PGE and sulphide phases of the precious metal mineralisation of the Skaergaard intrusion

Part 5: sample 90-23A, 808

T. F. D. Nielsen, H. Rasmussen, N. S. Rudashevsky, Yu. L. Kretser and V. N. Rudashevsky

PGE and sulphide phases of the precious metal mineralisation of the Skaergaard intrusion

Part 5: sample 90-23A, 808

T. F. D. Nielsen, H. Rasmussen, N. S. Rudashevsky, Yu. L. Kretser and V. N. Rudashevsky

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND MINISTRY OF THE ENVIRONMENT

Content

Content	2
Abstract	3
Introduction	4
The Platinova Reef of the Skaergaard intrusion	4
The Pd5 level	5
Sample 90-23A, 808	5
The mineralogical report	6
References	6
Mineralogical investigation	7
Introduction	7
The sample	7
Analytical techniques	7
Results	7
Rock forming minerals and sulphide mineralogy	7
Silicates and oxides	7
Sulphides	8
PGMs and Au-minerals: recovery, grain size and relations to host rock	8
Recovery	8
Grain size of PGMs and Au-minerals	9
Petrographic observations	10
Description and chemistry of PGMs and Au-minerals	10
Zvyagintsevite	10
Pd-arsenides	11
Au-minerals	13
Other PGMs	13
Order of crystallisation and parageneses	13
Bulk rock concentrations	14
References	15
Rock-forming minerals	16
Sulphides	16
Precious metal minerals	16

Abstract

The Paleaogene Skaergaard intrusion, 68°N, in East Greenland hosts a large tonnage, lowgrade, precious metal mineralisation. The Pd5 level of the mineralisation contains more than 20 million ounces of palladium and minor platinum and gold. The Pd:Pt:Au ratio is ca. 83:9:7.The report presents the results of mineralogical investigations of sample 90-23A 808 (core 90-23A from 808 to 809 meters) from just below the most palladium-rich one-meter interval in the main Pd-level in the mineralisation.

The non-magnetic heavy concentrates of sample 90-23A 808 (0.71 kg) were subjected to separation using HS-01 Hydroseparator technology. From the concentrates enriched in platinum group and Au-minerals were prepared polished thin sections. The thin sections were investigated under the scanning electron microscope and the electron microprobe. The magnetic concentrates contain no precious metal grains, except for rare grains intergrown with Fe-Ti-oxides.

The sample was found to contain 115 precious metal grains, including 112 grains of platinum group minerals (PGMs) and 3 grains of Au-minerals. The dominant PGM is zviagint-sevite (Pd₃Pb, 73%), followed by guanglinite (Pd3As; 8%) and vasilite (Pd₁₂Cu₄S₇; 6%). The grain size of PGMs and Au-minerals varies between 1 and 69 μ m with an average of 15 μ m.

The HS-concentrates contain spherical sulphide grains identified as sulphide droplets composed of one or more of the Cu-sulphides bornite (dominant), chalcopyrite, chalcosine and digenite. But most of the sulphides are related to the interstitial domains and they are most commonly related to a secondary paragenesis characterized by H_2O -bearing silicate phases and matrix Fe-Ti oxides. Rare grains of sphalerite, arsenopyrite and galena have been observed.

Most of the identified PGMs grains are grains of zviagintsevite, often in close association with H_2O -bearing phases. Very often zviagintsevite is euhedral and clearly coexists with the H_2O -bearing re-equilibration paragenesis, that was probably the result of reaction between trapped late stage hydrous fluids and the primary silicates, Fe-Ti oxide phases and PGM-bearing, immiscible, sulphide droplets formed from the interstitial silicate magma.

The possibly primary PGMs are founds as inclusions in zviagintsevite and single grains of PGMs that were probably liberated from rims of preserved liquidus phases. They include Pd-arsenides and unnamed PdCu.

Introduction

The report describes the mineralogy of sample 90-23A 808 from the lower palladium horizon in the "Platinova Reef" of the Skaergaard intrusion. The report consists of an introduction to the mineralisation and the investigated sample and a mineralogical report. The mineralogical report has been prepared by N.S. Rudashevsky, Yu.L. Kretser and V.N. Rudashevsky on the request of the geological Survey of Denmark and Greenland.

The mineralogical report is based on concentrates of platinum group metal phases produced using the patented Hydroseparator HS-01. Mounts with concentrate have been studied using electron microscopy and electron microprobe. The report gives descriptions of the grain characteristics, the parageneses and the compositional variation within the identified groups of minerals, alloys and sulphide-droplets.

T.F.D. Nielsen has edited the report.

The Platinova Reef of the Skaergaard intrusion

The Skaergaard intrusion precious metal mineralisation, often referred to as the "Platinova Reef", is a gabbro-hosted, stratiform Au and PGE mineralisation in the macrorythmic Triple Group of the Skaergaard intrusion (Bird et al., 1991). The Triple Group forms the upper c. 100 meters of the Middle Zone in the Layered Series in the intrusion. The host rocks are well-preserved oxide-rich tholeiitic gabbros.

The mineralisation was located in 1987 by Platinova Resources Ltd. Exploration was conducted by Platinova Resources Ltd. and partners from 1986 to 1990. Exploration drilling was carried out in 1989 (DDH 89-01 to DDH 89-9b) and in 1990 (DDH 90-10 to DDH 90-27). Exploration results are summarised in Watts, Griffis and McOuat (1991).

The general structure of the Platinova reef mineralisation is described in Andersen et al. (1998) and in Nielsen (2001). Peak concentrations of Au and Pd are separated by less that 1 meter at the margin of the intrusion, but by >60 meters in the south, central part of the intrusion.

The mineralisation consists of a series of levels enriched in Pd. The lower Pd5 level reaches across the intrusion. Up the stratigraphy subsequent Pd-levels have everdecreasing lateral extend from a central axis in the south central part of the intrusion. Gabbros between the Pd-levels are not mineralised. The structure is best visualised as a series of bowl-shaped Pd-levels of decreasing size. Gold is concentrated at the edges of the bowls. Nielsen (2001) gives further descriptions.

The Pd5-level in the mineralisation is estimated to contain in excess of 300 million tons of gabbro with *c*. 2 g/t PGE over a width of 5 meters. The Pd5 mineralisation alone is suggested to contain > 20 million ounces of precious metals equivalent to >600 tons of palladium, >40 tons of platinum and >30 tons of gold (Nielsen, 2001).

The Pd5 level

The Pd5-level contains the main Pd mineralisation and is located within a macrorythmic layer located below L1 of the Triple Group. The leucogabbro layer in the megacycle below L1 is unofficially named L0.

The Pd variation across Pd5 is quite characteristic and paralleled in all investigated cores and chip lines from the intrusion. Relative changes in Pd/Pt can be correlated across the intrusion (see Nielsen, 2001).

The hanging wall 1 g/t cut-off of the mineralisation is located in the middle of L0 and the foot wall 1 g/t cut-off is located at the density peak below L0. In most cores the distance between foot wall and hanging wall is 5 meters (based on 1-meter average concentrations of Pd). The Pd variation over the 5-meter mineralisation interval is paralleled in all cores from a 19 km² area (Nielsen, 2001). The Pd concentration increase slowly from 1 g/t over the first 3 meters, to levels of 3-6 g/t at *c*. 4 meters above the foot wall before Pd rapidly decreases to less that 1 g/t above the hanging wall 1 g/t cut-off (Nielsen, 2001).

Sample 90-23A, 808

Sample 90-23A 808 was collected from BQ drill core #90-23A. The core was drilled with an azimuth of 35° and an inclination of -70 from top of Nunatak II. Nunataq II is located on the south side of Forbindelsegletscher and close to the eastern contact of the Intrusion. The Hanging wall of the mineralisation (1 g/t cut-off) is located at 806 meters and the foot wall at 811 meters.

Sample 90-23A, 808 collects the 1-meter interval between 808 and 809 meters, just below the maximum concentration of Pd in the Pd5-level. The average Pd concentration between 808 meters and 809 meters is 2.3 g/t Pd and an average of combined PGE plus Au of 2.5 g/t.

The recovery between 808 and 809 meters is c. 75 %. The core has previously been sampled for other purposes. The sample collects 1/3 of the diameter of the preserved core.

Sample	From	То	Length	Au	Pd	Pt
GEUS	m	m	m	average	average	average
				ppb	ppb	ppb
90-23A 804	804.00	805.00	1.00	85	330	40
90-23A 805	805.00	806.00	1.00	143	790	70
90-23A 806	806.00	807.00	1.00	250	1600	110
90-23A 807	807.00	808.00	1.00	270	2800	140
90-23A 808	808.00	809.00	1.00	52	2300	120
90-23A 809	809.00	810.00	1.00	32	1600	160
90-23A 810	810.00	811.00	1.00	10	1000	90
90-23A 811	811.00	812.00	1.00	10	840	60
90-23A 812	812.00	813.00	1.00	12	900	70

Data from Watt, Griffis and McOuat (1991).

The mineralogical report

The mineralogical investigation has been carried out by N.S. Rudashevsky, Yu.L. Kretser and V.N. Rudashevsky on request from the Geological Survey of Denmark and Greenland. The mineralogical report has been prepared by N.S. Rudashevsky, Yu.L. Kretser and V.N. Rudashevsky and is edited by T.F.D. Nielsen.

References

- Andersen, J. C. Ø., Rasmussen, H., Nielsen, T. F. D. & Rønsbo, J. G. 1998: The Triple Group and the Platinova gold and palladium reefs in the Skaergaard intrusion: Stratigraphic and petrographic relations. Economic Geology **93**, 488-509.
- Bird, D.K., Brooks, C.K., Gannicott, R.A. & Turner, P.A. 1991: A gold-bearing horizon in the Skaergaard intrusion, East Greenland. Economic Geology **86**, 1083-1092.
- Nielsen, T. F. D. 2001: The palladium potential of the Skaergaard intrusion, South-East Greenland. Report GEUS **2001/23**, 38 pp.
- Watts, Griffis & McOuat 1991: 1990 Skaergaard project, Platinova/Corona concession, East Greenland, 55 pp. with appendixes in volumes 2A, 2B, 3A and 3B (in archive of Danmarks og Grønlands Geologiske Undersøgelse, GRF no. 20848).

