards mid-shelf conditions, although the abundance of benthic components at this level
is too low to allow for reliable interpretation. In general, the palaeoenvironment was proba-
bly slightly deeper and/or more nutrient-rich in M-10X than in E-5X.

Biofacies 3

Characteristics

The P/B ratio is on average 52% in M-10X and 64% in E-5X and thus is lower than both B1,
B2 and B4. The epifaunal/infaunal ratio is relatively low and varies from an avarage of 51%
in M-10X to 59% in E-5X. Biofacies 3 is characterised by common S. ex gr. beccariformis,
which may constitute up to 20% of the benthic fauna, Praebulimina laevis (max. 29% of the
total benthic assemblage), cibicids (incl. Cibicides succedens) and Osangularia navarro-
ana.

The planktic assemblage is dominated by Heterohelix globulosa. The individual samples of
Biofacies B3 are distinguished by P/B ratios that are quite similar to the epifaunallinfaunal
ratios.

Distribution

E-5X: 6916.3-6910.3", 6875.3"-6859.8"
M-10X: 6557.6" and 6522.3"

Palaeoenvironmental interpretation

The relatively low P/B ratio and benthic assemblage comprising relatively common Praebu-
limina laevis, O. navarroana and C. succedens indicates a palaeoenvironment relatively
more shallow than Biofacies 1 and 2, as these species are common in Upper Maastrichtian
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deposits of eastern Denmark in the more proximal part of the shelf (J.A. Rasmussen, un-
published). The presence of relatively common S. ex. gr. beccariformis, however, suggests
that the palaeoenvironment was still under open oceanic influence, indicating outer neritic
conditions, possibly in the neighbourhood of 200 m in palaeodepth. The low epifau-
nal/infaunal ratio indicates a relatively high organic carbon flux and/or lowered oxygen con-
ditions.

Biofacies 4

Characteristics

This is the most common biofacies in both wells. The P/B ratio is high, on average 83% in
M-10X and 76% in E-5X. The epifaunal/infaunal ratio is also relatively low in this biofacies
and varies from an average of 57% in M-10X to 49% in E-5X. The benthic assemblage is
highly diverse and dominated by Pyramidina minuta (M-10X), Praebulimina laevis,
Gavelinella spp. (M-10X), and occasionally Brizalina incrassata, Osangularia navarroana
(E-5X), Gyroidinoides nitidus (E-5X), Dentalina spp. (E-5X), and Cibicides spp. (M-10X).
Calcispheres occur commonly in this biofacies.

The planktic assemblage is overwhelmingly dominated by Heterohelix globulosa, but Hed-
bergella monmouthensis is common in some samples. Pseudotextularia elegans shows
acmes at three levels of this biofacies and may constitute up to 50% of the planktic fauna in
E-5X. It is much more abundant in E-5X than in M-10X, but three less distinct acmes of P.
elegans were also observed in M-10X (two in Biofacies 4 and one in Biofacies 6). Guembe-
litria cretacea occurs consistently, but with low abundances.

Distribution

E-6X: 6897.3'-6878.6", 6859.8'-6839.3", 6833.5"
M-10X: 6554.8"-6525.3", 6519.1°-6502.3", 6487.3'-6463.0°, 6444.8-6441.9°

Palaeoenvironmental interpretation

The generally high P/B ratios and low epifaunal/infaunal ratios indicate open oceanic con-
ditions and a relatively high organic carbon flux and/or lowered oxygen conditions. The
benthic assemblage is somewhat similar to that of Biofacies 2, but it is distinguished by its
more common occurrences of Praebulimina laevis, Osangularia navarroensis and Gyroidi-
noides spp. and fewer speciments of Stensioeina ex gr. beccariformis. Alegret & Thomas
(1991) interpreted Gyroidinoides nitidus as junior synonym of G. globosus, which they -
together with Stensioeina becarriformis forma parvula - regarded as an upper bathyal indi-
cator commonly found at 200-300 m depth. It is probable that Biofacies 4 is indicative of
similar palaeobathymetric conditions, although the depositional setting was more likely a
deep neritic setting than upper bathyal in the Central Graben area. The influxes of Pseu-
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dotextularia elegans at 6883.9°, 6847.8" and 6833.5" in E-5X may be related to the periodi-
cal invasion of warmer waters from the south (Troelsen 1955), or climatic warming periods,
as this species is more common in the Tethyan region than at northern high latitudes.

Biofacies 5

Characteristics

The P/B ratio is very low, especially in M-10X, and averages 10% in M-10X and 35% in E-
5X. The epifaunal/infaunal ratio is also low and varies from an average of 44% in M-10X to
50% in E-5X.

