Occurrences of kimberlite, lamproite and ultramafic lamprophyre in Greenland

Lotte Melchior Larsen

Open File Series 91/2

January 1991

GRØNLANDS GEOLOGISKE UNDERSØGELSE Kalaallit Nunaanni Ujarassiortut Misissuisoqarfiat GEOLOGICAL SURVEY OF GREENLAND

GRØNLANDS GEOLOGISKE UNDERSØGELSE Kalaallit Nunaanni Ujarassiortut Misissuisoqarfiat GEOLOGICAL SURVEY OF GREENLAND

The Geological Survey of Greenland (GGU) is a research institute affiliated to the Mineral Resources Administration for Greenland (MRA) within the Danish Ministry of Energy. As with all other activities involving the non-living resources in Greenland, GGU's investigations are carried out within the framework of the policies decided jointly by the Greenland Home Rule Authority and the Danish State.

Open File Series

The Open File Series consists of un-edited reports and maps that are made available quickly in limited numbers to the public. They are a non-permanent form of publication that may be cited as sources of information. Certain reports may be replaced later by edited versions.

Citation form

Open File Series Grønlands Geologiske Undersøgelse

conveniently abbreviated to:

Open File Ser. Grønlands geol. Unders.

GGU's Open File Series består af uredigerede rapporter og kort, som publiceres hurtigt og i et begrænset antal. Disse publikationer er midlertidige og kan anvendes som kildemateriale. Visse af rapporterne vil evt. senere blive erstattet af redigerede udgaver.

ISSN 0903-7322

GRØNLANDS GEOLOGISKE UNDERSØGELSE Open File Series No. 91/2

Occurrences of kimberlite, lamproite and ultramafic lamprophyre in Greenland

Lotte Melchior Larsen

Abstract

Kimberlite, lamproite and ultramafic lamprophyre may be host rocks for diamonds. Localities with occurrences of such rocks in Greenland have been compiled in an overview table given here as appendix 1, and in more detailed tables that are available on request from GGU.

The rocks in question are concentrated in West Greenland. West Greenland from 60°N to 72°N houses at least four swarms of kimberlite, one swarm of lamproite and one lamproite pipe, and seven swarms of ultramafic or strongly potassic lamprophyre. Ages range from Proterozoic (c. 1800 Ma) to Mesozoic (120 Ma).

The field relations and petrography of each swarm is reviewed. The whole-rock geochemistry of each rock group is discussed and illustrated in a few plots. Many swarms tend to possess individual chemical characteristics, distinct for each swarm. Of the kimberlites, the Sukkertoppen swarm seems to have originated at the deepest level in the mantle, in accordance with its occurrence well within the undisturbed Archaean craton.

Sparse microdiamonds have been found in connection with the Pyramidefjeld-Midternæs and Sarfartôq swarms and in an unsupported occurrence near Fiskenæsset. The best diamond potential is considered to be possessed by the Sukkertoppen kimberlite swarm and a dyke swarm in the Disko Bugt region of ultramafic lamprophyre with affinities to olivine lamproite.

<u>Contents</u>

1.	Introduction4							
2.	Data	ata compilation4						
3.	Nome	Nomenclature6						
	3.1	Distinction between the main rock groups6						
	3.2	Naming of rocks in the present compilation7						
4.	Dist	ribution						
5.	Carb	Carbonatites in Greenland13						
6.	Kimb	Kimberlites13						
	6.1	Holsteinsborg-Sarfartôq region13						
		6.1.1. Holsteinsborg kimberlite swarm14						
		6.1.2. Sarfartôq kimberlite swarm14						
	6.2	Sukkertoppen region						
	6.3	Frederikshåb-Ivigtut region16						
		6.3.1. Nigerdlikasik kimberlite dyke16						
		6.3.2. Pyramidefjeld-Midternæs kimberlite sheets16						
	6.4	Ingia17						
	6.5	Whole-rock geochemistry of the kimberlites17						
7.	Lamproites							
	7.1	Holsteinsborg lamproite swarms20						
	7.2	Oqaitsúnguit lamproite pipe, Disko Bugt20						
	7.3	Whole-rock geochemistry of the lamproites21						
8.	Ultr	amafic lamprophyres (UML) and other groups21						
	8.1	UML from the Gardar province, South Greenland22						
	8.2	UML from south of Frederikshåb22						
	8.3	UML from Frederikshåb Isblink23						
	8.4	UML from the Færingehavn area24						
	8.5	UML from the Sukkertoppen region24						
	8.6	Potassic lamprophyres (shonkinites) from Sarfartôq25						
	8.7	UML from the Disko Bugt region25						
	8.8	Whole rock geochemistry of the UML and other lamprophyres29 $$						
9.	Diamo	ond prospecting in Greenland29						
10.	Conc	lusions						
11.	References31							
Appendix 1 List of registered localities with occurrences of								
		kimberlite, lamproite and ultramafic lamprophyre						
Apper	ndix 2	2 Distribution maps						

1. Introduction

Occurrences of kimberlite have been reported from several localities in Greenland. Kimberlite is the classical host rock for diamonds, and consequently diamond prospecting has been carried out over large parts of West Greenland, resulting in the recovery of some few microdiamonds. In recent years other rock types have been found to host diamonds, notably lamproites (Scott-Smith & Skinner, 1984), and in a few cases scarce diamonds have been reported from ultramafic lamprophyres (Rock; 1986, Hamilton & Rock, 1990). Such rocks also occur in Greenland.

In the field kimberlites, lamproites and ultramafic lamprophyres tend to be very elusive. They mostly occur as narrow dykes and sheets which weather quite easily, and they are therefore often covered by soil and vegetation. In West Greenland, occurrences of such rocks have been reported from $61^{\rm O}N$ to $72^{\rm O}N$, a stretch of around 1300 km. They tend to come in swarms, but the systematic distribution patterns are often unclear, and some whole swarms may perhaps still await discovery.

At the Geological Survey of Greenland information on occurrences of kimberlites and related rocks is slowly accumulating. The information resides in various places ranging from field diaries and field maps through internal reports, reports from prospecting companies (now released), PhD and other theses to published scientific papers. Owing to the scattered character of the information it is difficult to obtain an overview, and it has therefore been considered worthwhile to compile much of it in one place. This report reviews the data and presents a list of the known localities together with simplified distribution maps.

2. Data compilation

The compilation is primarily concerned with kimberlites, lamproites and ultramafic lamprophyres. Carbonatites and other lamprophyres are excluded; the boundaries to these rock groups are gradational which causes some boundary problems as discussed in the section on nomenclature. On the other hand there are some localities where the identity of the rock is not certain but is probably of the 'right' kind, and these have been included. Further, a few cases of strongly potassic lamprophyres have also been included. Stream sediment samples that tested positive for diamonds have also been included.

The map basis for the compilation is Kort- og Matrikelstyrelsen's (former Geodetic Institute's) series of 1:250 000 maps, and each locality is given a number which consists of the map number (e.g. 65V1) followed by a consecutive number. This allows the number of localities within a given map sheet to increase with time if needed.

For each locality details of information, as far as they exist, are compiled in a standard form as shown by the example in Table 1.

Table 1. Example of detailed information registered for a locality

Locality no: 65V1.2

Coordinates: 65.392 -52.400

Place name: Alanguarssuk, Søndre Isortoq south coast.

Rock type: Kimberlite

Field description: Dyke 0.6-2 m thick, orientation 46/90, coast parallel.

Exposed over c. 150 m.

Primary locality:

Samples: GGU 87739 - 87745

Rock analyses: 87739, 87745. Trace elements: 87739, 87740, 87742 Mineral analyses: Olivine, garnet, orthopyroxene, clinopyroxene, mica,

ilmenite.

Modal analyses: Rb-Sr data: K-Ar data: Comments:

References: Goff (1973).

Coordinates: Latitude and longitude in decimal degrees. The minus sign indicates western longitude.

The coordinates were read from available maps with as high precision as possible; however the precision varies quite a lot. For the use of rock names see the section on nomenclature below. The 'primary locality' gives direct access to original field diaries. The 'comments' may include information about correlations, naming, diamond investigations, geophysical investigations etc. The minimum amount of information in some instances is only a locality and a reference, while at the other extreme a whole thesis may be written on one locality.

At present the total number of localities is around 500. This report includes as appendix 1 a list giving locality numbers, coordinates and rock types of all registered localities. The detailed information on the localities, as show by the example in Table 1, is rather bulky, with c. two localities per page. The whole list, or parts of it as desired, are available on request.