Mineralogical investigation

Rudashevsky, N.S., Kretser, Yu.L. and Rudashevsky, V.N. Edited by T.F.D. Nielsen

Introduction

The sample

The drill core sample 90-23A, 808 (0.71 kg by weight) of oxide-rich tholeiitic gabbro with Pd mineralisation from the Skaergaard intrusion was provided for investigation by T.F.D. Nielsen (Geological Survey of Denmark and Greenland). Assays reported by Watts, Griffis and McOuat (1991) indicate average concentrations of 120 ppb Pt, 2300 ppb Pd and 52 ppb.

Analytical techniques

Analytical techniques are described in Nielsen et al. (2003a).

Two polished sections (808-1 and 808-2) were prepared of fragments taken from the submitted core sample. Subsequently the remaining core material was crushed to $-500 \mu m$. After complete grinding, the sample was passed through standard sieves on "Retsch" classifier: -45 μm (149 g), 45-75 μm (116 g), 75-125 μm (142 g) and +125 μm (282 g).

After wet magnetic separation, the powdered fractions with grain sizes -45 μ m, 45-75 μ m and 75-125 μ m were passed through Hydroseparator HS-01. Two polished sections were prepared from the HS-concentrates.

Results

Rock forming minerals and sulphide mineralogy

Silicates and oxides

The only obvious cumulus phase observed in sample 90-23A, 808 is monoclinic ferrous pyroxene with typical exsolution of orthorhombic ferrous pyroxene. Plagioclase (Table 1, analyses 1-2) and Fe-Ti-oxides (Table 1, analyses 3-5) belong to the intercumulus mineral paragenesis. Fine grained polymineral aggregates of H_2O -bearing, secondary, minerals rim

aggregates of Fe-Ti-oxides and occur in veins that cut across grains of rock-forming minerals (Plate 1, #1, 3 and 7; Table 1, analyses 6-8).

Sulphides

The sulphide mineralisation, As observed in polished section 808-1 and 808-2 the suphide content is less than 0.1 %. Sulphides form fine and irregularly distributed grains or aggregates of Cu-Fe sulphides. The aggregates of sulphides of <0.1 mm in size occur as inclusions in the intensively re-equilibrated or re-crystallised grains of the rock-forming minerals (Plate 1, #4-6 and 8-9), and sometimes in the veins that cut across rock forming monerals (e. g., Plate 1, #7). The sulphide-bearing parts of rock-forming silicates (e. g., pyroxene and plagioclase) are intensively replaced by fine-grained aggregates of H₂O-bearing, secondary minerals such as chlorite, actinolite, ferrous talc, hornblende, biotite and quartz (Plate 1, #4-9, Table 1, analyses 7-15). The secondary minerals are closely to the sulphide grains. The Cl-concentrations in hornblede (1.6-2.4 wt.% - Table 1, analyses 7, 11, 14) and biotite (0.2-0.4 wt. % - Table 1, analyses 6, 10) should be noted.

The HS-concentrates are enriched in Cu-Fe sulphide grains of irregular shapes (Plate 2, #1, 3, 9 and 11-15) together with spherical sulphides globules up to 100 μ m in size (Plate 2, #2 and 4-8). The main sulphide mineral is bornite (Plate 2; Table 2, analyses 1-4, 6-7, 9 and 11-12). In some grains bornite is associated with chalcopyrite (Plate 2, #3-5; Table 2, an. 5, 8), chalcosine (Plate 2, #6-9 and 14-15; Table 2, analyses 10 and 16) and digenite (Table 2, analysis 14). Besides of the Cu-Fe sulphides are observed rare grains of galena (Plate 2, #3), arsenopyrite and sphalerite.

The sulphide aggregates are generally associated with H₂O-bearing minerals such as:

- 1) actinolite (Plate 2, #14-15; Table 1, analyses 19-20)
- 2) chlorite (Plate 2, #1, 11-14; Table 1, analyses 21-25)
- 3) ferrous talc (Plate 2, #9 and 16)
- 4) biotite and
- 5) hornblende

The grains-intergrowths of Cu-Fe sulphides with ilmenite and titanic magnetite (Plate 2, #9, 10, 12; Table 1, analyses 16-18) are found in the heavy concentrates too.

PGMs and Au-minerals: recovery, grain size and relations to host rock

Recovery

In the polished sections was found several very fine grains (<10 μ m) of the PGMs *zvyagintsevite* and *arsenopalladinite*. They occur together with bornite as inclusions in ilmenite (Plate 1, #2), and also within aggregates of H₂O-bearing secondary silicates and quartz (Plate 1, #4-5).

The HS-concentrates of sample 90-23A, 808 yielded a large number of PGE and Auminerals including 112 PGM grains and 3 grains of Au-minerals (Table 3). The majority of the grains of precious metal minerals are represented by:

- 1) zvyagintsevite,
- 2) Pd-arsenides including:
 - a) arsenopalladinite
 - b) guanglinite
 - c) palladoarsenide

More rarely observed precious metal minerals include:

- 1) vasilite
- 2) vysotskite
- 3) keithconnite
- 4) isomertieite
- 5) sperrylite
- 6) bogdanovite
- 7) unnamed PdCu
- 8) (Au-Cu-Pd)-alloy
- 9) (Pd-Pt-Cu)-alloy
- 10) (Pt-Fe-Pd)-alloy

In total, 14 different precious metal minerals are documented in the sample 90-23A, 808 (Table 3).

Taking the size of the grains into account the volume rations of the PGM and Au.minerals are as follows (se also Table 3 and Fig. 1):

Mineral or group	Volume %
zvyagintsevite	73.0
Pd-arsenides	12.0
vasilite	6.0
vysotskite	4.0
(Au-Pd-Cu-Ag)-alloys	1.9
unnamed PdCu	1.0
keithconnite	0.5
isomertieite	0.7
others	ca 1

Grain size of PGMs and Au-minerals

The grain size (E.C.D.) of the precious metal mineral grains in sample 90-23A, 808 varies from around 2 to 69 μ m, with an average of 15 μ m (Table 3; Fig. 2). The occurrence of small, liberated grains (5-10 μ m) of precious metal phases in the HS- (Plate 3, #24-28 and Plate 4, #4, 8, 11-13 and 22) demonstrates the efficiency of the preparation techniques.

Petrographic observations

In the HS-concentrates PGMs occur as:

- 1) monominerallic grains (Plate 3, #24-30, 32, 34-36, 38-43, 45 and 57; Plate 4, #15 and 21-23; Plate 5, #6, 17-20, 13, 15-17 and 20)
- 2) in intergrowths with sulphides including:
 - a) bornite, most common (Plate 3, #1, 6, 8-10, 12-23, 31, 33, 37, 46-50, 52-56, 60, 62-63 and 65; Plate 4, #1-4, 6-7, 9, 17 and 20; Plate 5, #1-3, 5, 7-9, 13 and 21);
 - b) chalcopyrite, rare (Plate 3, #13; Plate 5, #5),
 - c) chalcosine, rare (Plate 3, #14-15; Plate 4, #9; Plate 5, #2 and 7),
 - d) digenite, rare (Plate 3, #54).

Many polymineral intergrowths of PGMs and (Au-Cu-Pd-Ag) alloys with different silicates and oxides were found in the HS-concentrates: usually with H₂O-bearing silicates such as:

- 1) actinolite (Plate 3, #6-8, 17, 44 and 58; Plate 4, #2 and 9; Plate 5, #9, 12 and 14)
- 2) chlorite (Plate 3, #9-12, 14, 46 and 53; Plate 5, #7)
- 3) ferrous talc (Plate 3, #6 and 50)

and more rarely with rock-forming minerals such as:

- 1) ilmenite (Plate 3, #1-5 and 49; Plate 5, #4, 11 and 14)
- 2) magnetite (Plate 3, #9 and 11; Plate 5, #7 and 12)

Many polymineral intergrowths of different PGMs (Plate 3, #59-65; Plate 4, #6, 16 and 18-20; Plate 5, #8-10) and (Au-Cu-Pd-Ag)-alloys (Plate 4, #7; Plate 5, #14-16) were also observed.

In the HS-concentrates palladoarsenide (Plate 4, #21-23) and unnamed PdCu (Plate 5, #17-19) only occur as individual monominerallic grains.

Description and chemistry of PGMs and Au-minerals

Zvyagintsevite

Description

Zvyagintsevite is in the HS-concentrates found as:

- 1) anhedral grains (Plate 3, #1-4, 6-44, 46, 48-54 and 56-65), sometimes as
- 2) euhedral crystals (Plate 3, #45, 47 and 55) varied from around 2 to 69 μm , with an average of 16 μm (Table 3).

The majority of its grains is not associated with other PGMs (Plate 3, #1-58). zvyagintsevite occurs commonly in intergrowths with:

1) guanglinite (Plate 3, #59-64; Plate 4, #16)

and also with:

- 2) keithconnite (Plate 3, #65; Plate 5, #14), and with
- 3) Au-Cu-Pd alloy (Plate 5, #14).

Mineral chemistry

The composition of zvyagintsevite varies from Pd_3Pb (Table 4, analyses 5, 27, 37, 48, 50, 54, 56, 58-59 and 64) to a suite compositions characterized by of substitutions. Both Pd and Pb are substituted to variable extend. The variations can be summarized as follows:

site	Substituting element	Max. admixture (wt %)	Analysis in Table 4
Pd	Pt	6.8	26
Pd	Au	7.8	6
Pd	Cu	1.5	49
Pd	Fe	1.7	38 and 60
Pb	Sn	3.7	31
Pb	As	7.5	7
Pb	Те	2.6	55

Zoned and very heterogeneous grains of zvyagintsevite are have been observed (Plate 3, #60; Table 4, analyses 50 and 51). The average chemical composition of zvyagintsevite (Table 4) is:

Element	Wt %
Pd	57.10
Pt	0.81
Au	0.43
Cu	0.22
Fe	0.62
Pb	39.10
Sn	0.60
Те	0.06
As	0.19
Total	98.69

The composition corresponds to the structural formula:

 $(Pd_{2.86}\ Fe_{0.06}Pt_{0.02}Cu_{0.02}Au_{0.01})_{\Sigma 2.97}(Pb_{1.01}Sn_{0.01}As_{0.01})_{\Sigma 1.03}.$

Pd-arsenides

Description

Pd-arsenides are in the sample 90-23A, 808 represented by 3 mineral phases (Table 3; Fig. 1):

- 1) Arsenopalladinite, common, grain size between 7 to 19 μ m and with an average of12 μ m (Plate 4, #1-8 and 20; Plate 5, #15)
- 2) Guanglinite, common, grain size between 3 to 42 μ m and with an average of 13 μ m, (Plate 3, #59-64; Plate 4, #9-20)
- 3) Palladoarsenide, rare; grain size between from 8 to 10 μ m and with an average of 9 μ m (Plate 4, #21-23)

Pd-arsenides mostly form anhedral grains (Plate 4, #1-5, 9-17 and 19-23), but euhedral crystals can also be found (Plate 4, #6-8 and 18). Arsenopalladinite and guanglinite are in the HS-concentrates found as individual PGM grains (Plate 4, #1-5, 8-15 and 17). Some may contain fine inclusions of sperrylite (Plate 4, #6 and 18-19). Pd-arsenides occur in intergrowth with:

- 1) other Pd-arsenide(s) (Plate 4, #20),
- 2) zvyagintsevite (Plate 3, #59-64, Plate 4, #16),
- 3) isomertiete (Plate 4, #20),
- 4) (Au-Cu-Pd-Ag)-alloys (Plate 4, #7; Plate 5, #15).