The benthic assemblage are characterised by Osangularia navarroana and Cibicides suc-
cedens in E-5X (the latter also in M-10X) and Praebulimina laevis, Brizalina incrassata,
Alabamina midwayensis and Stensioeina ex gr. beccariformis in M-10X. Only few planktic
specimens dominated by Heterohelix globulosa are present.

Distribution

E-5X: 6836.8°
M-10X: 6499.0" - 6489.5°

Palaeoenvironmental interpretation

The very low P/B ratios, especially in M-10X, indicates a neritic depositional palaeoenvi-
ronment with only a restricted oceanic influence. It may be speculated that the overall ab-
sence of planktic specimens is due to taphonomical processes, but as the benthic speci-
mens show no signs of particular dissolution or transportation, we believe that the planktic
component was never high. The dominance of O. navarroana and C. succedens in E-5X
and the occurrence of A. midwayensis in M-10X further support the proposal that Biofacies
5 characterised a shelf environment, probably situated somewhere between the outer and
mid shelf. The relatively high occurrence (16% of the benthic fauna) of Stensioina ex gr.
beccariformis in sample M-10X (sample 6491.5%) is difficult to explain. The species nor-
mally characterises upper bathyal or outer neritic conditions (van Morkhoven et al. 1986;
Keller et al. 2002a). It may be speculated that relatively lower temperatures in the Central
Graben area may have allowed the species to migrate to the intermediate parts of the shelf
during this period, but taphonomic processes such as transportation and sorting might also
have influenced the assemblage. The palaesodepth may have been about 200 m or even
lower in this part of the wells, probably shallowest in M-10X.

It is unlikely that the low epifaunal/infaunal ratios indicate lowered oxygen conditions in this

relatively shallow palaeoenvironment. It is suggested that it instead is related to a relatively
high organic carbon flux. The interval corresponding to this biofacies in M-10X is known as
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a high porosity interval, and the data shows that the high porosity correlates with a lowered
pelagic (planktic) content in the foraminiferal fauna.

Biofacies 6

Characteristics

The P/B ratio varies from an average of 83% in M-10X to 55% in E-5X. The epifau-
nal/infaunal is relatively high and varies from 63% on average in M-10X to 61% in E-5X.
Biofacies 6 is characterised by Stensioeina ex gr. becarriformis, Brizalina incrassata, Cibi-
cides cf. simplex in both wells. Gavelinella spp. and Pyramidina minuta are common in M-
10X. The planktic species Abathomphalus mayaroensis occurs consistently but in very low
numbers in E-5X.

Distribution

E-5X: 6830.0"-6824.8
M-10X: 6460.0°-6446.5

Palaeoenvironmental interpretation

The P/B ratios are markedly higher in M-10X than in E-5X. This contrasts with the generally
similar benthic assemblages of the two wells. The incoming of rare specimens of the plank-
tic species A. mayaroensis in Biofacies 6 of E-5X, which is much more common in more
equatorial settings than farther North, may indicate that warmer conditions reached the
Central Graben area (especially E-5X) during this period. A. mayaroensis has been inter-
preted as a subsurface dweller that lived below the thermocline (Abramovich et al. 2003).
This, in combination with the common occurrence of the benthic species Stensioina ex gr.
beccariformis in both wells, indicates that Biofacies 6 in general characterised a relatively
deep, outer shelf palaeoenvironment, probably deeper than 200 m. The occurrence of A.
mayaroensis and Pseudoguembelina hariaensis in E-6X may indicate warmer conditions in
this part of the Late Maastrichtian. This is in accordance with the hypothesis mentioned
above (Biofacies 5), that if S. ex gr. beccariformis was able to migrate to the more shallow
parts of the shelf during relatively cold periods, it should be expected to migrate to the
deeper, more oceanic, parts during warmer periods.

Sample 6456.8" from M-10X and the samples 6826.7" and 6824.8" from E-5X display sig-
nificantly lower P/B ratios and a higher infaunal component than the other samples from
this biofacies. The low epifaunal/infaunal ratios indicate a relatively high organic carbon flux
and/or lowered oxygen conditions in these intervals compared to the remaining part of Bio-
facies 6, which is characterised by a higher epifaunal content. It is possible that the palaeo-
depth decreased slightly during these periods within Biofacies 6, although the difference
may also have been due to other palaeoenvironmental changes.
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High resolution foraminiferal palaeoecology of the
6620°-6610" interval of M-10X

