A stratigraphic study of the Palaeogene succession East of the Central Graben in the Danish North Sea sector: executive summary

P. Schiøler, J. Andsbjerg, K. Dybkjær, L.E. Kristensen and J.A. Rasmussen

GEUS

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND MINISTRY OF THE ENVIRONMENT

A stratigraphic study of the Palaeogene succession East of the Central Graben in the Danish North Sea sector: executive summary

P. Schiøler, J. Andsbjerg, K. Dybkjær, L.E. Kristensen and J.A. Rasmussen

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND MINISTRY OF THE ENVIRONMENT

Contents

Introduction	3
Aims	4
Material and methods	5
Biostratigraphy	5
Lithology and sedimentology	6
Petrophysical data	6
Seismic interpretation	7
Results	8
Biostratigraphy	8
Lithostratigraphy	8
Conclusion	10
References	11
Figures	12

Introduction

The results from the EFP 2000 project on the stratigraphy of the Palaeogene succession in the central and eastern North Sea is presented in this volume by four reports, three of which represent manuscripts at various stages of preparation for submission to international journals. This introductory summary outlines the main results obtained and provides an overview of the project.

Aims

The main aim of the project was to improve existing knowledge of Palaeogene hydrocarbon prospects in the Danish North Sea sector through a multidisciplinary geological study of the stratigraphic succession East of the Central Graben. Fulfilment of the main aim required an improved understanding of the nature, morphology and distribution of the Palaeogene sediment bodies as well as an improved biostratigraphic framework to determine their age relationship. Therefore, the project has focussed on a lithostratigraphic description of the succession encountered, with special emphasis on the morphology and distribution of sand bodies, and on the creation of a consistent and robust biostratigraphical framework for the Palaeogene. Hence, the establishment of a revised lithostratigraphy for the Danish North Sea sector became a unifying aim for the project.

The subject areas within the project were:

- 1) The creation of an improved biostratigraphical framework
- 2) A detailed log interpretation and correlation
- 3) The establishment of a revised lithostratigraphic scheme

The results are summarised overleaf. As the well coverage East of the Central Graben is scattered, it has been necessary to build on data from Central Graben wells also in order to meet the aims of the study.

As the revised lithostratigraphy presented in report 2003/72 encompasses confidential well data the summary of the revised lithostratigraphic framework below is necessarily generalised.

Material and methods

Biostratigraphy

Biostratigraphic consultancy reports on 29 selected North Sea wells have been reassessed in order to create a biostratigraphic platform for the Palaeogene interval. A database has been created encompassing the results of the reassessment. Further biostratigraphic sample material from 11 North Sea well has been prepared for palynology and microfossils at GEUS in order to cast further light on the biostratigraphic event succession. When available and needed, core material was prepared and study result incorporated. These data have also gone into the database.

Wells reassessed (see Fig. 1a for well location):

Alma-1 Bertel-1/1a Cleo-1 (partly, Lark Formation only) **Diamant-1** Elna-1 Frida-1 Gert-1 Gulnare-1 Gwen-2 Ibenholt-1 Ida-1 Inez-1 Karl-1 Kim-1 Lone-1 (partly, Lark Formation only) Mona-1 Nini-1 Nora-1 (partly, only microfossils) Rigs-1 Roxanne-1 S-1x Sandra-1 Saxo-1 Siri-2 Tabita-1 Tordenskjold-1 Vanessa-1 Wessel-1 (partly, only palynology) Westlulu-3

Additional well material prepared at GEUS (see Fig. 1a for well location):

Alma-1 (palynology) Francisca-1 (palynology and microfossils) Frida-1 (palynology and microfossils) Ida-1 (palynology) Inez-1 (palynology) Karl-1 (palynology) Roxanne-1 (palynology and microfossils) S-1x (palynology and microfossils) Sandra-1 (palynology) Ugle-1 (palynology and microfossils) Wessel-1 (palynology)

Lithology and sedimentology

Inspection of cuttings samples from the following 16 key wells has formed the basis for the lithological study (see Fig. 1a for well location):

Alma-1 Bo-1 Cecilie-1 Cleo-1 Gert-1 Inez-1 Karl-1 Kim-1 Lone-1 Mona-1 Nora-1 Rigs-1 Saxo-1 Siri-2 Tabita-1 Westlulu-3

Detailed sedimentological studies have been carried out on the Francisca-1 core by GEUS staff and on cored sections from 20 wells drilled in the Siri submarine Canyon system by DONG E&P staff.