Palladoarsenide has not been observed in direct contact with any other precious metal minerals.

Mineral chemistry

Microprobe analyses of Pd-arsenides are calculated as:

- 1) arsenopalladinite: Pd₈As₃ (Table 5, analyses 1-7 and 18)
- 2) guanglinite: Pd_3As (Table 5, analyses 8-17 and 19-20)
- 3) palladoarsenide: Pd_2As (Table 5, analyses 21-3)

The analyses show that most of the Pd-arsenides have substitution by other elements. Observed substitution include:

Site	Substituting	Max. admix-	Analysis in			
	element	ture (wt%)	Table 5			
Pd	Au	1.4	14			
Pd	Cu	4.6	22			
Pd	Fe	3.0	23			
As	Sn	4.8	19			
As	Pb	19.1	13			
As	Те	9.5	9			
As	Sb	3.3	6			

Au-minerals

Only four grains of Au-minerals were located in the HS-concentrates (Fig. 2, Table 3) and include:

- 1) bogdanovite, two grains (Plate 5, #15-16; Table 6, analyses 2-3) and one grain of
- 2) (Au-Cu-Pd)-alloy, one grain (Plate 5, #14; Table 6, analysis 1), as well as
- 3) fine inclusion of (*Au-Ag*)- alloy in arsenopalladinite (Plate 4, # 7).

Bogdanovite is in close associations with arsenopalladinite and (Pt-Fe-Pd)-alloy, whereas (Au-Cu-Pd)-alloy is in association with keithconnite and zvyagintsevite.

Other PGMs

Other PGMs identified in sample 23A 808 can be divided in two groups:

- 1) minerals, that are closely associated with the main PGMs, zvyagintsevite and Pdarsenides, or Au-minerals. They include:
 - a) sperrylite (Plate 4, 6, 18, 19; Table 3; Table 5, analysis 24)
 - b) isomertieite (Fig. 2;Plate 4, 20; Plate 5, #11-13; Tabe 3; Table 5, analyses 25-28)
 - c) keithconnite (Fig. 2; Plate 3, #65; Plate 5, #9, 10, 14; Table 3; Table 5, analyses 29-31)
 - d) vasilite (Fig. 2; Plate 5, #5-10; Table 3; Table 6, analyses 12-17)
 - e) Pt-Fe-Pd alloy (Plate 5, #6)
- 2) minerals that have not been related yet to any other precious metal minerals of the investigated sample. They include:
 - a) vysotskite (Fig. 2; Plate 5, #1-4; Table 3; Table 6, analyses 18-20)
 - b) unnamed PdCu (Fig. 2; Plate 5, #17-19; Table 3; Table 6, analyses 9-11)
 - c) Pd-Pt-Cu alloy (Plate 5, #20-21; Table 3; Table 6, analyses 5-7)

Order of crystallisation and parageneses

The SE images and the descriptions above strongly suggest that sperrylite and isomertieite are contemporaneous with Pd-arsenides. This is indicated by their intergrowths with guanglinite and arsenopalladinite (Plate 4, #6 and 18-20). These phases could, as may monominerallic grains of, e. g., unnamed PdCu represent early magmatic PGM phases that were preserved as inclusions in rock forming minerals. In Nielsen et al. (2003a), that describes sample 90-23A 807 just above the present sample, a Pd-arsenide paragenesis predates the dominant zvyagintsevite paragenesis.

To zviagintsevite and (Au-Cu-Pd)-alloys is associated keithconnite (Plate 3, #65; Plate 5, #14), vasilite (Plate 5, #9-10) and (Pt-Fe-Pd)-alloy (Plate 5, #16). These phases are intimately associated and crystallised together with zvyagintsevite. With reference to Nielsen et al. (2003a and d) this paragenesis is suggested to represent a re-equilibration paragene-

sis that coexists with the high temperature metasomatic paragenesis of H_2O -bearing silicates.

Bulk rock concentrations

The whole-rock PGE plus Au combined concentration is 2472 ppb. Based on the recovered minerals and phases (Table 3) and their compositions (Table 4-6) the distribution of Pd, Au and Pt can be recalculated as shown below:

element	assay (ppb)	this work (ppb)
Pd	2300	2330
Au	52	97
Pt	120	46

Summary

- 1. The HS-concentrates of sample 90-23A 808 yielded 112 grains of PGMs and 3 grains of Au-minerals.
- 2. The grain size varies from 2 to 69 μ m with an average of 15 μ m.
- 3. PGMs of all identified groups of PGMs are in close association with Cu-Fe sulphides, mainly bornite, and with H₂O-bearing silicates such as actinolite, chlorite, ferrous talc, biotite, and hornblende.
- 4. The three 3 dominant groups of PGMs in the HS-concentrates of the sample 90-23A, 808 are: zvyagintsevite (73 %); Pd-arsenide, including guanglinite, arsenopalladinite and palladoarsenide (12 %); and Pd-sulphides, including vasilite and vysotskite (10 %).
- 5. Zviagintsevite forms intergrowths with Pd-arsenides as well as with (Au-Cu-Pd-Ag)alloys; Pd-arsenides form intergrowth with (Au-Cu-Pd-Ag)-alloys; keithconnite and vasilite forms intergrowth with zvyagintsevite.
- 6. Except for Pd-arsenides and unnamed PdCu, all other PGMs and Au-minerals seem to belong to a single paragenesis related to: 1) Cu-Fe sulphides including bornite, chalcopyrite, chalcosine and digenite, 2) H₂O-bearing silicates, and 3) quartz. This paragenesis is suggested to represent an auto-metasomatic paragenesis caused by reaction between primary phases and trapped H₂O-bearing fluid/melt.
- 7. Pd-arsenides and unnamed PdCu are, with reference to Nielsen (2003a and d) suggested to represent early primary precious metal phases. They could have been preserved in rims of cumulus phases.

 The recovery of Au-minerals from sample 90-23A 808 demonstrates the sensitivity of the HS-concentrator. The assay indicates a concentration of 52 ppb Au in the sample. This suggests a < 0.1 ppm sentivity of the HS-technology for PGMs and Au-minerals.

References

- Nielsen, T.F.D., Rasmussen, H., Rudashevsky, N.V., Kretser, Yu.L., Rudashevsky, V.N. 2003a): PGE and sulphide phases of the precious metal mineralisation of the Skaergaard intrusion. Part 1: Sample 90-23A 807. Danmarks og Grønlands Geologiske Undersøgelse Rapport **2003/47**, 19 pp.
- Nielsen, T.F.D., Rasmussen, H., Rudashevsky, N.V., Kretser, Yu.L., Rudashevsky, V.N. 2003d: PGE and sulphide phases of the precious metal mineralisation of the Skaergaard intrusion. Part 4: Sample 90-23A 806. Danmarks og Grønlands Geologiske Undersøgelse Rapport **2003/53**, 18 pp.
- Watts, Griffis & McOuat 1991: 1990 Skaergaard project, Platinova/Corona concession, East Greenland, 55 pp. with appendixes in volumes 2A, 2B, 3A and 3B (in archive of Danmarks og Grønlands Geologiske Undersøgelse, GRF no. 20848).

List of abbreviations

Abbreviations used in figures and tables.

Rock-forming minerals

PL	= plagioclase
СРХ	= monoclinic pyroxene
OPX	= orthorhombic pyroxene
ILM	= ilmenite
TIMT	= titaniferous magnetite
MT	= magnetite
ACT	= actinolite
HB	= hornblende
BT	= biotite
CHL	= chlorite
TLC	= talc
Q	= quartz

Sulphides

BORN	= bornite
СР	= chalcopyrite
CHC	= chalcosine
DGN	= digenite

Precious metal minerals

= zviagintsevite
= arsenopalladinite
= guanglinite
= palladoarsenide
= keithconnite
= vasilite
= sperrylite
= unnamed PdCu
= isomerteite
= bogdanovite
= vysotskite
= alloys of Au, Pd and Cu.
= alloys of Au, Pd and Cu.
= alloys of Au and Ag.
= (Pd-Pt-Cu)-alloy
= (Pt-Fe-Pd)-alloy
= (Pd-Pt-Fe-Cu)-alloy
= (Pd-Pb-Cu-Au)-alloy
= unnamed PdCu with Pt substitution