The interval between 6620 and 6610" was sampled densely in order to shed light on the
palaeoecology during deposition of the laminated-bioturbated cycles present in the well at
these levels. In general, the foraminiferal faunas are very uniform with very high numbers of
planktic foraminiferids in relation to benthic. The ratio between planktic and benthic Fora-
minifera (P/B) is always higher than 92% (Fig. 5). The planktic faunas are dominated by
more than 70% Heterohelix globulosa. However, small faunal differences occur and based
on these it has been possible to subdivide the interval into two foraminiferal biofacies (PB1,
PB2), which display a cyclic pattern in the studied interval. The three main parameters we
have used to show this pattern are P/B ratios and the relative abundance of Guembelitria
cretacea and Hedbergella monmouthensis. Keller (2003, p. 94)) regarded Guembelitria as
an opportunistic species, which tends to bloom in high stress environments, most notably
during times of high nutrient, eutrophic conditions (high content of organic carbon) and dis-
ruption of water mass stratification. Keller & Pardo (in press) showed that the largest
Guembelitria blooms took place in low and middle latitudes, and only smaller blooms oc-
curred in high latitudes. The latter authors also suggested that a major ecologic crisis,
which may have lead to the exclusion of ecological specialists and most generalists, would
be followed by 1) bloom of Guembelitria, 2) increase of small low-O,-tolerant heterohelicids
followed by 3) an increase of small trochospiral and planispiral species.

Biofacies PB1

Characteristics

This biofacies is characterised by the lowest P/B ratios in the interval together with minor
increases in the relative abundance of Guembelitria cretacea (up to 7%). The sparse ben-
thic foraminiferal faunas are characterised by Stensioeina ex gr. beccariformis, gavelinellids
and Pyramidina minuta.

Distribution

6619.41°, 6617~ 6616.25°, 6614.41'- 6611.58"

Palaeoenvironmental interpretation

Gumbelitria species were restricted to the surface layer above the thermocline and oc-
curred in both open marine and shallow neritic nearshore environments. The genus seems
to have tolerated a fluctuating palaeoenvironment with regard to salinity, temperature, oxy-
gen and nutrients. Thus, opportunistic blooms of Guembelitria have been reported from
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neritic palaeoenvironments reaching a crisis level, characterised by a strong decrease in
the normal population (Keller et al. 2002b).

The increase of Guembelitria found in this biofacies is diminutive, and does not reach the
same degree as seen at, e.g. the K-T boundary and at the Cenomanian-Turonian transition
in other regions (Keller, 2003). In PB1 of the closely sampled interval, however, its relative
abundance seems to increase weakly in the intervals with relatively low (but still more than
92%) P/B ratios. This situation does not correspond to the severe ecological stress that
occurred around the K-T and Cenomanian-Turonian boundaries but might indicate that the
surface system was stressed possibly by unstable conditions during these periods. In con-
trast, the sparse benthic fauna suggests that the sea bottom conditions were slightly better
during PB1 biofacies times than during PB2, when the benthic fauna was almost absent.

Biofacies PB2

Characteristics

The highest P/B ratios are found in this biofacies (>97%), resulting from an almost com-
plete lack of benthic foraminiferids. Besides the dominant planktic foraminiferal species H.
globulosa, the biofacies is characterised by Hedbergella monmouthensis, comprising up to
7% of the planktic assemblage.

Distribution

6619-6617.58", 6615.92°-6614.75

Palaeoenvironmental interpretation

H. monmouthensis is not regarded as an opportunistic species as is the case for G. creta-
cea (Keller et al. 2002b). Thus, the increase of this species within the lowermost part of
Biofacies PB2 might point toward more stable surface conditions compared to Biofacies
PB1. The extremely low numbers of benthic foraminiferids suggests very poor conditions
on the sea floor during the PB2 period.

Palaeoenvironmental development during the 6620°-6610" high resolution
interval

Heterohelix globulosa is by far the most common species in the closely analysed interval,
and relative changes in the abundance of other species are difficult to detect. Although
highly tentative, it seems possible to subdivide the section into five intervals, based on
changes in P/B ratios, and the relative abundances of G. cretacea and H. monmouthensis.
Thus, the high resolution interval comprises two and a half cycles from biofacies PB1 to
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PB2. The PB1 biofacies are characterised by a relatively low P/B ratio averaging 95%, an
increased number of Guembelitria (2-7%), and the occurrence of benthic (although very
few) Foraminifera. Following the model of Keller & Pardo (in press), we interpret PB1 as the
first slightly opportunistic stage in the cyclic development. The following PB2 biofacies is
only slightly different from PB1, being characterised by a slightly higher P/B ratio averaging
98%, an increased number of the low trochospiral Hedbergella monmouthensis (247%),
and the virtual absence of guembelitrids and benthic Foraminifera. PB2 is interpreted as
representing more stable conditions above the thermocline, but very poor conditions at the
sea bottom.