Petrophysical data

Petrophysical logs from all seventy wells shown in Fig. 1a have been studied and correlated. Five key correlation panels was constructed and served as the backbone of the well correlation. The correlation panels illustrate the morphology and extent of individual units in the Palaeogene sediment package. The five correlation panels are enclosed with report 2003/72 as Enclosures 1–5, the location of the 5 correlation lines is shown on Fig. 1b herein. The panels encompass the wells:

Saxo-1, Lone-1, Gert-1, Mona-1, Westlulu-1, Cleo-1, Siri-1, Sandra-1, Ibenholt-1, Ida-1, Inez-1 (Enclosure 1)

Westlulu-3, Tabita-1, Gulnare-1, Adda-1, G-1x, Alma-1x, Tove-1 (Enclosure 2)

Lone-1, Sten-1, Diamant-1, Ravn-1, Falk-1, Edna-1, John Flanke-1 (Enclosure 3)

Nini-3, Nolde-1, Sandra-1, Siri-1, Frida-1, L-1x, V-1x, Alma-1x, John Flanke-1 (Enclosure 4)

K-1x, F-1x, Inez-1, R-1x, S-1x (Enclosure-5)

Seismic interpretation

Seismic profiles from the surveys CGD85, DK-1, RTD81-RE94, UCG96 and UCGE97 were interpreted in the present project. The interpreted profiles were used to further guide the petrophysical well correlation and to determine the spatial distribution of stratigraphic units in areas with only scattered well coverage.

Results

Biostratigraphy

The palynological and micropalaeontological studies undertaken in this project has resulted in the establishment of a robust, yet detailed, succession of key palynological and microfossil events (Fig. 2a–c). The majority of samples dealt with in the project are cuttings samples which are notoriously subject to downhole contamination. Therefore, focus has been on first downhole occurrence (FDO =highest stratigraphic occurrence) of taxa. The downhole event succession established has been correlated with the major zonation schemes covering the area, with international chronostratigraphy and with geochronology (Fig. 2a–c, 3a–c).

The FDO succession established has been used to support the petrophysical log correlation of the present project and to date the lithostratigraphic units in a more precise and consistent way than previously possible.

Lithostratigraphy

A revised lithostratigraphic scheme for the siliciclastic Palaeogene succession of the Danish North Sea sector has been established based on the results from the log correlation and examination of cuttings samples, supported by new biostratigraphy and seismic interpretation (Fig. 4). The revised lithostratigraphy builds on the initial lithostratigraphic subdivision by Deegan and Scull (1977), and takes advantage of the subsequent improvements of that subdivision by Hardt *et al.* (1989), and Knox and Holloway (1992) (see Fig. 5 for correlation between the revised lithostratigraphy and the lithostratigraphy of other authors).

The lithostratigraphy presented in Fig. 4 has its genetic base at the top Chalk Group surface. Although the uppermost formation of the Chalk Group, the Ekofisk Formation, is of Early Palaeocene (Danian) age and therefore belongs to the Palaeogene Period by definition, the present study does not deal with that formation. The reason for this omission is that the Ekofisk Formation, like the rest of the Chalk Group, represents an entirely different sedimentary regime, far from that of the overlying siliciclastic sediments both by nature, depositional mechanism and host basin configuration. The top of the study section is constituted by the Mid-Miocene Unconformity, a basin-wide erosional surface that separates two thick and very different sediment packages, the Oligocene to mid-Miocene Hordaland Group and the Mid-Miocene to Recent Nordland Group.