3. Nomenclature

The compilation includes kimberlites, lamproites and ultramafic (and in a few cases other) lamprophyres, and does not include carbonatites and alkaline and calc-alcaline lamprophyres. But there are inevitable boundary problems both internally and externally. The rocks in question are all of deep-seated origin and are volatile-rich and potassic. Distinction between groups is often complex and involves both mineralogical and geochemical criteria, besides considerations of genetic association, and these are sometimes in conflict. Thus, carbonatites are by mineralogical and geochemical criteria easy to distinguish from the other rocks because they by definition contain more than 50% modal carbonate (Streckeisen, 1979; Le Maitre, 1989). However, the carbonate-rich chilled facies of some kimberlite dykes, which by mineralogical and geochemical criteria are carbonatites, are an integral part of the kimberlites and are here classified as kimberlite. Genetic association is thus often given priority over strict classification criteria. At the other end of the spectrum the 'cut-off-level' is also problematical because distinction between ultramafic and mafic alkaline lamprophyres cannot always be made, and ultramafic magmas may differentiate into more salic types. A group of lamprophyre dykes in the region of Ravn Storø comprises both ultramafic and mafic alkaline types, and the most primitive of the mafic types have been included in the compilation because the distinction towards the ultramafic group is not clear, and they may be differentiated from ultramafic parents.

3.1. Distinction between the main rock groups

Distinction between kimberlites and ultramafic lamprophyres is complex and involves both mineralogical and geochemical characters (e.g. Rock, 1986), but basically kimberlites are very MgO-rich rocks which carry mantle-derived nodules of peridotite with pyrope garnet and chromian pyroxene, while ultramafic lamprophyres contain less MgO and have andradite garnet and chrome-poor pyroxene. There may be a complete gradation between the two groups. Lamproites are not ultramafic and are characterized by high concentrations of SiO_2 and K_2O and low Al_2O_3 , and a number of rare potassium minerals like priderite and wadeite (e.g. Bergman, 1987); they may grade into potassic lamprophyres at one end and via olivine lamproites into kimberlite at the other end.

Ideally, both mineralogical and geochemical data should be used to classify a rock properly, but for the Greenlandic rocks geochemical analyses are far more abundant than mineral analyses. However, the geochemical analyses alone provide a fairly clear distinction between the main types, as shown in a scatter plot of K_2O vs MgO (Fig. 1). (It should be noted that the differentiated kimberlites from Sarfartôq with MgO <21% have not been included in this diagram - they plot in the field of ultramafic lamprophyres where also carbonatites plot). According to this diagram the kimberlites have MgO >21% and K_2O <4%, lamproites have K_2O >5%, and ultramafic lamprophyres have MgO <21% (except for one case) and K_2O <5%. A group of potassic lamprophyres shows mixed relations in this as in many other diagrams; mineralogically and chemically these rocks resemble the shonkinites from Shonkin Sag (Nash & Wilkinson, 1970, 1971) and they have therefore been termed shonkinites.

The main groups in Fig. 1 are so well separated that it looks easier to distinguish between the groups than it actually is. Some lamproites in other parts of the world have less than 5% K_2O , and if such rocks occur in Greenland they would be misclassified in Fig. 1, because only their mineralogy will show that they are lamproites. There may be one or two Greenlandic examples of this, as discussed later, and it is precisely the low-K lamproites that may carry diamonds (Bergman, 1987).

Similar difficulties exist regarding the distinction between kimberlites and ultramafic lamprophyres in Fig. 1: What if some of the rocks with MgO >21% do not contain pyrope garnet and chromian diopside, and vice versa? Hamilton & Rock (1990) have published a simple geochemical diagram (MgO/CaO vs SiO₂/Al₂O₃) which they claim is capable of separating a field where only kimberlites may plot from a field with ultramafic lamprophyres and some (more differentiated) kimberlites. This diagram is shown in Fig. 2 with the Greenlandic analyses, and it shows that many Greenlandic rocks which are termed kimberlites on a perhaps somewhat loose basis do plot in the field of kimberlites proper.

3.2. Naming of rocks in the present compilation

The rock names given to the localities in appendix 1 represent a necessary compromise. When there are no data except field data the name field is either left blank or the original rock name used by the finder is

Fig. 1. K20 vs MgO for the main rock groups in Greenland, showing a fairly clear distinction between groups.

9

Fig. 2. Kimberlite - ultramafic lamprophyre discrimination diagram, with Greenland data.

given. This applies even though the term may now be obsolete, e.g. the term 'kersantite' used by Noe-Nygaard & Ramberg (1961) for both kimberlites and lamproites. Many of the 'blank' name fields in the compilation for map sheet 66V1 Holsteinsborg probably represent lamproites, but because there are also a few other lamprophyre dykes in the area one cannot be certain which name should apply to a locality where no sample was taken.

When there are additional data, e.g. thin sections to show whether a 'kersantite' is a kimberlite or a lamproite, the name has been changed accordingly. The names of some described dykes have also been changed to be in accordance with modern terminology. The dykes on Ravn Storø were oritinally described as nephelinites (Hansen, 1979, 1980, 1981, 1984), but they are too volatile-rich for that and have here been termed monchiquites. The 'lamprophyric carbonatite' dykes from south of Frederikshåb described by Walter & Arnold (1970) are here changed to 'ultramafic lamprophyre' which is a sack term that is often convenient. A more precise term for these would probably be aillikite, but more restrictive naming necessitates petrographic studies.

In possible later, updated versions of this compilation rock names may be changed to be in accordance with data acquired in the meantime.

4. Distribution

The geographical distribution of kimberlites, lamproites and ultramafic lamprophyres in West Greenland is shown in overview in Fig. 3 and in more detail on the 1:1 million maps in appendix 2. These figures cover West Greenland from 60°N to 72°N, and outside this area occurrences of the rocks in question are extremely scarce; they are known only from the Caledonian potassic-ultramafic Batbjerg complex from Kangerdlugssuaq, East Greenland (Brooks et al., 1981) and as a few ultramafic lamprophyre dykes of Tertiary age from Scoresby Sund (Larsen et al., 1989).

Fig. 3. Distribution of kimberlites, lamproites and ultramafic lamprophyres in Greenland.

Table 2. Number of localities with kimberlite, lamproite and ultramafic lamprophyre in West Greenland

Geodetic Institute 1:250 000 map sheet	kimberlite	<u>lamproite</u>	ultramafic lamprophyre	total
60V1 Julianehåb			12	12
60V2 Nanortalik			4	4
61V1 Ivigtut	26		40	66
61V3 Narssarssuaq			44	44
62V1 Frederikshåb Isblink	1		36	37
63V1 Færingehavn	1?		5	6
65V1 Sukkertoppen	10		2	12
65V2 Majorqaq	7		5	12
66V1 Holsteinsborg	37	24	5	103
66V2 Søndre Strømfjord	115		11	128
67V1 Nordre Strømfjord vest	5	6		11
69V2 Jakobshavn		1	56	57
71V1 Svartenhuk Halvø	4		2	6
Total	206	31	218	494

The total number of localities on a map sheet is in some cases larger than the sum of kimberlites, lamproites and ultramafic lamprophyres, because in some localities the proper rock name cannot be identified.

The name 'ultramafic lamprophyre' is used sensu lato and includes a rather large variety of types.

On the map sheets not listed there are no registered localities. For western Greenland these comprise 59V1, 61V2, 63V2, 64V1, 64V2, 67V2, 68V1, 68V2, 69V1, 70V1, 70V2, 71V2 and all sheets north of $72^{\circ}N$.

Within West Greenland the localities are very unevenly distributed, depending on the fact that the rocks often occur in swarms, and on the degree of detail with which an area is investigated. Table 2 shows the number of localities on the various 1:250 000 map sheets in West Greenland. The large number of kimberlite occurrences on map sheet 66V2 Søndre Strømfjord is due to a combination of the two factors mentioned above: There is a large kimberlite swarm, and the rocks have been systematically prospected for (Larsen, 1980). The absence of reported occurrences from the map sheets 67V2, 68V1 and 68V2, covering eastern Nordre Strømfjord and the Egedesminde and Christianshåb districts, may be more due to lack of detailed work than to absence of occurrences - this is simply not known at present. On the other hand the absence of reports from the very well investigated Godthåbsfjord region (map sheets 64V1 and 64V2) must reflect a real absence of occurrences there.

5. Carbonatites in Greenland

Some of the rocks are related to carbonatite occurrences which are excluded from the present compilation, and because of this and the possible close genetic relations between carbonatites and the rocks in question, the occurrences of carbonatite in Greenland are listed below.