Thus, unstable conditions in the surface system were contemporaneous with a slightly im-
proved sea bottom environment whereas relatively stable surface conditions were associ-
ated with very poor conditions for the benthic community.

Three laminated-bioturbated chalk cycles were recorded in the high resolution interval.
None of the transitions from laminated to bioturbated intervals correspond to the transitions
between biofacies PB1 and PB2. Instead the deteriorated benthic conditions occurred
within the bioturbated interval and continued through the lower part of the laminated inter-
val. The slight recovery then began during the deposition of the laminated interval and
ended within the bioturbated interval.

The less pronounced lamination—bioturbation cycles in the upper part of the high resolution
interval are also less pronounced in terms of the foraminiferal faunas and contain elements
of both biofacies, i.e. input of G. cretacea together with low numbers of benthic foraminif-
erids.
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Palaeoenvironmental summary of E-5X and M-10X

The development of biofacies indicates that the palaeoenvironment was relatively stable
during the lower part of the analysed interval in both M-10X and E-5X, but that more unsta-
ble and fluctuating conditions appeared during the latest Maastrichtian period of both wells.
Both wells are dominated by planktic Foraminifera, of which the small, biserial Heterohelix
globulosa is the dominating species, and both wells are characterised by an outer shelf
benthic fauna comprising only very few agglutinated species. The average epifau-
nal/infaunal ratios are very similar, reaching 61% in M-10X and 60% in E-5X. The faunal
and palaeoenvironmental changes that occurred during the Late Maastrichtian period were
in most places not very distinct, and it is believed that the palaeoenvironment during the
interval was a predominantly stable, deep outer shelf environment characterised by mainly
pelagic sedimentation under temperate, aerobic to slightly dysaerobic conditions. The com-
bined use of P/B and epifaunalf/infaunal ratios, and the palaeoecological significance of
both benthic and planktic taxa has revealed that small but important palaeoenvironmental
changes occurred during the interval. It is thus indicated that the palaeoenvironment was
relatively stable during the lower part of the analysed interval in both M-10X and E-5X, but
that more unstable and fluctuating conditions prevailed during the latest Maastrichtian.

Relatively minor faunal and palaeoenvironmental changes occurred during the 6655°-6520"
interval of M-10X and the 6975°-6880" interval of E-5X. This interval is represented by
Biofacies 1, 2, 3 and 4 (pars) in M-10X and Biofacies 2, 3 and 4 (pars) in E-5X. M-10X was
cored to a deeper stratigraphic level than E-5X, and Biofacies 1 was only recorded from
this well (Fig. 6). Biofacies 1 probably represents the deepest and/or most offshore interval
encountered in the present study, although its extremely high P/B ratios and exceptionally
sparse benthic fauna may also reflect very poor sea-floor conditions at the time of deposi-
tion. Thus, it is possible that a relatively high influx of organic carbon or a reduction of dis-
solved oxygen at the sea floor may have taken place during this period.

The P/B ratio decreases slightly in the overlying Biofacies 2 (B2) inferred by the incoming of
principally epifaunal and shallow infaunal benthic taxa, although many benthic specimens
are small and badly preserved. The ecological generalist, Heterohelix globulosa, is the
most abundant planktic taxon during almost all of the analysed core intervals, and Biofacies
2 is no exception. The palaeoenvironment is believed to have been represented by a deep
outer shelf setting in the lower part, probably replaced by slightly more shallow conditions in
the upper part, indicated by the appearance of Cibicides succedens and Osangularia na-
varroana in E-5X and Pyramidina cimbrica in M-10X. A high oxygen level and/or a low or-
ganic carbon flux characterised B2 in E-5X, whereas these parameters fluctuated in B2 of
M-10X.

The outer shelf setting continued within the overlying B3 and B4 biofacies intervals up to
the 6520° level in M-10X and the 6880° level in E-5X. It was typified by temperate, slightly
dysaerobic but mostly aerobic conditions and/or a slightly higher influx of organic carbon.
Relatively small regressive events may have taken place during B3 at around 6557.8" and
6522.3" in M-10X, and possibly 6916.5-6910.3" in E-5X as seen by a conspicuous lower-
ing of the P/B ratio in these levels.
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The first indications of a probable warming event were recorded in E-5X at 6883.9", where
the first of three acmes of Pseudotextularia elegans appears (12% of the total planktic
fauna). P. elegans was much more common in the Maastrichtian warmer oceans at low and
intermediate latitudes, e.g. the former Tethyan Sea, the deposits of which are today widely
exposed at localities around the present-day Mediterranean Sea. The influx of P. elegans
to temperate seas, e.g. the Central Graben area, may thus be taken as a sign of an inva-
sion of warmer conditions (Troelsen 1955). P. elegans is consistently less common in M-
10X than in E-5X, but a small acme appears at 6519.1°, where it comprises 8% of the total
planktic fauna.