An.	Object	Association of minerals	Mineral		SiO ₂	TiO ₂	Al ₂ O ₃	V_2O_3	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	Cl	Total					
1	808-1 p2	PL+CPX+OPX+	Ы	Wt.%	56.1	-	26.7	-	0.51	-	-	-	9.8	5.7	0.48	-	99.29					
1	808-1, p2	ILM+TIMT	1 L	F. c.	2.55	-	1.43	-	0.02	-	-	-	0.48	0.50	0.03	-	O=8					
2	808 1 p3	PL+CPX+OPX+	DI	Wt.%	55.5	-	26.7	-	0.39	-	-	-	9.5	5.4	0.48	-	98.97					
2	808-1, p3	ILM+TIMT	1 L	F. c.	2.58	-	1.43	-	0.01	-	-	-	0.47	0.48	0.03	-	O=8					
3	808 1 p3	PL+CPX+OPX+	тімт	Wt.%	0.83	2.7	1.3	1.7	58.3	34.9	-	-	-	-	-	-	99.63					
5	808-1, p3	ILM+ <u>TIMT</u>	111111	F. c.	0.25	0.63	0.46	0.42	13.35	8.88	-	-	-	-	-	-	$\Sigma K=24$					
4	202 1 p2	PL+CPX+OPX+	пм	Wt.%	-	50.9	-	0.58	3.3	45.0	0.76	-	-	-	-	-	100.54					
4	808-1, p3	<u>ILM</u> +MT	ILIVI	F. c.	-	0.96	-	0.01	0.06	0.95	0.02	-	-	-	-	-	$\Sigma K=2$					
5	909 1 m2	TIMT II M(ana)	пм	Wt.%	-	51.1	-	0.44	1.9	45.1	0.78	-	-	-	-	-	99.32					
5	808-1, ps	1 IM 1 + 1 LM(exs)	ILIVI	F. c.	-	0.98	-	0.01	0.04	0.96	0.02	-	-	-	-	-	$\Sigma K=2$					
6	000 0		DT	Wt.%	35.8	0.50	15.7	-	-	24.1	-	16.1	-	-	5.4	0.20	100.08					
6	808-2, p3	PL+BI+ILM+IIMI	BI	F. c.	2.70	0.03	1.40	-	-	1.52	-	1.81	-	-	0.52	0.03	$\Sigma K=8$					
7	000 1 0	2 BORN+ <u>HB</u> +ACT+ CHL	2 BORN+ <u>HB</u> +ACT+ CHL	IID	Wt.%	36.5	-	13.3	-	21.2	9.2	0.25	3.0	11.1	2.4	0.35	1.6	98.9				
/	808-1, p2			CHL	CHL	CHL	НВ	F. c.	5.69	-	2.45	-	2.48	1.20	0.03	0.72	1.86	0.72	0.07	0.41	ΣK1=13	
0	000 1 0	BORN+HB+ACT+	1 GT	Wt.%	50.3	0.33	3.0	-	5.9	15.4	0.26	12.3	11.5	-	-	-	98.99					
8	808-1, p2	CHL	ACT	F. c.	7.38	0.04	0.52	-	0.65	1.89	0.03	2.69	1.80	-	-	-	ΣK=15					
		ASPD+BORN+Q+		Wt.%	54.3	-	-	-	1.5	16.9	-	13.6	12.1	-	-	-	98.4					
9	808-2, p1	TLC+ <u>ACT</u> +HB+ BT+CHL	ACT	F. c.	7.92	-	-	-	0.17	2.06	-	2.95	1.90	-	-	-	ΣK=15					
				Wt.%	35.9	1.0	14.4	-	-	29.2	-	9.3	-	-	8.1	0.40	98.3					
10	808-2, p1	"	BT	F. c.	2.79	0.06	1.32	-	-	1.90	-	1.08	-	-	0.80	0.05	$\Sigma K=8$					
				Wt.%	40.1	1.0	8.4	-	29.5	2.6	-	3.5	10.0	-	1.4	2.4	98.9					
11	808-2, p1	"	HB	F. c.	6.19	0.11	1.52	-	3.43	0.34	-	0.82	1.66	-	0.28	0.64	$\Sigma K=15$					
				Wt.%	60.1	-	-	-	-	16.3	-	21.6	-	-	-	-	98.0					
12	808-2, p1	1"	^	**	"	"	''	TLC	F. c.	3.97	-	-	-	-	0.90	-	2.13	-	-	-	-	$\Sigma K=7$
			~~~~	Wt.%	31.7	-	13.8	-	-	30.1	-	13.4	-	-	-	-	89.0					
13	808-2, p1	"	CHL	F. c.	6.68	-	3.42	-	-	5.30	-	4.21	-	-	-	-	O=28					

 Table 1: Chemical composition and formulas of silicates and oxides of oxide-rich tholeiitic gabbros (sample 90-23A, 808)

An.	Object	Association of minerals	Mineral		SiO ₂	TiO ₂	Al ₂ O ₃	V ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	Cl	Total											
14	<u>000 2 m2</u>	BORN+Q+TLC+	пр	Wt.%	43.4	0.17	7.1	-	21.6	9.4	0.25	3.7	10.4	-	0.9	2.0	98.92											
14	808-2, p2	HB+BT+CHL	пв	F. c.	6.68	0.02	1.30	-	2.51	1.20	0.03	0.85	1.72	-	0.18	0.51	$\Sigma K=15$											
15	808-2 n2	BORN+Q+ <u>TLC</u> +	TIC	Wt.%	60.4	-	1.1	-	-	14.8	-	20.7	-	-	-	-	97.0											
15	000 <i>2</i> , p2	HB+BT+CHL	The	F. c.	4.01	-	0.07	-	-	0.82	-	2.05	-	-	-	-	O=11											
16	75-1 4s	BORN+ILM+CHL	ILM	Wt.%	-	51.6	-	-	1.6	45.4	0.9	-	-	-	-	-	99.58											
10	75 1, 45	DORIGHI <u>EIM</u> TCHE	112.101	F. c.	-	0.99	-	-	0.03	0.97	0.02	-	-	-	-	-	$\Sigma K=24$											
17	125_1	ZV+BORN+CHL+	тімт	Wt.%	-	9.4	4.5	0.88	44.4	40.4	-	-	-	-	-	-	100.54											
17	123, 1	<u>TIMT</u>	11111	F. c.	-	2.1	1.6	0.21	9,99	10.10	-	-	-	-	-	-	$\Sigma K=2$											
18	125.2	BORN+CHI +MT	МТ	Wt.%	1.1	0.34	-	-	65.7	32.8	-	-	-	-	-	-	99.94											
10	123, 2	DORN CHET <u>MI</u>	WI I	F. c.	0.34	0.08	-	-	15.16	8.42	-	-	-	-	-	-	$\Sigma K=24$											
10	75 1 30	BODNICHCIACT	АСТ	Wt.%	53.6	-	1.1	-	0.85	17.7	-	12.5	-	-	-	-	98.25											
19	75-1, 58	DURN+CHC+ <u>ACI</u>	DOMINTCHCT <u>ACI</u>	DONNTCHCT <u>ACI</u>	BORT CHC+ <u>ACI</u>	DOMITTCHCT <u>ACI</u>	3 DORNTCHCT <u>ACI</u>	boltitrene+ <u>Act</u>	DORITCHCT <u>ACI</u>	bolutiene <u>Act</u>	boluttenet <u>Act</u>	bolterene <u>Act</u>	DOM: TEHCT <u>ACT</u>	ACI	F. c.	7.86	-	0.19	-	0.09	2.17	-	1.96	-	-	-	-	$\Sigma K=15$
20	75 1 50	BORN+CHC+ACT	ACT	Wt.%	52.5	0.49	-	-	0.5	23.5	-	9.9	11.0	-	-	-	97.89											
20	75-1, 58	+CHL	ACT	F. c.	7.91	0.06	-	-	0.06	2.96	-	2.23	1.77	-	-	-	$\Sigma K=15$											
21	105.0		CIII	Wt.%	27.2	0.34	15.6	0.3	3.2	24.4	-	17.5	-	-	-	-	88.54											
21	123, 2	DONN+ <u>CIL</u> +MI	CHL	F. c.	5.73	0.05	3.88	0.05	0.51	4.29	-	5.49	-	-	-	-	$\Sigma K=20$											
22	105 1	ZV+CHL+BORN+	CIII	Wt.%	27.6	0.34	15.4	0.3	1.4	26.6	-	16.4	-	-	-	-	88.04											
22	123, 1	TIMT	CIL	F. c.	5.88	0.05	3.86	0.05	0.22	4.74	-	5.19	-	-	-	-	$\Sigma K=20$											
22	105 2		CIII	Wt.%	27.3	-	19.8	0.3	4.1	11.0	-	25.8	-	-	-	-	88.3											
25	125, 5	DOKN+CIL	CIL	F. c.	5.37	-	4.60	0.05	0.61	1.81	-	7.56	-	-	-	-	$\Sigma K=20$											
24	75 1 1.	DODNICIU	CIII	Wt.%	30.8	1.2	12.3	-	-	27.4	-	16.8	-	-	-	-	88.5											
24	/5-1, 18	I, IS BORN+CHL	BOKN+CHL	BORN+CHL	CHL	F. c.	6.55	0.19	3.08	-	-	4.87	-	5.31	-	-	-	-	ΣK=20									
25	75 1 00		CIT	Wt.%	33.0	0.54	11.3	-	-	22.3	-	21.0	-	-	-	-	88.14											
25 75-1, 23	/5-1, 23	ZV+BORN+CHL	CHL	F. c.	6.81	0.08	2.76	-	-	3.85	-	6.50	-	-	-	-	ΣK=20											

Table 1 continued: Chemical composition and formulas of silicates and oxides of oxide-rich tholeiitic gabbros (sample 90-23A, 808)

P. s. – polished section, f. c. – formula coefficient; FeO and  $Fe_2O_3$  – are calculated from typical formula of minerals,  $\Sigma K$  – sum of kations,  $\Sigma K1$  - sum of kations without of Na, K and Ca.

An.	Object	Association of minerals	Mineral		Cu	Fe	S	Total
1	45 1 22		DODN	Wt.%	61.2	11.6	25.8	98.6
1	43-1, 52	ZV+ <u>DUKIN</u> +ACI	BORN	F. c.	4.88	1.05	4.07	10