The study section has been subdivided into 7 formation containing 11 new members. Vaale, Lista, Sele, Fur, Balder, Horda and Lark Formations of previous lithostratigraphic schemes are adequate for a subdivision of the Danish sector at formation level and are retained herein largely unchanged. Bor is a new sandstone member of the Vaale Formation. The Lista Formation is subdivided into the three mudstone members Vile, Ve and Bue

and the three new sandstone members Gerd, Idun and Rind. Sif is a new sandstone member of the Sele Formation. Nana is a new sandstone member of the Horda Formation. The two new sandstone members Freja and Dufa are established in the Lark Formation. Type and reference sections are erected for the new members, and Danish reference sections are established for the formations. Isochore maps have been produced for each unit and detailed sedimentological descriptions are provided whenever core material has been available.

The revised lithostratigraphy is correlated with Danish onshore stratigraphic units and with the sequence stratigraphic scheme for the Eastern North Sea of Michelsen et al. (1998).

Conclusion

The EFP 2000 project on the stratigraphy of the Palaeogene succession in the central and eastern North Sea has resulted in:

- A revised and refined, integrated biostratigraphic scheme based on first downhole occurrence of microfossils and dinoflagellate cysts. The scheme is calibrated with geochronology.
- 2) A revised lithostratigraphic subdivision of the Palaeogene siliciclastic sediments in the Danish North Sea sector that include the establishment of eleven new members.
- 3) An improved understanding of the distribution and age-relationship of the lithological units of the Palaeogene sediment package, in particular its sandstone bodies.

References

- Deegan, C.E., Scull, B.J., 1977. A standard lithostratigraphic nomenclature for the Central and northern North Sea. Institute of Geological Sciences Report 77/25, NPD Bulletin 1, pp. 36.
- Hardt, T., Holtar, E., Isaksen, D., Kyllingstad, G., Lervik, K.S., Lycke, A.S., Tonstad, K., 1989. Revised Tertiary Lithostratigraphic Nomenclature for the Norwegian North Sea. In: Isaksen, D., Tonstad, K. (Eds), A revised Cretaceous and Tertiary lithostratigraphic nomenclature for the Norwegian North Sea. NPD Bulletin 5, 35–55.
- Knox, R.W.O'B., Holloway, S., 1992. 1. Paleogene of the Central and Northern North Sea. In: Knox, R.W.O'B., Cordey, W.G. (Eds), Lithostratigraphic nomenclature of the UK North Sea. British Geological Survey, Nottingham. pp. 133.
- Michelsen, O., Thomsen, E., Danielsen, M., Heilmann-Clausen, C., Jordt, H., Laursen, G., 1998. Cenozoic sequence stratigraphy in the eastern North Sea. In: de Graciansky, P.-C, Hardenbol, J., Jacquin, T., Vail, P.R., Farley, M.B. (Eds), Mesozoic and Cenozoic sequence stratigraphy of European Basins. SEPM Special Publication 60, Tulsa, pp. 91– 118.

Figures

- Fig. 1a. Well location map showing all wells used in the study.
- Fig. 1b. Position of log panels shown as enclosures 1–5 of GEUS Report 2003/72 (this Volume).
- Fig. 2a. Paleocene chronostratigraphy and biostratigraphy. The chronostratigraphy is based on the scheme of Berggren *et al.* (1995). The majority of the selected microfossil and dinoflagellate events are chronologically placed according to the age estimates by Hardenbol *et al.* (1998, chart 3). In the microfossil event column, the planktic foraminiferid events have been written in normal, benthic foraminiferids in italics and diatoms and radiolarians are underlined. The microfossil events are correlated with the biostratigraphic zonation of King (1989), and - together with the dinoflagellate events - further correlated with the main lithostratigraphic units (full references may be found in the reference list of GEUS Report 2003/72, this Volume).
- Fig. 2b. Eccene chronostratigraphy and biostratigraphy. Explanation as in Fig. 2a.
- Fig. 2c. Oligocene and Lower to Middle Miocene chronostratigraphy and biostratigraphy. Explanation as in Fig. 2a.
- Fig. 3a. Correlation of selected Paleocene biostratigraphic standard biozones and North Sea biozones. The standard biozones are adopted from Berggren and Miller (1988) with later revisions of Berggren *et al.* (1995) (planktic foraminiferids) and from Martini (1971) (nannoplankton). The correlation follows the scheme by Hardenbol *et al.* (1998). The North Sea biozones, which serve as a biostratigraphical base for the present paper, are adopted from King (1989) (foraminiferids) and Costa and Manum (1988), Köthe (1990) and Mudge and Bujak (1996) (dinoflagellates) (full references may be found in the reference list of GEUS Report 2003/72, this Volume).
- Fig. 3b. Correlation of selected Eocene biostratigraphic standard biozones and North Sea biozones. Explanation as in Fig. 3a.
- Fig. 3c. Correlation of selected Oligocene and Lower to Middle Miocene biostratigraphic standard biozones and North Sea biozones. Explanation as in Fig. 3a.
- Fig. 4. Revised stratigraphic column for the Palaeogene of the Danish North Sea sector.
- Fig. 5. Stratigraphic correlation between key lithostratigraphic schemes for the Central and Eastern North Sea, formations and members.