The probable warming event marked the beginning of a depositional phase with more un-
stable palaeoenvironmental conditions than earlier. The faunal evidence from this upper
phase, which is represented within the 6519°-6442" interval of M-10X and the 6883"-6824"
interval of E-5X, shows that substantial palaeoecological fluctuations occurred.

The most remarkable regressive event, judging from the foraminiferal evidence, occurred
during the time of deposition of Biofacies 5 in M-10X (6499°-6489°). The P/B level dropped
to zero in two of the four samples and the planktic fauna may have experienced very poor
ecological conditions within the upper part of the water column. The benthic fauna, how-
ever, indicates that low organic carbon influx conditions occurred at the sea floor. As noted
earlier, the exceptional decrease in the planktic foraminiferal fauna corresponds to a signifi-
cant increase in the chalk porosity (Ineson et al., this report). At present, we have no con-
vincing explanation for this relationship, but it is likely that it is related to a conspicuous
regressive event. Evidence for a regression at this level was observed in E-5X, albeit less
dramatic. The relatively low P/B ratios together with the incoming of cibicidids and Praebu-
limina laevis indicates a drop in sea level within the 6869.3'-6863.3" interval of Biofacies 3.

The second probable warming event took place shortly after this shallowing, when the fol-
lowing transgressive event was accompanied by a new influx of Pseudotextularia elegans
at 6847.8" in E-5X (28% of the planktic fauna) and at 6481 (8%) in M-10X. Foraminiferal
evidence indicates that the overall palaeoenvironment was an outer shelf setting from this
level to the top of the Maastrichtian, only interrupted by a probable shallower or less oce-
anic palaeoenvironment in the lower part of the Biofacies 6 interval of M-10X (6456.2") and
in the Biofacies 5 interval of E-5X (6836.8"). The palaeoenvironment probably changed to
an aerobic, mid to outer shelf setting during this short period.

The third and very distinct acme of Pseudotextularia elegans was recorded from the up-
permost Biofacies 4 sample of E-5X (6836.8": 50% of the planktic fauna) and, less distinc-
tively, from the uppermost Biofacies 6 sample in M-10X (6446.5": 3%). To judge from the
values in E-5X, this is the most significant of the three probable warming events, and P.
elegans is more abundant than even Heterohelix globulosa, which comprises only 33% of
the planktic fauna in this sample. It may be speculated that this and the previous distinct P.
elegans acme may signal the phase of climate warming that has been related to e.g. the
uppermost Maastrichtian Deccan volcanism and dated at c. 65.4-65.1 Ma (Keller et al.
2003).
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The keeled globotruncanid Abathomphalus mayaroensis migrated into the E-5X area im-
mediately after the last P. elegans acme and occurs in small numbers in the Biofacies 6
interval of E-5X (Fig. 6). A. mayaroensis was a subsurface dweller that lived in relatively
deep waters below the thermocline (Abramovich et al. 2003). The occurrence of common
Stensioeina ex gr. beccariformis in this interval together with A. mayaroensis and Pseu-
doguembelina hariaensis indicate that the warmer conditions continued into the uppermost
part of the Late Maastrichtian of E-5X (Biofacies 6). The oceanic palaeoenvironment was
probably slightly warmer than average Late Maastrichtian temperatures in the area, but
most likely cooler than during the last P. elegans acme, as the keeled globotruncanids only
occur in very small numbers. The geological setting was probably a deep, outer shelf pa-
laeoenvironment, with depths more than 200 m. The fact that keeled globotruncanids were
recorded from the uppermost part of E-5X, but not from M-10X, may indicate either that
rather dissimilar palaeoenvironmental settings occurred, perhaps related to a restricted
current pathway, or that a hiatus exists within the uppermost part of the Maastrichtian of M-
10X.
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Appendix |. Percentages of the benthic and planktic taxa in E-5X calculated separately
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Appendix lI. Percentages of total foraminiferal abundance in E-5X
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A dix lll. P t of the benthic and planktic taxa in M-10X calculated separately
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Appendix IV. Percentages of total foraminiferal abundance in M-10X

M-10X (%)
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