2	45 1 40		DODN	Wt.%	61.3	11.6	25.9	98.8
Z	43-1, 49	ASPD+SP+ <u>bokin</u>	BORN	F. c.	4.87	1.05	4.08	10
2	15 1 65	VVC DODN	DODN	Wt.%	61.8	11.4	25.4	98.6
5	45-1, 05	VIS+ <u>DOKN</u>	DOKIN	F. c.	4.94	1.04	4.02	10
4	75 1 1		DODN	Wt.%	61.5	11.5	26.5	99.5
4	75-1, 1	ZV+ <u>BOKN</u> +Cr	DOKIN	F. c.	4.84	1.03	4.13	10
5	75 1 1		CD	Wt.%	34.6	30.2	34.8	99.5
5	75-1, 1	LV + DOKIN + Cr	CP	F. c.	1.00	1.00	2.00	4
6	75 1 2	7V PODN CHI	DODN	Wt.%	61.7	11.6	25.9	99.2
0	75-1, 5	LV+ <u>DUKIN</u> +CIIL	DOKIN	F. c.	4.89	1.05	4.07	10
7	75 1 5	VSL DODN CD	DODN	Wt.%	62.0	11.8	25.2	99.0
/	75-1, 5	VSL+ <u>DUKIN</u> +Cr	DOKIN	F. c.	4.95	1.07	3.98	10
0	75 1 5	VSL DODN CD	CD	Wt.%	33.6	30.4	35.6	99.6
0	75-1, 5	VSL+DUKIN+ <u>Cr</u>	CF	F. c.	0.97	1.00	2.03	4
0	75 1 0	7V BODN TI C	POPN	Wt.%	60.5	11.8	26.4	<b>98.7</b>
9	75-1,9	LV + BOKIN + ILC	DOKN	F. c.	4.79	1.06	4.14	10
10	75 1 10	7V BODN CHC	СИС	Wt.%	77.7	1.0	20.5	99.2
10	75-1, 10	ZV + DORN + CHC	СПС	F. c.	1.95	0.03	1.02	3
11	75 1 10	7V POPN CHC	POPN	Wt.%	62.3	11.5	25.6	99.4
11	75-1, 10	ZV+ <u>DUKN</u> +CHC	DOKN	F. c.	4.94	1.04	4.02	10
12	75 1 14		POPN	Wt.%	61.6	11.2	26.0	<b>98.8</b>
12	75-1, 14	ZV+ <u>BORN</u>	DOKN	F. c.	4.89	1.01	4.09	10
13	75 1 10		RODN	Wt.%	60.5	11.7	26.0	98.2
15	75-1, 19	ZV+ <u>DOM</u> +DOM	DORN	F. c.	4.83	1.06	4.11	10
14	75 1 10		DCN	Wt.%	74.4	2.3	22.2	98.9
14	75-1, 19	ZV+DORN+ <u>DON</u>	DON	F. c.	8.61	0.30	5.09	14
15	75 1 26	VSL+ <u>BORN</u> +CHC+C	BORN	Wt.%	62.3	11.6	25.8	99.7
15	75-1, 20	HL+MT	DOIM	F. c.	4.92	1.04	4.04	10
16	75-1-26	VSL+BORN+ <u>CHC</u> +	СНС	Wt.%	77.6	2.3	19.9	<b>99.8</b>
10	75-1, 20	CHL+MT	CIIC	F. c.	1.94	0.07	0.99	3

Table 2: Chemical composition and formulas of Cu-Fe sulphides of oxide-rich tholeiitic gabbros (sample 90-23A, 808)

F. c. – formula coefficient.

			Number	Grain	size (E.C.	D), μm	
Ν	Mineral	General formula	of	min	max	average	Vol.%
			grains				
1	Zvyagintsevite	(Pd,Pt,Au) ₃ (Pb,Sn,As)	68 (2*)	2	69	16	73
2	Guanglinite	(Pd,Cu,Fe) ₃ (As,Pb)	12 (6*)	3	42	13	8
3	Arsenopalladinite	(Pd,Cu) ₈ As ₃	9	7	19	12	3
4	Palladoarsenide	(Pd,Cu,Fe) ₂ As	3	8	10	9	0.7
5	Vasilite	$Pd_{12}Cu_4S_7$	6	3	40	16	6
6	Vysotskite	(Pd,Ni)S	4	5	27	17	4
7	Bogdanovite	(Au,Pd,Pt) ₃ (Cu,Fe)	2	9	19	17	1.2
8	Au-Cu-Pd alloy	(Au,Cu,Pd)	1	-	-	16	0.7
9	Keithconnite	$Pd_{3-x}(Te,As,Pb)$	2(2*)	2	1	7	0.5
10	Isomertiete	$Pd_{11}As_2(Sb,Te)_2$	3(1*)	4	14	9	0.7
11	Unnamed PdCu	(Pd,Pt)(Cu,Fe,Zn)	3	10	15	13	1
11	Sperrylite	PtAs ₂	(3*)	1	10	4	0.5
12	Pd-Pt-Cu alloy	(Pd,Pt,Cu,Fe)	2	3	9	6	0.4
13	Pt-Fe-Pd alloy	(Pt,Fe,Pd,Cu)	(1*)	-	-	5	0.3
		Total	115			15	100

Table 3: PGE, Au and Ag minerals of heavy concentrates of the sample 90-23A, 808

*As inclusions in grains of other precious metal minerals.

An.	Grain	Association of minerals in the grain		Pd	Pt	Au	Cu	Fe	Pb	Sn	Te	As	Total
1	45 1 4		Wt.%	58.1	-	-	0.6	0.7	40.2	-	-	-	99.6
1	43-1, 4	$\underline{ZV}$ +BORN	F. c.	2.86	-	-	0.05	0.07	1.02	-	-	-	4
2	45 1 5	71	Wt.%	53.6	3.7	2.1	-	0.7	38.5	-	-	-	98.6
2	45-1, 5		F. c.	2.75	0.10	0.06	-	0.07	1.02	-	-	-	4
3	45 1 8	ZV POPN	Wt.%	54.1	1.5	-	0.6	0.8	41.7	-	-	-	<b>98.</b> 7
3	45-1, 8	$\underline{ZV}$ +BORN	F. c.	2.74	0.04	-	0.05	0.08	1.09	-	-	-	4
4	45 1 0	$7\mathbf{V}$	Wt.%	59.7	-	-	-	0.8	38.5	-	-	-	99.0
4	45-1, 9		F. c.	2.95	-	-	-	0.08	0.98	-	-	-	4
5	45 1 11	7V+BORN+CHC	Wt.%	60.5	-	-	-	-	39.1	-	-	-	99.6
5	45-1, 11		F. c.	3.00	-	-	-	-	1.00	-	-	-	4
6	45 1 14	<b>ZV+GNG+BORN</b>	Wt.%	51.8	2.3	7.8	0.5	0.6	36.9	-	-	-	99.9
0	45-1, 14	$\underline{ZV}$ +ONO+BORN	F. c.	2.65	0.06	0.22	0.04	0.06	0.97	-	-	-	4
7	45 1 15	71	Wt.%	66.4	-	-	-	1.2	23.6	-	-	7.5	<b>98.7</b>
/	45-1, 15		F. c.	2.90	-	-	-	0.10	0.53	-	-	0.47	4
8	45 1 16	<b>ZV+BOBN</b>	Wt.%	56.8	-	-	0.8	0.4	40.4	-	-	-	98.4
0	45-1, 10		F. c.	2.85	-	-	0.07	0.04	1.04	-	-	-	4
0	45 1 20	$(A_{\rm H}, C_{\rm H}, {\rm Pd}) + 7V + KTH + 11 M + ACT$	Wt.%	53.1	2.1	2.4	-	0.6	41.1	-	-	-	99.3
,	45-1, 20	$(Au, Cu, Iu) + \underline{Zv} + KIII + IEWI + ACI$	F. c.	2.73	0.06	0.07	-	0.06	1.09	-	-	-	4
10	45 1 22	ZV +BOPN+II M	Wt.%	56.9	-	-	0.5	0.6	40.6	-	-	-	98.6
10	43-1, 22	$\underline{ZV}$ +BORN+ILIVI	F. c.	2.85	-	-	0.04	0.06	1.05	-	-	-	4
11	45 1 23	$7\mathbf{V}$	Wt.%	54.6	2.9	-	-	0.9	40.1	-	-	-	98.5
11	45-1, 25		F. c.	2.78	0.08	-	-	0.09	1.05	-	-	-	4
12	45 1 24	71	Wt.%	57.7	1.4	-	-	1.1	38.9	-	-	-	99.1
12	45-1, 24		F. c.	2.86	0.04	-	-	0.10	0.99	-	-	-	4
13	45 1 25	KTH+7V+BOBN	Wt.%	57.7	2.7	2.2	0.7	0.9	32.7	1.5	1.1	-	99.5
15	45-1, 25	$KIII+\underline{ZV}+BOKN$	F. c.	2.80	0.07	0.06	0.06	0.08	0.82	0.07	0.04	-	4
14	15 1 26	ZV+BORN	Wt.%	55.0	2.4	-	0.5	0.3	41.1	-	-	-	99.3
14	4,3-1, 20		F. c.	2.79	0.07	-	0.04	0.03	1.07	-	-	-	4
15	45 1 27	71	Wt.%	57.5	-	1.3	-	1.1	39.3	-	-	-	99.2
15	4,3-1, 27		F. c.	2.85	-	0.04	-	0.10	1.00	-	-	-	4

Table 4: Chemical composition and formulas of the zvyagintsevite in PGM-grains of the heavy concentrates (sample 90-23A, 808)

An.	Grain	Association of minerals in the grain		Pd	Pt	Au	Cu	Fe	Pb	Sn	Te	As	Total
16	45 1 28	ZV POPN	Wt.%	56.2	1.4	-	-	1.1	39.9	-	-	-	98.6
10	43-1, 20	$\underline{ZV}$ +BORN	F. c.	2.82	0.04	-	-	0.11	1.03	-	-	-	4
17	45 1 20		Wt.%	56.7	-	-	-	0.3	41.3	-	-	-	98.3
17	45-1, 29	$\underline{ZV}$ + ACI	F. c.	2.89	-	-	-	0.03	1.08	-	-	-	4
10	45 1 20		Wt.%	57.1	4.2	-	-	0.8	37.0	-	-	-	99.1
10	45-1, 50	$\underline{ZV}$ +BORN	F. c.	2.86	0.11	-	-	0.08	0.95	-	-	-	4
10	45 1 21	71	Wt.%	54.9	-	-	-	0.4	44.5	-	-	-	<b>99.8</b>
19	45-1, 51		F. c.	2.80	-	-	-	0.04	1.16	-	-	-	4
20	45 1 32	7V BODN ACT	Wt.%	54.9	1.1	3.2	-	0.5	40.0	-	-	-	<b>99.</b> 7
20	45-1, 52	<u>ZV</u> +BORN+ACI	F. c.	2.78	0.04	0.09	-	0.05	1.04	-	-	-	4
21	45 1 33	71	Wt.%	56.2	1.4	-	-	0.5	39.9	-	-	-	98.0
21	45-1, 55		F. c.	2.86	0.05	-	-	0.05	1.04	-	-	-	4
22	45 1 34	$7\mathbf{V}$	Wt.%	60.9	-	-	-	1.3	36.9	-	-	-	99.1