<u>Name</u>	<u>Location</u>	<u>Age</u>	References
Tupertalik Singertât Two dykes Dykes Qagssiarssuk Dykes Grønnedal-Ika Sarfartôq Qaqarssuk Gardiner	65.49°N,51.84°W 63.25°N,42.00°W 62.85°N,49.63°W SE Greenland 61.14°N,45.53°W Igaliko complexes 61.23°N,48.07°W 66.50°N,51.25°W 65.38°N,51.68°W 68.62°N,33.20°W	2650Ma 2680Ma Archaean unknown c.1300Ma c.1300Ma? 1300Ma 600Ma 173Ma c. 50Ma	Larsen & Pedersen, 1982 Nielsen & Rosing, 1990 Bollingberg et al., 1976 Andrews et al., 1971, 1973 Stewart, 1970 Pearce, 1988 Emeleus, 1964 Secher & Larsen, 1980 Knudsen, 1986, 1989a,b Nielsen, 1980

The locations are given in decimal degrees.

6. Kimberlites

Kimberlites occur in three main 'swarms' in western Greenland. 1) The Holsteinsborg-Sarfartôq region at the northern boundary of the Archaean craton. 2) The Sukkertoppen region within the Archaean craton. 3) The Frederikshåb-Ivigtut region at the southern boundary of the Archaean craton. Kimberlite dykes have also been reported from Ingia, within the Rinkian mobile belt.

6.1 Holsteinsborg-Sarfartôg region (map sheets 66V1, 66V2, 67V1)

The kimberlite dykes in this region occur in two separate swarms (see app. 2, map 4). One swarm is concentrated in the Holsteinsborg area and presumably continues northward to Nordre Isortoq, although the connection is not clear. The other swarm occurs in the inland areas around and south-east of Søndre Strømfjord and is quite extensive. Lamproite dykes occur in the intervening areas but are characteristically absent, or nearly absent, from the areas where the kimberlites occur.

The Holsteinsborg swarm has been dated by the Rb-Sr method to 587±24 Ma (Scott, 1981), whereas the Sarfartôq swarm has been dated by the K-Ar method to 589±18 - 656±20 Ma (average 615 Ma; Larsen et al., 1983). Any age difference between the two swarms is thus not discernible, and neither is there any discernible age difference to the kimberlites from Sukkertoppen (section 6.2).

6.1.1. Holsteinsborg kimberlite swarm

This swarm occurs in a c. 60 km long and 15-20 km broad coastal strip from the islands south of Holsteinsborg to Nordre Isortoq (app. 2, map 4). The northern part of the swarm may continue further towards the east than presently known. The dykes are situated in Proterozoic (Nagssugtoqidian, reworked Archaean) basement in granulite facies, outside the major shear zones in the area. They strike mainly E-W. They have been described by Scott (1977, 1979, 1981).

The Holsteinsborg kimberlite dykes vary in thickness from a few centimetres to 2 m, and are generally less than 1 m thick. The wider dykes may have central zones rich in ultramafic nodules, and dunite, lherzolite, wehrlite, harzburgite, eclogite and granulite nodules have been found.

The rock is a phlogopite kimberlite with macrocrysts of olivine and rarely garnet and ilmenite, smaller phenocrysts of olivine and phlogopite, and a groundmass composed of phlogopite, magnetite, clinopyroxene, carbonate, apatite and sometimes perovskite. The mineral compositions are typical for kimberlites. The geochemistry is discussed below.

6.1.2. Sarfartôg kimberlite swarm

This swarm occurs in a c. 80 x 80 km large area between Søndre Strømfjord and the Inland Ice. (app. 2, map 4). The swarm is not well delimited, especially not towards the Inland Ice and in the south, where no observations have been made. The swarm straddles the boundary between the Archaean block to the south and the Proterozoic Nagssugtoqidian mobile belt with reworked Archaean rocks to the north. (Fig. 3). It has been preliminarily described by Larsen (1980). The works of Scott (1977, 1979, 1981) included a few localities in Sarfartûp nunâ which form part of the Sarfartôq swarm.

The Sarfartôq kimberlites are related to the coeval Sarfartôq carbonatite complex. The kimberlites form an extensive swarm of cone sheets centered on the carbonatite and dipping 20-60° towards it. This cone sheet swarm extends to at least 25 km distance from the carbonatite; beyond this distance the strikes and dips become variable and the relation to the carbonatite more uncertain.

The Sarfartôq kimberlite dykes vary in thickness from a few centimetres to 2 m, and are generally less than 1 m thick, just like the Holsteinsborg dykes. They may likewise have central zones rich in ultramafic nodules, and dunite, lherzolite and granulite nodules have been found.

Many of the Sarfartôq rocks are phlogopite kimberlites just like those described above for Holsteinsborg. However, the Sarfartôq kimberlites also include phlogopite-poor rocks consisting mainly of close-lying olivine macrocrysts and phenocrysts, with groundmass carbonate, magnetite, sparse colourless phlogopite, and sometimes perovskite. The Sarfartôq group further includes more carbonate-rich rocks than the Holsteinsborg group; these rocks occur in narrow dykelets and as marginal facies in wider dykes with normal kimberlite centres. They consist of sparse olivine, Fe-Ti oxides and sometimes phlogopite in a matrix of carbonate, and they include rocks which are mineralogically indistinguishable from carbonatite.

6.2. Sukkertoppen region (map sheet 65V1, 65V2).

Kimberlite dykes have been found in this region within an area of c. 50 x 50 km (app. 2, map 3), emplaced into rocks of the Archaean block. The dykes have been dated by the K-Ar method to 586-613 Ma (D. Rex, unpublished data), i.e. they are of the same age as the Holsteinsborg-Sarfartôq kimberlites (section 6.1). They have thus no direct genetic connection with the Qaqarssuk carbonatite complex in the same region, because this is of Mesozoic age (section 5). Most of the kimberlites have been found by Kryolitselskabet Øresund A/S, and there is no published account on them. The following descriptions are based on field diaries from Kryolitselskabet Øresund A/S, and on the author's own data and petrographic observations.

At present 17 localities with kimberlite are known from the Sukkertoppen region. All occurrences are dykes which are 10 cm to 2 m thick and usually only traceable over short distances. Strike directions are quite variable, but the majority of the dykes have directions between NE and E. The area possesses prominent lineaments directed at 60°NE, seen in the directions of many fjords, and the kimberlites may be structurally related to these. Movements along the lineaments have taken place recurrently since the Proterozoic, latest in the Mesozoic.

The Sukkertoppen kimberlites contain megacrysts/macrocrysts of olivine, garnet and an opaque oxide, and abundant phenocrysts of olivine in a groundmass of carbonate and Fe-Ti oxides. Phlogopite occurs sparsely in the groundmass as small colourless flakes. Only one phlogopite kimberlite, with phenocrysts of brown phlogopite, has been found. The Sukkertoppen kimberlites are thus mainly similar to the phlogopite-poor kimberlites from Sarfartôq described in section 6.1.2, but garnet megacrysts appear to be much more frequent in the Sukkertoppen rocks.

One locality (65V1.1) is a very mica-rich ultramafic rock that is either a differentiated phlogopite kimberlite or an ultramafic lamprophyre. It is of the same age as the kimberlites, but is here treated together with the ultramafic lamprophyres.

6.3 Frederikshåb-Ivigtut region (map sheets 61V1, 62V1).

The kimberlite dykes in this region comprise a single dyke at Nigerdlikasik 43 km ENE of Frederikshåb, and groups of 'stacked' kimberlite sheets in the Pyramidefjeld-Midternæs area 70-80 km south of Nigerdlikasik (app. 2 maps 1 and 2).

The Nigerdlikasik dyke is emplaced into undisturbed Archaean rocks, while the Pyramidefjeld-Midternæs sheets are emplaced into the northern border zone of the Ketilidian mobile belt, where the Archaean basement is slightly affected by the Ketilidian deformation.

The rocks have been dated by ⁴⁰Ar-³⁹Ar and Rb-Sr methods to 193±6 - 220±17 Ma (Bridgwater, 1970; Andrews & Emeleus, 1971), i.e. Mesozoic (Triassic-Jurassic). They have been described together by Andrews & Emeleus (1971, 1975) and Emeleus & Andrews (1975).

6.3.1 Nigerdlikasik kimberlite dyke

The dyke (loc. 62V1.1) is 0.5 m thick, vertical, trending 140°, and can be followed over c. 500 m. Besides various xenoliths of crustal derivation it contains rounded nodules of both garnet and spinel peridotites. The dyke rock contains megacrysts/phenocrysts of olivine in a groundmass composed of carbonate, serpentine, phlogopite and Fe-Ti oxides, with accessory clinopyroxene, perovskite and apatite.

6.3.2 Pyramidefjeld-Midternæs kimberlite sheets

The sheets occur in three areas some 3-10 km apart: Around Kedelsø ('Grydesø') (locs. 61V1.1-.9), around Pyramidefjeld (locs. 61V1.10-.21) and in Midternæs (locs. 61V1.22-.26). In all three areas the kimberlites form flat-lying sheets with dips of 10-20°. The sheets are generally less than 1 m thick and occur in several levels with 20-50 m vertical intervals, and they can be followed continuously for around 1 km. The rocks contain peridotite nodules like those at Nigerdlikasik, and the kimberlite rocks are petrographically also similar to that at Nigerdlikasik.