Fig.1a

	Chro (Berg	onostr ggren (atigra et al. 1	phy 995)	Selected biostra used in the	North Sea Biozones (King, 1989)				Litho- strati-		
Tim (Ma	Time (Ma)		ries	Stages	Planktic foraminifera Benthic foraminifera Diatoms and radiolaria	Dinoflagellate cysts	Planktic micro- fossils		Benthic micro- fossils		graµ Fm.	ohy Mb.
50	e des De <mark>lanti</mark>						NSP	6	NSE	34		
	8	oars)	ars)		Cancris sp. A Uvigerina batjesi Turrillina brevispira Gaudrvina biltermanni	Dracodinium varielongitudum	NSP	5b	NSB	3b	Hor	da
		cene (r	wer (p	Ypresian (<i>pars</i>)	Abundant Subbotina ex gr. linaperta	Intervention Icondylus Hystrichosphaeridium Tubiferum, common	NSP	5a	NSB	3a		
55		Eo	Ľ	55.5	Fenestrella antiqua, Foraminiterids Very rare common <u>F. antiqua and</u> <u>Coscinodiscus morsianus</u>	Deflandrea oebisfeldensis acme Cerodinium wardenense Apectodinium augustum A. augustum, acme Apectodinium	NSP	•4	NSE	12	Balo	ler le
			pper	Thanet- ian 57.9	Impoverished benthic agglutinated assembl.	Alisocysta margarita Acme Areoligera gippingensis Palaeoperidinium pyrophorum	NSP	3		c	Lista	Bue Ve
60	-	cene	5	Seland- ian	Increasing diversity of calcareous benthic foraminifera	▼ Isabelidinium? viborgense	NSP	י2 		Б		Vile
	13 -11	Paleo	- 	60.9 —	Increasing calcareous	Spiniferites "magnificus" Alisocysta reticulata	8	с Ь	NSB1		Vaa	1le
			Lower	Danian	Globoconusa daubjergensis	Senoniasphaera inomata	NSP1	а		a	Ek fis	o- ik
65		Cretaceous (pars)	Upper (pars)	65.0 — Maastricht- ian (<i>pars</i>)	Cretaceous foraminiferids	Cretaceous palynomorphs		L	L	I	Τα	ər

Chronostratigraphy			Standard biozones			North Sea biozones							
	(Berggren <i>et al.</i> 1995)					4 18), 1 al.	Martini (1971)	ĸ	King (1989)			Costa & Manum (1988)/ Köthe (1990), Mudge & Bujak (1996)	
Tim (Ma	Time (Ma) Series		Stages	Planktic micro- fossils		Calcareous nanno- fossils	Plank micr fossi	tic o- ils	Benthic micro- fossils		Dinoflagellate cysts		
50	1 1				P9		NP13	NSP	6	NSE	14	E3c E3b	
		rs)	6		P8			NSP5b		NSB3b		E3a	
		Da	ar		P7		922444				_	E2c	
) (9	Ypresian	''		NP12	220-285	89	5 11 10 10 10 10 10 10 10 10 10 10 10 10	-	E2D	
		ů	er	(pars)		\cap		NSP	5a	NSB	3a		
		S	Ň		P6	b	NP11					E2a	
		В	Ľ									E1c E1b	
EE			8			a	NP10	NSP	NSP4		2	E1a	
55	30 			55.5	P5								
	_		Upper	Thanet- ian — 57.9 — Seland- ian	10	L	NP9				100	P6	
		i.					NP8						
					P4	NP7	NSP	SP3		C	P5		
	-				— 57.9 —		а	NP6					P4
		ocene			Seland- ian P3	P3	ь	NP5	NSP2				P3
60					1.2	a			¢ NS	NSB1	b	a = 30. = 2	
ĺ		le		60.9	P2		c NP4						
		ĥ			5.0			NSP1	b			P2	
	-		5			C			1.				
	-		Š	Danian	P1	\vdash	NP3				a		
			۲			b			а		a	P1	
	9 70- 8	2	100000		$P\alpha + P0$		NP2		2				
65				65 -	*	a	NP1						
		Cretaceous (pars)	Upper (<i>pars</i>)	Maastricht- ian (<i>pars</i>)	Abatho phalu mayaroe	m- s nsis	CC26 CC25 (pars)	. Pseu	ıdot eleg	extulari ans	a		