22	45-1, 54		F. c.	2.96	-	-	-	0.12	0.92	-	-	-	4
23	45 1 35	7V+GNG	Wt.%	57.5	-	-	-	0.4	40.4	-	-	-	98.3
23	45-1, 55	<u>2v</u> +010	F. c.	2.91	-	-	-	0.04	1.05	-	-	-	4
24	45 1 38	7V+GNG	Wt.%	56.8	-	-	-	0.7	41.6	-	-	-	99.1
24	45-1, 58	<u>Zv</u> +010	F. c.	2.86	-	-	-	0.07	1.07	-	-	-	4
25	45 1 30		Wt.%	58.5	-	-	-	0.6	40.3	-	-	-	<b>99.4</b>
23	45-1, 59	<u>21</u> +0110	F. c.	2.91	-	-	-	0.06	1.03	-	-	-	4
26	45 1 41	$7\mathbf{V}$	Wt.%	56.6	6.8	-	-	0.7	31.9	2.8	-	-	<b>98.8</b>
20	45-1, 41		F. c.	2.81	0.18	-	-	0.07	0.81	0.12	-	-	4
27	15 1 13	<b>7V+BOBN</b>	Wt.%	57.5	-	-	-	-	40.9	-	-	-	<b>98.4</b>
21	45-1,45	$\underline{ZV}$ +BORIV	F. c.	2.93	-	-	-	-	1.07	-	-	-	4
28	15 1 16	ZV	Wt.%	52.3	4.3	-	-	1.0	40.8	-	-	-	<b>98.4</b>
20	45-1,40		F. c.	2.70	0.12	-	-	0.10	1.08	-	-	-	4
29	45-1 47	$7V \pm BORN \pm TIC \pm 4CT$	Wt.%	58.0	-	-	0.5	0.8	40.2	-	-	-	99.0
23	-,-1,+/		F. c.	2.86	-	-	0.04	0.08	1.02	-	-	-	4
30	45-1 51	7V+GNG+BORN	Wt.%	57.2	-	1.1	-	-	40.1	-	-	-	98.4
50	-5-1, 51		F. c.	2.92	-	0.03	-	-	1.05	-	-	-	4

Table 4 continued: Chemical composition and formulas of the zvyagintsevite in PGM-grains of the heavy concentrates (sample 90-23A, 808)

An.	Grain	Association of minerals in the grain		Pd	Pt	Au	Cu	Fe	Pb	Sn	Te	As	Total
21	45 1 52	71	Wt.%	57.4	3.1	-	-	0.6	33.2	3.7	-	-	98.0
51	45-1, 52		F. c.	2.85	0.08	-	-	0.06	0.85	0.16	-	-	4
20	15 1 52	$\mathbf{Z}\mathbf{V}$ : IL M	Wt.%	58.4	-	-	-	1.1	40.0	-	-	-	99.5
52	45-1, 55		F. c.	2.88	-	-	-	0.11	1.01	-	-	-	4
22	45 1 57	$7 \mathrm{M}$ + H M	Wt.%	56.1	2.5	-	-	0.5	39.8	-	-	-	98.9
33	45-1, 57	$\underline{Zv}$ + 1LIVI	F. c.	2.85	0.07	-	-	0.05	1.04	-	-	-	4
24	15 1 59	71	Wt.%	59.2	-	-	-	0.5	39.3	-	-	-	99.0
54	45-1, 58		F. c.	2.95	-	-	-	0.05	1.00	-	-	-	4
25	45 1 50	71	Wt.%	49.9	3.9	-	-	0.9	44.6	-	-	-	99.3
55	45-1, 59		F. c.	2.60	0.11	-	-	0.09	1.20	-	-	-	4
26	15 2 2	71	Wt.%	60.1	-	-	-	1.3	38.3	-	-	-	<b>99.</b> 7
50	43-2, 2		F. c.	2.92	-	-	-	0.12	0.96	-	-	-	4
37	15 2 5	$7\mathbf{V}$	Wt.%	58.0	-	-	-	-	41.0	-	-	-	99.0
57	45-2, 5		F. c.	2.93	-	-	-	-	1.07	-	-	-	4
38	15 2 8	ZV	Wt.%	59.2	-	-	-	1.7	37.9	-	-	-	98.8
50	45-2, 8		F. c.	2.89	-	-	-	0.16	0.95	-	-	-	4
30	45 2 11	$7V \pm \Lambda CT$	Wt.%	57.5	-	1.6	-	0.4	39.5	-	-	-	99.0
39	45-2, 11		F. c.	2.90	-	0.04	-	0.04	1.02	-	-	-	4
40	15-3 13	7V+B∩RN	Wt.%	57.0	2.1	-	0.5	0.8	39.0	-	-	-	99.4
40	+5-5, 15		F. c.	2.83	0.06	-	0.04	0.08	0.99	-	-	-	4
41	45-2 14	ZV⊥CHI ⊥TIMT	Wt.%	58.7	-	-	-	0.4	40.2	-	-	-	99.3
71	45-2, 14		F. c.	2.93	-	-	-	0.04	1.03	-	-	-	4
42	15-2 15	ZV	Wt.%	55.6	2.6	-	-	1.3	39.6	-	-	-	99.1
-72	+5 2, 15	<u></u>	F. c.	2.79	0.07	-	-	0.12	1.02	-	-	-	4
43	45-2 16	7V+BORN	Wt.%	58.7	-	-	0.9	0.9	39.1	-	-	-	99.6
	45 2, 10		F. c.	2.86	-	-	0.07	0.09	0.98	-	-	-	4
44	45-2 18	7V+GNG	Wt.%	57.7	-	1.6	-	0.9	38.0	-	-	-	98.2
	15 2, 10		F. c.	2.89	-	0.04	-	0.09	0.98	-	-	-	4
45	45-2 19	ZV+BORN	Wt.%	57.8	-	-	0.9	0.8	38.8	-	-	-	98.3
	45-2, 19		F. c.	2.86	-	-	0.07	0.08	0.99	-	-	-	4

Table 4 continued: Chemical composition and formulas of the zvyagintsevite in PGM-grains of the heavy concentrates (sample 90-23A, 808)

An.	Grain	Association of minerals in the grain		Pd	Pt	Au	Cu	Fe	Pb	Sn	Te	As	Total
16	45 2 20	71	Wt.%	60.2	-	-	-	1.1	38.6	-	-	-	99.9
40	43-2, 20		F. c.	2.93	-	-	-	0.10	0.96	-	-	-	4
47	45 2 21	71	Wt.%	56.3	1.9	-	-	0.8	39.6	-	-	-	98.6
47	43-2, 21		F. c.	2.84	0.05	-	-	0.08	1.03	-	-	-	4
10	75 1 2		Wt.%	57.1	-	-	-	-	41.7	-	-	-	<b>98.8</b>
40	75-1, 2	$\underline{ZV}$ +BORN+ILM	F. c.	2.91	-	-	-	-	1.09	-	-	-	4
40	75 1 2		Wt.%	58.9	-	-	1.5	0.8	37.5	-	-	-	<b>98.7</b>
49	75-1, 5	$\underline{ZV}$ + BORN+CHL	F. c.	2.87	-	-	0.12	0.07	0.94	-	-	-	4
50	75 1 6		Wt.%	58.7	-	-	-	-	39.9	-	-	-	98.6
50	/5-1, 0	$\underline{ZV(ZONEI)}$ +GNG+BORN	F. c.	2.97	-	-	-	-	1.03	-	-	-	4
51	75.1.6		Wt.%	63.5	-	-	1.1	0.4	31.0	2.8	-	-	98.8
51	/3-1, 0	$\underline{ZV(ZOHe2)}$ +GNG+BORN	F. c.	3.00	-	-	0.09	0.04	0.75	0.12	-	-	4
50	75 1 7		Wt.%	57.4	-	-	0.9	0.4	40.7	-	-	-	99.4
32	/3-1, /	$\underline{ZV}$ +BORN	F. c.	2.85	-	-	0.07	0.04	1.04	-	-	-	4
52	75 1 9	71	Wt.%	57.3	-	-	-	0.3	40.4	-	-	-	98.0
55	75-1, 8		F. c.	2.92	-	-	-	0.03	1.06	-	-	-	4
54	75 1 0		Wt.%	57.6	-	-	-	-	40.9	-	-	-	98.5
54	75-1,9	$\underline{ZV}$ +BORN+TLC	F. c.	2.93	-	-	-	-	1.07	-	-	-	4
55	75 1 11		Wt.%	66.0	-	-	-	0.8	24.0	-	2.6	5.5	98.9
55	75-1, 11	$\underline{ZV}$ +BORN+ILW	F. c.	2.94	-	-	-	0.07	0.55	-	0.10	0.35	4
56	75 1 12		Wt.%	58.8	-	-	-	-	40.6	-	-	-	99.4
50	75-1, 12	$\underline{ZV}$ +BORN	F. c.	2.95	-	-	-	-	1.05	-	-	-	4
57	75 1 12	71	Wt.%	57.7	-	-	-	0.4	40.8	-	-	-	98.9
57	75-1, 15		F. c.	2.91	-	-	-	0.04	1.05	-	-	-	4
50	75 1 14		Wt.%	59.3	-	-	-	-	40.6	-	-	-	99.9
50	75-1, 14	$\underline{ZV}$ +BORIN	F. c.	2.96	-	-	-	-	1.04	-	-	-	4
50	75 1 15	ZV BODN CHI	Wt.%	57.4	-	-	-	-	41.3	-	-	-	<b>98.7</b>
39	75-1, 15	$\underline{ZV}$ +DUKN+UIL	F. c.	2.92	-	-	-	-	1.08	-	-	-	4
60	75 1 16		Wt.%	56.3	-	-	1.0	1.7	39.6	-	-	-	98.6
00	73-1, 10	$\underline{ZV}$ +DUKN	F. c.	2.76	-	-	0.08	0.16	1.00	-	-	-	4

Table 4 continued: Chemical composition and formulas of the zvyagintsevite in PGM-grains of the heavy concentrates (sample 90-23A, 808)

An.	Grain	Association of minerals in the grain		Pd	Pt	Au	Cu	Fe	Pb	Sn	Te	As	Total
61	75 1 17	ZV BODN CHC	Wt.%	58.1	-	-	0.9	0.6	39.4	-	-	-	99.0
01	/3-1, 1/	$\underline{ZV}$ +BORN+CHC	F. c.	2.87	-	-	0.07	0.06	1.00	-	-	-	4
62	75 1 10		Wt.%	58.9	-	-	0.8	0.6	38.0	-	-	-	98.3
02	75-1, 19	$\underline{ZV}$ +BORN+DON	F. c.	2.91	-	-	0.07	0.06	0.96	-	-	-	4
62	75 1 20		Wt.%	60.2	-	-	0.8	0.6	37.8	-	-	-	99.4
05	73-1, 20	$\underline{ZV}$ +DOKIN	F. c.	2.93	-	-	0.07	0.06	0.94	-	-	-	4
64	75 1 21	ZUCNC	Wt.%	59.3	-	-	-	-	38.9	-	-	-	98.2
04	73-1, 21	$\underline{ZV}$ +GNG	F. c.	2.99	-	-	-	-	1.01	-	-	-	4