The minerals from the kimberlites and peridotite nodules from Nigerdlikasik and Pyramidefjeld have been investigated by Emeleus & Andrews (1975). A few microdiamonds have been found in bulk rock samples (Geisler, 1972).

6.4 Ingia (map sheet 71V1)

Six samples of ultramafic dykes were collected from the Ingia area around $72^{\circ}N,53^{\circ}W$ by Charter Consolidation Limited. Their petrography and mineralogy was investigated by Smith (1981) who described four of the dykes as phlogopite kimberlites.

6.5 Whole-rock geochemistry of the kimberlites

Analytical data for the Greenlandic kimberlites are shown in Table 3 and in Fig. 4, which is a simple plot of Al_2O_3 vs MgO. This diagram illustrates the following features:

- 1. The Sarfartôq swarm includes a number of differentiated kimberlites which grade into carbonatite mineralogically and chemically (cf. section 6.1.2).
- 2. The Holsteinsborg dykes all have $A1_20_3 > 2\%$, whereas comparable dykes of the Sarfartôq swarm (with MgO >21\%) in addition comprise some with lower $A1_20_3$. This corresponds to the mineralogical differences between phlogopite-rich and olivine-rich kimberlites noted earlier (section 6.1.2). The Sukkertoppen and Pyramidefjeld kimberlites are fairly low in $A1_20_3$.
- 3. The most Mg-rich kimberlites are those from Sukkertoppen, with up to 37.7% MgO. They are followed by those from Sarfartôq (up to 35.7% MgO) and Holsteinsborg (up to 32.1% MgO), while those from Pyramidefjeld-Nigerd-likasik only come up to 28.0% MgO.

The Mg-ratio (atomic Mg/(Mg + Fe²⁺)) of a kimberlite may reflect the magma's depth of equilibration within the mantle (Eggler, 1989). The Sukkertoppen kimberlites have the highest Mg-ratios (0.84-0.88) which may indicate pressures of 55-60 Kbar, i.e. depths of 180-200 km. Despite their low MgO contents, the Pyramidefjeld-Nigerdlikasik kimberlites come next, with Mg-ratios of 0.81-0.87, corresponding to slightly lower pressures and depths. The Sarfartôq kimberlites with MgO >21% and the Holsteinsborg kimberlites have Mg-ratios in the interval 0.78-0.85, with more Sarfartôq samples with high values. This may indicate pressures of 50-55 Kbar, i.e. depths of 160-180 km. This inferred depth sequence corresponds well with the tectonic settings of the various groups, respectively well within the Archaean craton (Sukkertoppen), in the outer part of the Archaean craton (Pyramidefjeld-Nigerdlikasik), at the margin of the craton (Sarfartôq) and just outside it (Holsteinsborg).

Fig. 4. Al203 vs. MgO for Greenland kimberlite swarms.

Table 3 Representative compositions of kimberlites and lamproites from Greenland

	-		•					
	1	2	3	4	5	6	7	
SiO_2	29.27	28.23	8.48	28.44	29.5	46.05	39.65	
$Ti0_2^2$	2.35	2.98	1.58	3.32	1.81	3.36	1.33	
$A1_2\ddot{0}_3$	2.74	1.22	1.50	1.27	2.7	7.40	11.38	
$Fe_2^2O_3$	2.49	3.33	2.67	4.82	5.6	2.27	1.19	
FeŐ	8.40	9.26	5.37	6.38	7.9	5.28	3.42	
MnO	0.19	0.19	0.25	0.20	0.21	0.12	0.05	
MgO	27.01	30.28	10.95	37.76	27.1	12.12	19.15	
CaO	10.53	8.65	32.57	5.88	10.7	5.31	5.38	
Na 20	0.31	0.14	0.15	0.18	0.47	1.69	0.37	
к ₂ ō	2.38	0.69	0.69	0.21	1.76	8.49	9.71	
P ₂ O ₅	0.60	0.42	1.76	0.27	0.54	1.47	2.80	
H ₂ O	2.76	2.56	1.63	4.51	3.2	4.68	2.73	
$C\overline{O}_2$	11.02	11.28	29.97	6.86	7.8			
Sum	100.05	99.23	97.57	100.10	99.3	98.24	97.16	
Cr	1396	1679	371	1472		455	1034	
Ni	842	1056	53	1333		390	808	
Sc		15	29	14		15		
V	268	140	192	153		115	32	
Cu	77	46	102	105		66	33	
Zn	72	74	71	55		83	76	
Ga		7	6	5		19		
Ba	1094	723	4679	1025		2580	4647	
Sr	1227	956	1952	507	780	2050	3579	
Rb	94	42	38	25	50	165	348	
Y	15	10	34	5		22		
Zr	141	201	393	89	270	924		
Nb		163	311	152		153		
La	217	86	274	70		222		
Се	271	128	506	121		399		
Nd		53	196	43		162		
Pb		<2	16	5		26		
Th		12	23	8		10		

^{1.} Li5530 (Univ.of Liverpool number system), kimberlite from the Holsteinsborg swarm, compilation loc. 66V1.16. From Scott (1977, 1981).

^{2. 265845} Kimberlite from the Sarfartôq swarm, center of dyke, compilation loc. 66V2.9. GGU-data.

^{3. 265844} Differentiated kimberlite, chilled margin on previous. GGU-data.

^{4. 265421} Kimberlite from the Sukkertoppen swarm, compilation loc. 65V1.5. GGU-data.

^{5.} Kimberlite from Pyramidefjeld, average of six analyses, compilation locs 61V1.10-.21. From Emeleus & Andrews (1975).

^{6. 311003} Lamproite dyke from the Holsteinsborg region, compilation loc. $66V1.45.\ GGU\text{-}data.$

^{7. 269766} Lamproite pipe from the Disko Bugt region, compilation loc. 69V2.56. GGU-data.

7. Lamproites

Lamproites have been identified in two areas. 1: Widespread lamproite dykes occur in intermittent swarms in the coastal area between Itivdleq and Nordre Strømfjord ('Holsteinsborg lamproites'). 2: A small lamproite pipe occurs in the Disko Bugt region north of Jakobshavn. There may be other, possible lamproites in the same region, but these are grouped with the ultramafic lamprophyres until further tests have been made.

7.1 Holsteinsborg lamproites (map sheets 66V1, 67V1)

In the Holsteinsborg region lamproite dykes have been intruded into the Nagssugtoqidian (reworked Archaean) basement north of the Archaean craton. They are quite narrowly confined to large shear zones, and usually they do not occur in the same areas as the kimberlite dykes in the region (app. 2, map 4). The Itivdleq and Ikertôq shear zones housing these dykes south of Holsteinsborg trend E-W, and so do the lamproite dykes, while the Nordre Strømfjord shear zone and the lamproite dykes in it trend NE-SW. There are few lamproites outside these shear zones. The shear zones have been described by Bak et al. (1975), Korstgård (1979), Nash (1979) and Sørensen (1983). The lamproites have been described by Winther (1971), Brooks et al. (1978), Scott (1977, 1979, 1981) and Thy et al. (1987). Those in the Itivdleq and Ikertôq zones have been dated at 1227±12 Ma (Rb-Sr, Scott, 1981), and one lamproite dyke in the Nordre Strømfjord zone has been dated at 1240±130 Ma (K-Ar, Winther, 1974). The lamproites are described together below.

The lamproites occur as thin brownish dykes usually less than 1 m thick, often with en echelon displacements. They are often zoned, showing signs of multiple intrusion. The rock is porphyritic, and phenocrysts may include phlogopite (ubiquitous), pseudoleucite, olivine and clinopyroxene, while groundmass phases reported are phlogopite, clinopyroxene, amphibole, K-feldspar, carbonate, apatite, quartz, rutile, ilmenite and priderite; serpentine and chlorite may be secondary. Thy et al. (1987) distinguished between leucite lamproites and amphibole lamproites.

Mantle nodules are not reported from the lamproites, but Thy et al. (1987) reported occasional pyrope xenocrysts.

7.2 Oqaitsúnguit lamproite pipe, Disko Bugt (map sheet 69V2)

Two small volcanic pipes, which probably merge to one body at depth, cut the Archaean Atâ granite at Oqaitsúnguit c. 65 km NNE of Jakobshavn (loc.

69V2.56). They occur in the same region that is cut by a large swarm of ultramafic lamprophyre dykes (section 8.7). The pipe was found in 1989 during regional geological investigations, and it is presently being described by Lilian Skjernaa (unpublished data). It has been dated by the K-Ar method at 1743±52 Ma (D. Rex, unpublished data).