Chronostratigraphy			Standard biozones			North Sea biozones					
1	(Berggren et al. 1			995)	Berggren 8 Miller (1968 Berggren ef (1995)	8 1), al.	Martini (1971)	King	(1989)	Costa & Manum (1988)/ Köthe (1990), Mudge & Bujak (1996)	
Time ((Ma)	Series		Stages	Planktio foraminife	c era	Calcareous nannofossils	Planktic microfossils	Benthic microfossils	Dinoflagellate cysts	
30		ırs)	ars)			-				D14	
	8	. (pa	er (p	Rupelian			NP23	NSP9b	NSB7a	D13	
	_	Oligo	Love	(parc)	P18	ł	NP22	NSP9a	NSB6b	Costa & Manum (1988) / Köthe (1990)	
7				33.7	P17		NP21	NSP8c		Mudge & Bujak (1996)	
35	4		per	Pria- bonian	P16		NP19-20		NSB6a	¥ E8b	
8	<u></u>		3				NP18	NSP8b		E8a	
				37.0	P15			ć.	NSB5c		
	Ī			Barton-	P14		NP17				E7b
40	<u></u>			Ian	P13	_		NSP8a		1 	
	1			41.3			NP16		NSB5b	E7a E6c	
			dle		P12						
	<u>17 - 18</u>	ne	Mid	Lutetian			201 - 2 - 2 - 2			EoD	
45	0	Eoce			P11		P11		NP15	NSP7	
	<u>e</u>	-			2				NSB5a	E4c	
	<u></u>				P10					E4b	
				49.0			NP14			E4a E3d	
50	W1027				P9			NSP6	NSB4	E3c F3b	
50	_				P 8		NP13	NSP5b	NSB3b	E3a E2c	
	=		ver	Ypresian	P7		NP12			E2b	
			Lo		ь		NP11	NSP5a	NSB3a	E2a	
	-				-0	a	NP10			E1c E1b	
55	_	ġ	e	55.5	P5		NP9	NSP4	NSB2		
		Pale	ddN	(pars)	P4	C					

Deegan & Scull, 1977	Bang & Kristoffersen 1982	Hardt et <i>al.,</i> 1989	Knox & Holloway, 1992	This study	Michelsen	et al., 1998	
Nordland Group	CEN5	Nordland Group	Nordland Group	Nordland Group	7	Coastal onlap ◀──Basinward	
				ΛΛΛΛ	6	6.3 6.2 6.1	
	CEN4	2.5	Lark	Lark	5	5.4 5.3 5.2 5.1	
Hordaland Group		Vad		A VIII	4	4.4 4.3 4.2	
		Hordaland	Horda		- 3		
Frigg	CENS		Group	Tay	Horda	2	
Balder		Balder	Balder	Balder			
Sele	CEN2	Fiskebank	Sele	Sele		1.2	
Lista	CEN1	Lista	Lista	Bue Provide State	1	1.1	
Unnamed Unit	North Sea Marl	Våle	Maureen	Vaale			
Ekofisk	Ekofisk	Ekofisk	Ekofisk	Ekofisk	Ekofisk		