65	75 1 22		Wt.%	58.5	-	-	-	0.3	39.3	-	-	-	98.1
05	73-1, 25	$\underline{ZV}$ + BORN+CHL	F. c.	2.95	-	-	-	0.03	1.02	-	-	-	4
	75 1 24		Wt.%	55.6	-	4.2	0.7	1.0	38.3	-	-	-	99.8
00	/5-1, 24	$\underline{ZV}$ +BORN+ILM	F. c.	2.76	-	0.11	0/06	0.10	0.97	-	-	-	4
67	75 1 25	ZVLCNC	Wt.%	56.3	-	1.1	-	-	41.3	-	-	-	<b>98.</b> 7
07	73-1,25	$\overline{\nabla h}$ +QNQ	F. c.	2.88	-	0.03	-	-	1.09	-	-	-	4

Table 4 continued: Chemical composition and formulas of the zvyagintsevite in PGM-grains of the heavy concentrates (sample 90-23A, 808)

An.	Grain	Association of minerals in the grain	Mineral		Pd	Pt	Au	Cu	Fe	As	Sn	Те	Pb	Sb	Total
1	45 1 1	$\Delta SDD + (\Delta u \Delta a) + BODN$		Wt.%	79.3	-	-	-	-	20.6	-	-	-	-	99.9
1	43-1, 1	<u>ASPD</u> +(Au,Ag)+DOKN	ASED	F. c.	8.03	-	-	-	-	2.97	-	-	-	-	11
2	45 1 7			Wt.%	76.6	-	-	-	0.4	21.4	-	-	-	-	<b>98.4</b>
2	45-1, 7	ASI D-DORNTACI	ASID	F. c.	7.82	-	-	-	0.08	3.10	-	-	-	-	11
3	45 1 10	ASPD	ASPD	Wt.%	73.7	-	-	2.4	0.8	21.4	-	-	-	-	98.3
5	45-1, 19	ASID	ASID	F. c.	7.39	-	-	0.40	0.15	3.05	-	-	-	-	11
4	45 1 49	A SPD+SP+BORN	ASPD	Wt.%	78.3	-	-	0.4	0.5	20.7	-	-	-	-	99.9
4	45-1,49	<u>ASI D</u> +SI +DORN	ASID	F. c.	7.85	-	-	0.07	0.10	2.98	-	-	-	-	11
5	45 1 61			Wt.%	74.4	-	-	2.9	0.5	22.1	-	-	-	-	<b>99.9</b>
5	45-1, 01	DOD+ <u>ASED</u>	ASED	F. c.	7.33	-	-	0.48	0.09	3.09	-	-	-	-	11
6	45 2 10			Wt.%	77.1	-	-	-	0.8	16.5	2.0	-	-	3.3	<b>99.</b> 7
0	43-2, 10	<u>ASFD</u> +DOKN	ASED	F. c.	7.94	-	-	-	0.16	2.42	0.19	-	-	0.29	11.0
7	45 2 22	GNG+ <u>ASPD</u> +ISM+		Wt.%	74.7	-	-	3.4	-	21.4	-	-	-	-	<b>99.5</b>
/	43-2, 22	BORN	ASED	F. c.	7.42	-	-	0.56	-	3.02	-	-	-	-	11
0	45 1 19	CNC	CNC	Wt.%	76.8	-	-	-	0.8	16.7	2.0	-	-	2.9	<b>99.1</b>
0	43-1, 18	010	UNU	F. c.	2.89	-	-	-	0.06	0.89	0.07	-	-	0.09	4
0	45 1 25	ZV CNC	CNC	Wt.%	68.2	-	-	-	-	5.9	-	9.5	15.8	-	<b>99.4</b>
9	45-1, 55	2 V + <u>0110</u>	UNU	F. c.	2.94	-	-	-	-	0.36	-	0.34	0.34	-	4
10	45 1 26	CNC	CNC	Wt.%	77.6	-	-	-	0.8	16.7	4.2	-	-	-	99.3
10	45-1, 50	010	UNU	F. c.	2.91	-	-	-	0.05	0.89	0.15	-	-	-	4
11	45 1 40	CNC	CNC	Wt.%	75.6	-	-	-	2.1	14.6	-	-	6.6	-	<b>98.9</b>
11	43-1, 40	UNU	UNU	F. c.	2.91	-	-	-	0.16	0.80	-	-	0.13	-	4
12	45 1 49	CNC	CNC	Wt.%	76.4	-	-	0.5	0.6	17.1	2.9	-	-	1.9	<b>99.4</b>
12	43-1, 40	UNU	UNU	F. c.	2.86	-	-	0.03	0.04	0.91	0.10	-	-	0.06	4
13	45 1 51	7V CNG BODN	GNG	Wt.%	70.3	-	-	-	0.4	7.2	-	2.8	19.1	-	99.8
15	45-1, 51	ZV+ <u>UNU</u> +DUKIN	UNU	F. c.	3.01	-	-	-	0.03	0.44	-	0.10	0.42	-	4
14	45 1 60	CNC	CNG	Wt.%	73.5	-	1.4	2.8	1.6	19.0	1.5	-	-	-	99.8
14	45-1, 00		010	F. c.	2.66	-	0.03	0.46	0.31	0.98	0.05	-	-	-	4

*Table 5: Chemical composition and formulas of arsenopalladinite, guanglinite, palladoarsenide, sperrylite, isomertieite and keithconnite in PGM-grains of the heavy concentrates (sample 90-23A, 808)* 

An.	Grain	Association of minerals in the grain	Mineral		Pd	Pt	Au	Cu	Fe	As	Sn	Te	Pb	Sb	Total
15	45 1 62		CNC	Wt.%	78.9	-	-	-	0.8	17.8	2.5	-	-	-	100.0
15	43-1, 03	<u>UNU</u> +3P	GNG	F. c.	2.92	-	-	-	0.06	0.94	0.08	-	-	-	4
16	45 2 1	GNG+BOPN	GNG	Wt.%	76.9	-	-	0.9	0.8	18.5	1.8	-	-	-	98.9
10	45-2, 1		UNU	F. c.	2.85	-	-	0.06	0.06	0.97	0.06	-	-	-	4
17	45-2 7	GNG⊥SP	GNG	Wt.%	75.1	-	-	3.4	0.7	20.3	-	-	-	-	<b>99.7</b>
17	<b>4</b> <i>3</i> ⁻ <i>2</i> , <i>1</i>	0110	010	F. c.	2.70	-	-	0.21	0.05	1.04	-	-	-	-	4
19	45.2.0			Wt.%	73.8	-	-	2.5	0.9	19.8	1.5	-	-	-	<b>98.5</b>
10	43-2, 9	ASID	ASED	F. c.	7.33	-	-	0.42	0.17	2.79	0.29	-	-	-	11
10	45 2 17	GNG	GNG	Wt.%	77.5	-	-	-	1.1	15.5	4.8	-	-	-	<b>98.9</b>
19	43-2, 17	UNU	UNU	F. c.	2.93	-	-	-	0.08	0.83	0.16	-	-	-	4
20	15 2 19	7V CNC	CNC	Wt.%	70.0	-	-	-	1.1	9.4	-	-	19.0	-	<b>99.5</b>
20	43-2, 18	ZV+ONO	UNU	F. c.	2.94	-	-	-	0.09	0.56	-	-	0.41	-	4
21	15 1 6	DLAS	DLAS	Wt.%	75.6	-	-	-	0.7	22.7	-	-	-	-	<b>99.0</b>
21	43-1, 0	<u>rlas</u>	FLAS	F. c.	2.08	-	-	-	0.04	0.88	-	-	-	-	3
22	45 1 17	DLAS	DIAG	Wt.%	65.8	-	-	4.6	2.3	27.0	-	-	-	-	<b>99.</b> 7
22	43-1, 17	<u>rlas</u>	FLAS	F. c.	1.70	-	-	0.20	0.11	0.99	-	-	-	-	3
22	45 1 21	DLAS	DIAG	Wt.%	68.4	-	-	3.1	3.0	25.0	-	-	-	-	<b>99.5</b>
23	43-1, 21	<u>rlas</u>	FLAS	F. c.	1.79	-	-	0.14	0.15	0.93	-	-	-	-	3
24	45 1 40		SD	Wt.%	-	52.7	-	0.4	0.7	41.5	-	-	3.0	-	<b>98.3</b>
24	43-1, 49	ASID+SI+BORN	51	F. c.	-	0.95	-	0.02	0.04	1.94	-	-	0.05	-	3
25	45 1 12		ISM	Wt.%	71.7	-	1.3	1.4	0.8	9.0	1.5	-	-	14.3	100.0
23	43-1, 12	$\underline{13W1}$ +W11+AC1	131/1	F. c.	10.49	-	0.10	0.35	0.22	1.89	0.10	-	-	1.85	15
26	15 2 37	ISM III M	ISM	Wt.%	68.2	-	-	3.5	0.9	11.6	-	-	-	15.6	<b>99.8</b>
20	45-2, 57	<u>15101</u> +1L101	131/1	F. c.	9.66	-	-	0.82	0.26	2.33	-	-	-	1.93	15
27	15 2 12	ISM+BORN	ISM	Wt.%	69.0	-	-	2.5	2.6	9.3	-	-	-	15.5	<b>98.9</b>
21	45-2, 12	13W1+BOKIN	131/1	F. c.	9.87	-	-	0.60	0.71	1.89	-	-	-	1.94	15

Table 5 continued: Chemical composition and formulas of arsenopalladinite, guanglinite, palladoarsenide, sperrylite, isomertieite and keithconnite in PGM-grains of the heavy concentrates (sample 90-23A, 808)

An.	Grain	Association of minerals in the grain	Mineral		Pd	Pt	Au	Cu	Fe	As	Sn	Te	Pb	Sb	Total
20	75 1 22	GNG+ASPD+ <u>ISM</u> +	ISM	Wt.%	72.2	•	-	1.1	-	10.3	-	4.4	-	11.5	<b>99.5</b>
20	75-1, 22	BORN	15101	F. c.	10.58	-	-	0.27	-	2.14	-	0.54	-	1.47	15
20	45 1 20	(Au,Cu,Pd)+ZV+ <u>KTH</u> +	VTU	Wt.%	68.5	•	-	-	0.6	6.4	-	15.7	4.7	2.6	<b>98.1</b>
29	43-1, 20	ILM+ACT	КІП	F. c.	2.84	-	-	-	0.05	0.38	-	0.54	0.10	0.09	4
20	45 1 25	<b>VTU - 7V - DODN</b>	VTU	Wt.%	68.1	-	-	-	-	4.6	2.6	17.5	5.2	-	<b>98.0</b>
50	43-1, 23	$\underline{\mathbf{NIH}}$ + $\mathbf{ZV}$ + $\mathbf{DOKN}$	КІП	F. c.	2.89	-	-	-	-	0.28	0.10	0.62	0.11	-	4
21	45.2.2		VTU	Wt.%	68.9	-	-	-	0.7	-	-	29.4	-	-	99.0
51	43-2, 5	VSL+KIT	КІП	F. c.	2.91	-	-	-	0.06	-	-	1.03	-	-	4