The lamproite pipes are 50x70 m and 15x20 m large, and the distance between them is only 20 m. The rock is extremely rich in phlogopite and consists of close-lying coarse phlogopite crystals poikilitically enclosed in a matrix of microcline and potassic richterite. Euhedral apatite crystals are frequent. Diopside is subordinate in the centre of the pipes and increases in abundance toward the margins. The rock contains conspicuous 1-3 cm large ovoid phlogopite nodules that look like small chocolate eggs.

7.3 Whole-rock geochemistry of the lamproites

Bergman's (1987) review of lamproites shows large variations in chemical composition within the group. The fairly clear distinction of the Greenlandic lamproites from the other rocks in Fig. 1 is probably connected with the fact that all analyses except one come from the Holsteinsborg lamproites. These are of the same compositional type and are fairly typical although they are low in SiO₂, with on average 41.8% SiO₂ against Bergman's general range of 45-55% SiO₂. They have fairly low MgO and high K₂O centents (Table 3 and Fig. 1).

The one analysed sample of Oqaitsúnguit lamproite (Table 3) is very rich in MgO (19.1%) and K_2O (9.7%) and may be phlogopite-accumulative. Even with correction for this the rock still classifies chemically as a lamproite, as it also does mineralogically (potassic richterite is diagnostic).

Bergman (1987) compared the chemical compositions of diamondiferous and non-diamondiferous lamproites. Known diamondiferous lamproites have higher MgO and lower SiO_2 , Al_2O_3 , Na_2O and K_2O than non-diamondiferous lamproites. The Holsteinsborg lamproites are compositionally similar to the non-diamondiferous group, whereas the Oqaitsúnguit lamproite shows more mixed relations; its high MgO-content and Mg-ratio (atomic Mg/(Mg+Fe²⁺)) of 0.89 indicate that it may be of sufficiently deep-seated origin to be potentially diamondiferous.

8. Ultramafic lamprophyres (UML) and other groups

Ultramafic lamprophyres have been reported from several areas in West Greenland, usually as localised dyke swarms. From south to north they occur

in South Greenland (Gardar), south of Frederikshåb, at Frederikshåb Isblink, at Færingehavn, Sukkertoppen, Sarfartôq and in the Disko Bugt region, and probably in the Umanak region. They cut both the Archaean craton and the Proterozoic mobile belts south and north of the craton, and their ages range from Proterozoic to Mesozoic. In the following they are mentioned from south to north.

8.1 UML from the Gardar Province, South Greenland

(map sheets 60V1, 60V2, 61V1, 61V3)

Ultramafic lamprophyres occur as a very subordinate part of the Gardar igneous rocks in South Greenland. The Gardar period lasted from c. 1300 Ma to c. 1100 Ma, and given this time interval it is most probable that the occurrences mentioned below were produced in several separate events.

UML dykes have been reported from the vicinity of Arsuk (locs 61V1.63-.66: Upton & Emeleus, 1987, and unpublished data); on Tugtutôq island (locs 60V1.1 and 60V1.9-.12: Martin, 1985; Upton & Emeleus, 1987) where one strongly altered dyke is loaded with ultramafic nodules (Scott-Smith, 1987; Upton, in press); in and around the Igaliko intrusions (locs 61V3.29-.40 and 60V2.1-.4: Emeleus & Harry; 1970, Pearce, 1988); and on Mellemlandet and on G.F. Holm Nunatak (Upton & Fitton, 1985).

A number of small intrusions of ultramafic rocks (pyroxenites) occur in the vicinity of Narssaq (locs 60V1.2-.8) and have been described in some detail by Ussing (1912), Upton & Thomas (1973) and Craven (1985).

The Qagssiarssuk-Narssarssuaq area hosts a rather famous occurrence of alkaline ultramafic and carbonatitic rocks occurring as lavas, tuffs, pipes, sheets and dykes (locs. 61V3.1-.28), described by Walton (1965), Stewart (1970), Emeleus & Harry (1970) and Knudsen (1986). Many of these occurrences are shown on the geological map 1:100 000 61V.3 Syd Narssarssuaq.

The petrography and geochemistry of the gardar UML rocks are very variable, and the different groups of occurrences should probably best be treated separately. The data coverage of the groups is, however, quite uneven, and these rocks warrant further study before they can be properly reviewed.

8.2 UML from South of Frederikshåb (map sheet 61V1)

A swarm of UML dykes occurs in a 25x10 km large area immediately south of the town Frederikshåb (localities 61V1.27-.62). They were described by Walton (1966) and Walton & Arnold (1970), and dated by the K-Ar method at

166-172 Ma (Larsen & Møller, 1968; Bridgwater, 1970; Larsen et al., 1983).

The dykes trend NW-SE (i.e. coast-parallel) and have thicknesses varying from a few millimetres to 1.5 m. They were described as 'lamprophyric carbonatites'; following Rock (1986) the more modern group name 'aillikite' may be appropriate. The dykes have megacrysts of phlogopite, salite, hornblende and olivine in a groundmass consisting of carbonate, magnetite and mafic minerals. Local accumulations of plutonic nodules occur: Olivine megacrysts and hornblende-olivine-pyroxenite may be of mantle origin, while garnet granulite, hypersthene granulite, pyroxene hornblendite, amphibole hornblendite, biotite pyroxenite and glimmerite may be of lower crustal origin.

8.3 UML from Frederikshåb Isblink (map sheet 62V1)

Several occurrences of lamprophyre dykes have been reported from the vicinity of Frederikshåb Isblink. They have been described by Hansen (1979, 1980, 1981, 1984) and dated by the K-Ar method at 119-141 Ma by Hansen & Larsen (1974). Many of these dykes are alkaline and not ultramafic and are thus outside the scope of the present compilation. However, two groups of 'melilitites' and 'carbonatitic lamprophyres' are relevant. A group of 'olivine nephelinites' may also be considered ultramafic, and this group seems to have differentiated into a group called 'nephelinites'. These four groups have been included in the compilation (locs. 62V1.2-.37) under the more modern names of, respectively, alnöite, aillikite, olivine monchiquite and monchiquite.

The dykes form a comparatively loose, ill-defined swarm whose general trend is N-S, i.e. approximately coast-parallel. Thicknesses vary from 0.1 m to 2 m. The alnöites contain abundant carbonate, melilite and zeolites, clinopyroxene, magnetite, perovskite and apatite. The aillikites contain abundant carbonate, phlogopite, magnetite, perovskite, apatite and melanite. The olivine monchiquites have phenocrysts of clinopyroxene, phlogopite and olivine in a finegrained to aphanitic carbonate-rich groundmass. The monchiquites have phenocrysts of clinopyroxene, phlogopite, leucite, magnetite and apatite in a finegrained groundmass with ocelli with carbonate and zeolites. The four rock groups show a clear geochemical grouping (section 8.8).

8.4 UML from the Færingehavn area (map sheet 63V1)

Six localities with ultramafic lamprophyre dykes have been found in the coastal region between Færingehavn and Buksefjord (C.R.L. Friend and A.P. Nutman, personal communication; locs. 63V1.1-.6). They have been dated by the K-Ar method at 175-196 Ma (D. Rex, unpublished data).

The UML dykes are 15-50 cm wide and usually trend NE-SW. One locality (63V1.6) is an assemblage of carbonate-rich veins which strictly speaking are carbonatites, with a SiO_2 concentration of 10%. The other UML dykes are all mica-rich, with phenocrysts of brown phlogopite, olivine and clinopyroxene, and groundmasses composed of phlogopite, clinopyroxene, Fe-Ti oxides, perovskite, apatite and abundant carbonate.

One dyke (at loc. 63V1.3) was reported as a kimberlite. It has a typical kimberlite appearance with rounded centimetre-sized ultramafic nodules with garnet. The nodules consist of pyroxenite, amphibole-clinopyroxene-apatite rocks, dunite and garnet granulite, an association similar to the nodules in the UML dykes south of Frederikshåb (section 8.2). Geochemically, the rock is not a typical kimberlite (see section 8.7). All the Færingehavn UML may therefore be termed aillikites.

8.5 UML from the Sukkertoppen region (map sheets 65V1, 65V2)

A single dyke of mica-rich UML is reported from near the town Sukkertoppen (loc. 65V1.1). It has been dated by the K-Ar method at 586 Ma (D. Rex, unpublished data), i.e. the same age as the Sukkertoppen kimberlites and the Sarfartôq-Holsteinsborg carbonatite and kimberlites. The rock contains abundant phenocrysts of brown phlogopite in a coarse-grained groundmass with carbonate, amphibole, Fe-Ti oxides, and zeolites after olivine.

A group of mica-carbonate-rich lamprophyre dykes occurs in the vicinity of the Qaqarssuk carbonatite complex (locs. 65V2.1-.4, 65V2.12). One of these dykes cuts the carbonatite complex and has been dated by the K-Ar method at 174±7 Ma, i.e. the same age as the carbonatite (Larsen et al., 1983). The other dykes occur in a fault zone with preserved downthrown Ordovician limestones, and the age of both dykes and faulting is probably Mesozoic. The chemical composition of the dykes shows that they belong to the alkaline rather than the ultramafic lamprophyre clan, and they are best classified as monchiquites.

8.6 Potassic lamprophyres (shonkinites) from Sarfartôg (map sheet 66V2)

Dykes of potassic lamprophyre occur immediately east of the Sarfartôq carbonatite complex. They were dated by the K-Ar method at 1786-1974 Ma by Larsen et al., 1983. Some six to ten dykes occur within a c. 12x6 km large area, but their true distribution is unknown. The dykes trend NNW-SSE and dip 70-80°WSW; they are 0.3-3 m thick and are sometimes sheared. The rock contains megacrysts of anorthoclase, phlogopite and green clinopyroxene, and phenocrysts of phlogopite, clinopyroxene, magnetite and apatite in a groundmass of phlogopite, green amphibole, apatite, alkali feldspar and carbonate.

This rock type is not ultramafic. It is difficult to classify because it shows resemblances to both lamproites, calc-alkaline and alkaline lamprophyres (e.g. Rock, 1987). Mineralogically and chemically it resembles the shonkinites from Shonkin Sag (Nash & Wilkinson, 1970, 1971), and it has therefore been called shonkinite: this conveys that the rock is distinctly different from the other lamprophyres in Greenland.

8.7 UML from the Disko Bugt region (map sheet 69V2)

A swarm of ultramafic lamprophyre dykes occurs on the mainland north of Jakobshavn (locs. 69V2.1-.55). They were found during a detailed regional geological investigation in 1988-1989 and were described by Marker & Knudsen (1989). One dyke has been dated by the K-Ar method at c. 1750 Ma (D. Rex, unpublished data), the same age as the lamproite pipe described in section 7.2.

The dykes crop out in an area of 20x27 km, but the limits of the swarm are not yet clear. In the eastern part of the area the dykes trend consistently E-W, whereas the trends are much more variable in the western part (L. Skjernaa, personal communication, 1980). The dykes are 0.1-5 m thick, usually 1-2 m, and are often sheared and recrystallised, especially along the margins. Often the dykes have central parts with phlogopite phenocrysts in a carbonate-rich groundmass, and marginal parts rich in amphibole and mica. The rocks further contain considerable proportions of tremolite, magnetite and accessory apatite and sphene. Minerals diagnostic for lamproites (K-richterite, priderite etc.) have not been found. The dyke sidewalls are always metasomatically altered, enriched in mica and devoid of quartz.

At one locality an olivine-bearing dyke contains rounded inclusions of spinel peridotite and pyroxenite.

Table 4 Representative compositions of ultramafic and potassic lamprophyres from Greenland

	1	2	3	4	5	6	7	8
SiO ₂	22.91	34.92	25.94	30.42	28.43	38.60	37.64	34.28
TiO ₂	2.74	3.63	2.46	3.97	1.72	0.38	1.43	4.27
A1203	4.18		8.01	5.25	4.18	8.66	9.69	3.89
Fe ₂ O ₃	4.62	4.39	1.83	5.35	5.01	2.74	3.04	10.61
FeÖ	5.48	9.26	10.38	7.24	8.53	3.50	5.90	7.70
MnO	0.25	0.14	0.42	0.21	0.26	0.23	0.16	0.24
MgO	9.55	11.28	3.87	13.56	22.08	5.96	8.77	19.71
Ca0	26.19	15.87	20.91	16.79	13.86	17.87	14.99	8.90
Na ₂ 0 K ₂ 0	0.53	0.60	3.15	1.03	0.39	3.82	1.56	0.22
K ₂ Ō	2.40	1.39	1.33	2.47	2.24	2.32	4.79	3.03
P ₂ O ₅ H ₂ O CO ₂	0.20	0.91	2.93	0.35	0.63	1.68	3.95	0.29
H_2^{-0}	2.54	4.14	2.67	0.71	2.83	11.55	0.61	6.28
cō ₂	16.0	3.60	15.36	11.62	9.10		4.09	
Sum	97.6	100.12	99.26	98.97	99.26	97.31	96.62	99.42
Cr		263	23	292	758	79	176	559
Ni		97	14	165	394	34	177	550
Sc		47	25	52	28	13	11	
V		373	170	237	195	107	116	249
Cu		93	16	128	60	17	119	677
Zn				83	100	153	139	65
Ga				17	10	13	14	
Ba	1000	570	1400	1630	1030	5801	6990	821
Sr	2000	393	3994	830	1123	2086	3580	128
Rb		42	25	117	84	42	102	228
Y		21	72	40	19	35	48	
Zr		267	482	520	309	348	476	
Nb		86	245	159	134	345	21	
La				147	94	269	684	
Се				271	169	500	1340	
Nd				117	77	214	676	
Pb				<2	4	3	83	
Th				55	12	16	28	

^{1. 73642,} UML dyke from south of Frederikshåb, compilation loc. 61V1.29-.62. From Walton & Arnold (1970).

^{2. 120366}r, olivine monchiquite dyke from Frederikshåb Isblink, compilation loc. 62V1.9. From Hansen (1979).

^{3. 131205,} alnöite dyke from Frederikshåb Isblink, compilation loc. 62V1.22. From Hansen (1979).

^{4. 265872,} UML dyke from the Færingehavn area, compilation loc. 63V1.5. GGU-data.

^{5. 265876,} aillikite or kimberlite dyke from the Færingehavn area, compilation loc. 63V1.3. GGU-data.

^{6. 266105,} monchiquite dyke from the Sukkertoppen region, compilation loc. 65V2.1. From Knudsen (1986).

^{7. 265197,} shonkinite dyke from the Sarfartôq area, compilation loc. 66V2.43. GGU-data.

^{8. 269734,} UML dyke from the Disko Bugt region, compilation loc. 69V2.1-.44. GGU-data.

Fig. 5a. K2O and A12O3 vs MgO for Greenland ultramafic and potassic lamprophyres. The members of each swarm tend to cluster in a group.

Fig. 5b. CaO and SiO2 vs MgO for Greenland ultramafic and potassic lamprophyres.

The members of each swarm tend to cluster in a group.

8.8 Whole rock geochemistry of the UML and other lamprophyres

Analytical data for the ultramafic lamprophyres, monchiquites and shonkites are shown in Table 4 and in four scatter plots of K_2O , Al_2O_3 , CaO and SiO vs MgO in Fig. 5a and 5b. (Data for the Gardar UML are excluded because the data coverage of this heterogeneous group is very uneven.) The diagrams illustrate the following features:

- 1. The dykes of each swarm have compositions that are chemically fairly similar and distinct from those of the other swarms. This is accentuated by the contours drawn around each group. The exception is the Færingehavn group, where the analyses show a very large scatter. The Frederikshåb UML include one analysis which is very similar to the alnöites at Frederikshåb Isblink, and one analysis that is very similar to one in the Færingehavn group.
- 2. If a chemical criterion of $SiO_2 < 35\%$ for UML is applied (following Rock, 1986) the monchiquites and shonkinites correctly plot outside the UML field. The same do, however, the dykes from Disko Bugt.
- 3. In all plots the Disko Bugt dykes (except for one altered sample) occupy a field that is intermediate between the lamproites and the kimberlites. They share certain geochemical features with the lamproites, notably the combination of relatively high SiO_2 with low CaO and Al_2O_3 . They are akin to olivine lamproites which share features both with other lamproites and with type II kimberlites (Dawson, 1987), and which may be diamondiferous. An analysis of a diamondiferous lamproite from Chelima, India (Rock & Paul, 1989) is fairly similar to the Disko Bugt dykes.

9. Diamond prospecting in Greenland

In the period 1971-1974 Renzy Mines Ltd investigated the Pyramidefjeld -Midternæs-Nigerdlikasik kimberlites. At both Pyramidefjeld and Midternæs two bulk rock samples out of four examined contained microscopic diamonds, eight in all. Two bulk rock samples from Nigerdlikasik did not yield any diamonds (Geisler, 1972).

Platinomino A/S collected stream sediment samples from the Fiskenæsset region in 1972-1974. Many of these were investigated for diamonds, and in 1973 two near-lying samples yielded respectively 1 and 9 microdiamonds (Geisler, 1973). Follow-up work in 1974 did not produce any diamonds (Geisler, 1974). There are no known kimberlites in the neighbourhood; the

distance to the UML dykes at Frederikshåb Isblink is around 50 km, and the distance to the UML dykes at Færingehavn is around 70 km. This diamond find is not understood, and the possibility of sample contamination must be considered.