Table 5 continued: Chemical composition and formulas of arsenopalladinite, guanglinite, palladoarsenide, sperrylite, isomertieite and keithconnite in PGM-grains of the heavy concentrates (sample 90-23A, 808)

An.	Grain	Association of minerals in the grain	Mineral		Pd	Pt	Au	Cu	Fe	Ni	Zn	Pb	Te	S	Total
1	45 1 20	(Au,Cu,Pd)+ZV+KTH+	(Au Cu Pd)	Wt.%	5.2	-	82.4	6.1	0.5	-	-	-	-	-	<b>98.8</b>
1	45-1, 20	ILM+ACT	(Au,Cu,Fu)	F. c.	0.08	-	0.70	0.16	0.02	-	-	-	-	-	1
2	45 1 61	BCD±4SPD	BGD	Wt.%	3.3	3.4	82.1	9.3	0.4	-	-	-	-	-	98.5
2	45-1, 01	<u>DOD</u> TASI D	DOD	F. c.	0.20	0.11	2.69	0.95	0.05	-	-	-	-	-	4
3	15-1 61	BGD+(Pt Fe Pd)	BGD	Wt.%	19.1	3.7	59.1	10.2	1.6	-	-	5.9	-	-	<b>99.5</b>
5	43-1, 04		DOD	F. c.	1.00	0.11	1.67	0.90	0.16	-	-	0.16	-	-	4
4	45-1 64	BGD+(Pt Fe Pd)	(Pt Fe Pd)	Wt.%	12.7	73.4	-	1.6	12.1	-	-	-	-	-	<b>99.8</b>
-	43-1, 04	DOD <u>(1 t,1 c,1 d)</u>	(1 t,1 c,1 d)	F. c.	0.16	0.51	-	0.03	0.30	-	-	-	-	-	1
5	45-1 54	(Pd Pt Fe Cu)(zone1)	(Pd Pt Cu Fe)	Wt.%	35.1	55.9	2.0	4.7	1.9	-	-	-	-	-	<b>99.6</b>
5	45-1, 54	<u>(1 u,1 t,1 e,Cu)(20101)</u>	(1 u,1 t,eu,1 c)	F. c.	0.45	0.39	0.01	0.10	0.05	-	-	-	-	-	1
6	15-1 51	(Pd Pt Fe Cu)(zone?)	(Pd Cu Pt)	Wt.%	76.8	10.2	4.7	4.7	0.9	-	-	-	1.2	-	98.5
0	45-1, 54	<u>(1 u,1 t,1 e,Cu)(20162)</u>	(1 u,Cu,1 t)	F. c.	0.80	0.06	0.03	0.08	0.02	•	-	-	0.01	-	1
7	45 1 54	(Pd Pt Fe Cu)(zone3)	(Pd Pt)	Wt.%	56.8	34.6	5.1	1.7	1.2	•	-	-	-	-	99.3
,	45-1, 54	<u>(1 u,1 t,1 e,Cu)(20105)</u>	(1 u,1 t)	F. c.	0.65	0.21	0.03	0.03	0.03	-	-	-	-	-	1
8	45-1 55	VSL+(Pd,Pb,Cu,Au)+	(Pd Ph Cu)	Wt.%	79.3	-	4.9	2.3	1.0	-	-	10.7	-	-	98.2
0	45-1, 55	BORN	(1 u,1 0,0u)	F. c.	0.85	-	0.03	0.04	0.02	-	-	0.06	-	-	1
9	45-1 42	PdCu	PdCu	Wt.%	60.3	-	1.3	30.4	5.0	-	1.6	-	-	-	<b>98.6</b>
	45 1, 42	<u>rucu</u>	Tueu	F. c.	0.97	-	0.01	0.82	0.16	-	0.04	-	-	-	2
10	45-1 44	PdCu	PdCu	Wt.%	55.7	4.8	2.0	29.5	5.4	-	0.7	-	-	-	98.1
10	43-1, 44	I deu	Tueu	F. c.	0.93	0.04	0.02	0.82	0.17	-	0.02	-	-	-	2
11	15-2 1	(Pd Pt)Cu	(Pd Pt)Cu	Wt.%	47.1	15.3	-	30.4	6.4	-	-	-	-	-	99.2
11	ч <i>3-2</i> , ч	<u>(1 u,1 t)Cu</u>	(I u,I t)Cu	F. c.	0.79	0.14	-	0.86	0.21	-	-	-	-	-	2
12	45-1 55	VSI +(Pd Ph Cu Au)	VSI	Wt.%	70.8	-	-	14.0	0.6	-	-	-	-	13.1	<b>98.5</b>
12	45-1, 55	<u>V5E</u> (1 u,1 0,Cu,7 u)	VSE	F. c.	11.73	-	-	3.88	0.19	-	-	-	-	7.20	23
13	45-1 56	VSL	VSL	Wt.%	71.2	-	-	14.2	0.8	-	-	-	-	12.7	99.4
15	<b>−</b> J [−] 1, J0	<u>+5L</u>	• SL	F. c.	11.81	-	-	3.94	0.25	-	-	-	-	6.99	23
14	15-2 3	VSI +KTH	VSI	Wt.%	71.8	-	-	14.1	0.4	-	-	-	-	13.3	99.5
14	+5-2, 5		V SL	F. c.	11.80	-	-	3.88	0.13	-	-	-	-	7.20	23

Table 6. Chemical composition and formulas of Au-Pd-Cu-Ag alloys, Pt-Fe-Pd alloy, Pd-Pt-Cu alloy, unnamed mineral phase PdCu, vasilite and vysotskite in PGM-grains of the heavy concentrates (sample 90-23A, 808)

An.	Grain	Association of minerals in the grain	Mineral		Pd	Pt	Au	Cu	Fe	Ni	Zn	Pb	Te	S	Total
15	75 1 5		VSI	Wt.%	63.8	-	-	15.4	6.0	-	-	-	-	13.4	98.6
15	75-1, 5	<u>VSL</u> +BORN+CI	VSL	F. c.	10.08	-	-	4.08	1.81	-	-	-	-	7.03	23
16	75 1 19	VSL   VTL   DODN   ACT	VSI	Wt.%	72.3	-	-	14.1	0.3	-	-	-	-	13.0	<b>99.7</b>
10	75-1, 18	<u>V3L</u> +KIH+BORN+ACI	VSL	F. c.	11.93	-	-	3.89	0.10	-	-	-	-	7.09	23
17	75 1 26	VSL+BORN+CHC+	Vei	Wt.%	70.5	1.0	-	14.1	0.7	-	-	-	-	12.9	99.2
17	73-1, 20	CHL+MT	VSL	F. c.	11.68	0.09	-	3.91	0.22	-	-	-	-	7.09	23
10	45 1 10	VVS CHC DODN	VVS	Wt.%	71.8	3.6	-	-	-	-	-	-	-	22.9	98.3
18	43-1, 10	$\underline{VIS}$ +CHC+DOKN	V 1 5	F. c.	0.96	0.03	-	-	-	-	-	-	-	1.01	2
10	45 1 62	VVC DODN	VVC	Wt.%	74.0	-	-	-	-	1.2	-	-	-	-	99.5
19	43-1, 62	$\underline{VIS}$ +DUKIN	V 1 5	F. c.	0.94	-	-	-	-	0.03	-	-	-	-	2
20	75 1 4	VVC II M	VVC	Wt.%	70.1	-	-	-	0.7	3.1	-	-	-	24.3	98.2
20	75-1,4	$\underline{\mathbf{v}}$ <b>i S</b> +ILIVI	v 1 S	F. c.	0.89	-	-	-	0.02	0.07	-	-	-	1.02	2

*Table 6 continued: Chemical composition and formulas of Au-Pd-Cu-Ag alloys, Pt-Fe-Pd alloy, Pd-Pt-Cu alloy, unnamed mineral phase PdCu, vasilite and vysotskite in PGM-grains of the heavy concentrates (sample 90-23A, 808)* 



Fig. 1. PGE, Au and Ag minerals relative contents of the sample 90-23A, 808.
1: zvyagintsevite, 2: guanglinite, 3: arsenopalladinite, 4: palladoasenide, 5: vasilite,
6: vysotskit, , 7: Au-minerals (bogdanovite+Au-Cu-Pd-Ag-alloys), 8: uunamed PdCu,
9: Pt-minerals (sperrylite, Pt-Fe-Pd-Cu-alloys), 10: others.



Fig. 2. Grain sizes of precious metal mineral grains (N=116), extracted in the heavy concentrates of the sample 90–23A, 808. a: histogram, b: lognormal probability plot.



Plate 1: Relationships of rock-forming minerals, Fe-Ti-oxides, sulphides and PGMs in oxide-rich tholeiitic gabbros, the sample 90-23A, 808 (1-9); polished sections of grains, extracted in the heavy concentrates; 2: part of 1; 5 and 6: parts of 4; SEM-image (BIE), polished sections #90 23A, 808-1 and 808-2.



Plate 2. Sulphide mineralisation grains and globules from oxide-rich tholeiitic gabbros, the sample 90-23A, 808 (1-16); polished sections of grains, extracted in the heavy concentrates; SEM-image (BIE).



Plate 3. Grains of zvyagintsevite, extracted in heavy concentrates of the sample 90-23A, 808 (1-65); polished sections; SEM-image (BIE).



Plate 3 continued. Grains of zvyagintsevite, extracted in heavy concentrates of the sample 90-23A, 808 (1-65); polished sections; SEM-image (BIE).



Plate 4. Grains of arsenopalladinite, guanglinite and palladoarsenide, extracted in heavy concentrates of the sample 90-23A, 808 (1-23); polished sections: SEM-image (BIE).



Plate 5. Grains of vysotskite, vasilite, keithconnite, isomertieite, Au-Cu-Pd-alloy, bogdanovite, Pt-Fe-Pd-alloy, unnamed mineral phase PdCu and Pd-Pt-Cu-alloy, extracted in heavy concentrates of the sample 90-23A, 808 (1-21); polished sections; SEM-image (BIE).