Charter Consolidated Limited made regional collections of heavy-mineral concentrates from stream sediments in West Greenland between 63°30'N and 76°N in the period 1973-1981. The kimberlites at Holsteinsborg and Sarfartôq yielded kimberlite indicator minerals (pyrope, Mg-ilmenite and Cr-diopside), and two large stream sediment samples from the mouth of the Sarfartôq river valley yielded one microdiamond each (Brunet, 1974, 1976). Kimberlite indicator minerals were also found in east Disko, probably long-distance transported from occurrences beneath the Inland Ice. Pyrope and Cr-diopside of suggested local origin was found on the mainland east of Disko, where UML dykes and lamproite are now known to occur. No samples yielded any diamonds (Brunet, 1980).

Kryolitselskabet Øresund A/S investigated the kimberlites in the Sukkertoppen region. They used geophysical methods (magnetic, landsat images) in an attempt to localise kimberlite pipes, but none were found.

10. Conclusions

West Greenland from 60°N to 72°N is cut by at least four swarms of kimberlite, one swarm of lamproite, and seven swarms of ultramafic or strongly potassic lamprophyre. Ages range from Proterozoic (c. 1800 Ma) to Mesozoic (175 Ma). Sparse microdiamonds have been found in connection with the Pyramidefjeld-Midternæs and Sarfartôq kimberlite swarms.

According to Clifford (1966) kimberlites with economic contents of diamonds occur mainly within Archaean cratons, whereas kimberlites within younger accreted belts, like the Holsteinsborg kimberlite swarm, tend not to be economic. The Pyramidefjeld-Midternæs and Sarfartôq kimberlite swarms are both situated at the margin of the Archaean craton. The Sukkertoppen kimberlite swarm, situated well within the Archaean craton, may have a better diamond potential. It has not been investigated for diamonds. In section 6.5 it was shown that the Sukkertoppen kimberlites equilibrated at deeper levels than the other Greenlandic kimberlites.

The Holsteinsborg lamproites are of the non-diamondiferous type, whereas the Oqaitsúnguit lamproite pipe is more akin to the diamondiferous lamproites.

Of the ultramafic lamprophyre swarms those that occur in the Archaean craton at Frederikshåb, Frederikshåb Isblink and Færingehavn may perhaps have some diamond potential depending on their depth of generation. The best prospect is the Færingehavn swarm which includes kimberlite-like dykes. However, the Disko Bugt swarm is considered to be a better prospect because of the rocks' affinities to olivine lamproites of diamondiferous type, and the situation within relatively undisturbed Archaean rocks. UML from large continental rifts as the Gardar province are usually generated at too shallow depths in the mantle to be diamondiferous.

11. References

- Andrews, J.R. & Emeleus, C.H. 1971: Preliminary account of kimberlite intrusions from the Frederikshåb district, South-West Greenland. Rapp. Grønl. geol. Unders. 31, 1-26.
- Andrews, J.R. & Emeleus, C.H. 1975: Structural aspects of kimberlite dyke and sheet intrusion in south-west Greenland. Phys. Chem. Earth 9, 43-50.
- Andrews, J.R., Bridgwater, D., Gulson, B. & Watterson, J. 1971: Reconnaissance mapping of south-east Greenland between 62°30'N and 60°30'N. Rapp. Grønlands geol. Unders. 35, 32-38.
- Andrews, J.R., Bridgwater, D., Gormsen, K., Gulson, B., Keto, L. & Watterson, J. 1973: The Precambrian of South-East Greenland. In: Park, R.G. & Tarney, J. (ed) The Early Precambrian of Scotland and related rocks of Greenland. University of Keele, 143-156.
- Bak, J., Sørensen, K., Grocott, J., Korstgård, J.A., Nash, D. & Watterson, J. 1975: Tectonic implications of Precambrian shear belts in western Greenland. Nature 254, 566-569.
- Bergman, S.C. 1987: Lamproites and other potassium-rich igneous rocks: a review of their occurrence, mineralogy and geochemistry. In: Fitton, J.G. & Upton, B.G.J. (edit) Alkaline igneous rocks, Geol. Soc. London Spec. Publ. 30, 103-190.
- Bollingberg, H., Hopgood, A.M. & Kalsbeek, F. 1976: Some minor and trace elements in Archaean marbles and metamorphosed silico-carbonatites from the Fiskenæsset region. Rapp. Grønlands geol. Unders. 73, 86-90.
- Bridgwater, D. 1970: A compilation of K/Ar age determinations on rocks from Greenland carried out in 1969. Rapp. Grønlands geol. Unders. 28, 47-55.

- Brooks, C.K., Fawcett, J.J., Gittins, J. & Rucklidge, J.C. 1981: The Batbjerg complex, east Greenland: a unique ultrapotassic Caledonian intrusion. Can. J. Earth. Sci. 18, 274-285.
- Brooks, C.K., Noe-Nygaard, A., Rex, D.C. & Rønsbo, J.G. 1978: An occurrence of ultrapotassic dikes in the neighbourhood of Holsteinsborg, West Greenland. Bull. geol. Soc. Denmark 27, 1-8.
- Brunet, J. 1974: Concessions granted to Charter Consolidated Limited in the area of Holsteinsborg and Frederikshåb in western Greenland. Report on exploration. Charter Consolidated Ldt., internal report, 12 pp.
- Brunet, J. 1976: Report on the investigation of the Holsteinsborg concession, western Greenland. Charter Consolidated Ltd., internal report, 25 pp.
- Brunet, J. 1980: Report on the investigation of western Greenland 1979. Charter Consolidated Ltd., internal report, 16 pp.
- Clifford, T.N. 1966: Tectono-metallogenic units and metallogenic provinces of Africa. Earth Planet. Sci. Lett. 1, 421-434.
- Craven, J.A. 1985: The petrogenesis of some ultramafic rocks from the Gardar Province, S.W. Greenland. Ph.D. thesis, University of Edinburgh, 378 pp.
- Dawson, J.B. 1987: The kimberlite clan: relationship with olivine and leucite lamproites, and inferences for upper-mantle metasomatism. In: Fitton, J.G. & Upton, B.G.J. (eds) Alkaline Igneous Rocks, Geol. Soc. Spec. Publ. 30, 95-101.
- Eggler, D.H. 1989: Carbonatites, primary melts, and mantle dynamics. In: Bell, K. (ed) Carbonatites. Genesis and evolution, 561-579. Unwin Hyman, London.
- Emeleus, C.H. 1964: The Grønnedal-Ika alkaline complex, South Greenland. The structure and geological history of the complex. Bull. Grønlands geol. Unders. 45, 75 pp. (Also Meddr Grønland 131, 8).
- Emeleus, C.H. & Andrews, J.R. 1975: Mineralogy and petrology of kimberlite dyke and sheet intrusions and included peridotite xenoliths from south-west Greenland. Phys. Chem. Earth 9, 179-197.
- Emeleus, C.H. & Harry, W.T. 1970: The Igaliko nepheline syenite complex. General description. Bull. Grønlands geol. Unders. 85, 115 pp. (Also Meddr Grønland 186,3).
- Geisler, R.A. 1972: Investigations on the Renzy Mines Limited Frederikshåb concession, Greenland, to June 15, 1972. Internal report, 6 pp.
- Geisler, R.A. 1973: Investigations on the Platinomino A/S Fiskenæsset concession, Greenland, during the year ended June 15, 1973. Internal report, 4 pp + app.

- Geisler, R.A. 1974: Investigations on the Platinomino A/S Fiskenæsset concession, Greenland, for the year ending June 15, 1974. Internal report, 3 pp + app.
- Goff,S.P. 1973: The mineralogy and geochemistry of a kimberlite dyke from Søndre Isortoq fjord, South-West Greenland. Unpublished M.Ph. thesis, Leicester University.
- Hamilton, R. & Rock, N.M.S. 1990: Geochemistry, mineralogy and petrology of a new find of ultramafic lamprophyres from Bulljah Pool, Nabberu Basin, Yilgarn Craton, Western Australia. Lithos 24, 275-290.
- Hansen, K. 1979: Lamprofyrgange fra Frederikshåbs Isblink, syd vest Grønland. Unpublished thesis, 83 pp.
- Hansen, K. 1980: Lamprophyres and carbonatitic lamprophyres related to rifting in the Labrador Sea. Lithos 13, 145-152.
- Hansen, K. 1981: Systematic Sr-isotopic variation in alkaline rocks from West Greenland. Lithos 14, 183-188.
- Hansen, K. 1984: Rare earth abundances in Mesozoic undersaturated alkaline rocks from West Greenland. Lithos 17, 77-85.
- Hansen, K. & Larsen, O. 1974: K/Ar age determinations on mesozoic lamprophyre dykes near Ravns Storø, Fiskenæsset Region, southern West Greenland.

 Rapp. Grønlands geol. Unders. 66, 9-11.
- Knudsen, C. 1986: Apatite mineralisation in carbonatite and ultramafic intrusions in Greenland. Final Report. EEC contract MSM-119-DK, 176 pp + app.
- Knudsen, C. 1989: Apatite mineralisation in Qaqarssuk Carbonatite Complex, southern West Greenland. In: Notholt, A.J.G; Sheldon, R.P. & Davidson, D.F. (ed): Phosphate deposits of the world vol 2, Phosphate rock resources, 84-86. Cambridge University Press.
- Knudsen, C. 1989b: Pyrochlore group minerals from the Qaqarssuk carbonatite complex. In: Möller, P; Cerny, P. & Saupé, F. (edit): Lanthanides, tantalum and niobium, 80-99. Springer-Verlag 1989.
- Korstgård, J.A. 1979: Metamorphism of the Kangâmiut dykes and the metamorphic and structural evolution of the southern Nagssugtoqidian boundary in the Itivdleq-Ikertôq region, West Greenland. Rapp. Grønlands geol. Unders. 89, 63-75.
- Larsen, L.M. 1980: Lamprophyric and kimberlitic dykes associated with the Sarfartôq carbonatite complex, southern West Greenland. Rapp. Grønlands geol. Unders. 100, 65-69.

- Larsen, L.M. & Pedersen, A.K. 1982: A minor carbonatite occurrence in southern West Greenland: the Tupertalik intrusion. Rapp. Grønlands geol. Unders. 110, 38-43.
- Larsen, L.M., Rex, D.C. & Secher, K. 1983: The age of carbonatites, kimberlites and lamprophyres from southern West Greenland: recurrent alkaline magmatism during 2500 million years. Lithos 16, 215-221.
- Larsen, L.M., Watt, W.S. & Watt, M. 1989: Geology and petrology of the Lower Tertiary plateau basalts of the Scoresby Sund region, East Greenland. Bull. Grønlands geol. Unders. 157, 164 pp.
- Larsen, O. & Møller, J. 1968: K/Ar age determinations from western Greenland I. Reconnaissance programme. Rapp. Grønlands geol. Unders. 15, 82-86.
- Le Maitre, R.W. (edit) 1989: A classification of igneous rocks and glossary of terms. Recommendations of the IUGS subcommission on the systematics of igneous rocks. Blackwell Scientific Publications, 193 pp.
- Marker, M. & Knudsen, C. 1989: Middle Proterozoic ultramafic lamprophyre dykes in the Archaean of the Atâ area, central West Greenland. Rapp. Grønlands geol. Unders. 145, 23-28.
- Martin, A.R. 1985: The evolution of the Tugtutôq-Ilimaussaq dyke swarm, southwest Greenland. PhD Thesis, University of Edinburgh.
- Nash, D. 1979: Nagssugtoqidian tectonics at the western end of the Itivdleq shear zone, West Greenland. Rapp. Grønlands geol. Unders. 89, 43-46.
- Nash, W.P. & Wilkinson, J.F.G. 1970: Shonkin Sag Laccolith, Montana. I. Mafic minerals and estimates of temperature, pressure, oxygen fugacity and silica activity. Contrib. Min. Petr. 25, 241-269.
- Nash, W.P. and Wilkinson, J.G.F. 1971: Shonkin Sag Laccolith, Montana. II Bulk Rock Geochemistry. Contrib. Min. Petr. 33, 162-170.
- Nielsen, T.F.D. 1980: The petrology of a melilitolite, melteigite, carbonatite and syenite ring dike system in the Gardiner Complex, East Greenland. Lithos 13, 181-197.
- Nielsen, T.F.D. & Rosing, M. 1990: The Archaean Skjoldungen alkaline province, South-East Greenland. Rapp. Grønlands geol. Unders. 148, 93-100.
- Noe-Nygaard, A. & Ramberg, H. 1961: Geological reconnaissance map of the country between latitudes 69°N and 63°45'N, West Greenland. Meddr Grønland 123, 5, 1-9.
- Pearce, N.J.G. 1988: The petrology and geochemistry of the Igaliko dyke swarm, South Greenland. Ph.D. Thesis, University of Durham, 322 pp + app.
- Rock, N.M.S. 1986: The nature and origin of ultramafic lamprophyres: Alnöites and related rocks. J. Petrology 27, 155-196.

- Rock, N.M.S. 1987: The nature and origin of lamprophyres: an overview. In: Fitton, J.G. & Upton, B.G.J. (ed.): Alkaline Igneous Rocks. Geol. Soc. London Spec. Publ. 30, 191-226.
- Rock, N.M.S. & Paul, D.K. 1989: 'Lamprophyres', 'lamproites' and 'kimberlites' in India: A bibliography and preliminary reappraisal. Memoirs Geol. Soc. India 15, 291-311.
- Secher, K. Larsen, L.M. 1980: Geology and mineralogy of the Sarfartôq carbonatite complex, southern West Greenland. Lithos 13, 199-212.
- Scott, B.H. 1977: Petrogenesis of kimberlites and associated potassic lamprophyres from central West Greenland. Ph.D. Thesis, University of Edinburgh, 133 pp + app.
- Scott, B.H. 1979: Petrogenesis of kimberlites and associated potassic lamprophyres from Central West Greenland. Proc. Second Int. Kimberlite Conference 1, 190-205.
- Scott, B.H. 1981: Kimberlite and lamproite dykes from Holsteinsborg, West Greenland. Meddr Grønland, Geosci. 4, 24 pp.
- Scott-Smith, B.H. 1987: Greenland. In Nixon, P.H. (ed): Mantle xenoliths, 23-32. John Wiley & Sons.
- Scott-Smith, B.H. & Skinner, E.M.W. 1984: Diamondiferous lamproites. J. Geology 92, 433-438.
- Smith, B.H.S. 1981: Report on the laboratory investigation of rock samples from western Greenland. Charter Consolidated Ltd., internal report, 14 pp.
- Stewart, J.W. 1970: Precambrian alkaline-ultramafic/carbonatite volcanism at Qagssiarssuk, South Greenland. Bull. Grønlands geol. Unders. 84, 70 pp. (also Meddr Grønland 186, 4).
- Streckeisen, A. 1979: Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites, and melilitic rocks: recommendations and suggestions of the IUGS subcommission on the systematics of igneous rocks. Geology 7, 331-335.
- Sørensen, K. 1983: Growth and dynamics of the Nordre Strømfjord shear zone. J. Geophys. Res. 88, B4, 3419-3437.
- Thy, P., Stecher, O. & Korstgard, J.A. 1987: Mineral chemistry and crystallization sequences in kimberlite and lamproite dykes from the Sisimiut area, central West Greenland. Lithos 20, 391-417.
- Upton, B.G.J. in press: Gardar mantle xenoliths: Igdlutalik, South Greenland. Rapp. Grønlands geol. Unders.

- Upton, B.G.J. & Emeleus, C.H. 1987: Mid-Proterozoic alkaline magmatism in southern Greenland: the Gardar Province. In: Fitton, J.G. & Upton, B.G.J. (ed): Alkaline igneous rocks. Spec. Publ. Geol. Soc. London 30, 449-471.
- Upton, B.G.J. & Fitton, J.G. 1985: Gardar dykes north of the Igaliko Syenite Complex, southern Greenland. Rapp. Grønlands geol. Unders. 127, 24 pp.
- Upton, B.G.J. & Thomas, J.E. 1973: Precambrian potassic ultramafic rocks: South Greenland. J. Petrology 14, 509-534.
- Ussing, N.V. 1912: Geology of the country around Julianehaab, Greenland. Meddr Grønland 38, 376 pp.
- Walton, B.J. 1965: Sanerutian appinitic rocks and Gardar dykes and diatremes north of Narssarssuaq, South Greenland. Bull. Grønlands geol. Unders. 57, 66 pp. (also Meddr Grønland 179, 9).
- Walton, B. 1966: Carbonatite-lamprophyre dykes of Mesozoic age. Rapp. Grønlands geol. Unders. 11, 37-39.
- Walton, B.J. & Arnold, A.R. 1970: Plutonic nodules in lamprophyric carbonatite dykes near Frederikshåb, south-west Greenland. Bull. Grønlands geol. Unders. 91, 1-26.
- Winther, J. 1971: Geologisk beskrivelse af Tungarnit nunat området, Vestgrønland, samt en kemisk undersøgelse af en bjergart fra området. Thesis, Århus Universitet, 108 pp.
- Winther, J. 1974: The Precambrian geology of the Túngarnit nunât area, outer Nordre Strømfjord, central West Greenland. Rapp. Grønlands geol. Unders. 61, 17 pp.

APPENDIX 1

Registered localities with occurrences of kimberlite, lamproite, ultramafic lamprophyre and related rocks in Greenland.

Map sheets are Geodetic Institute's 1:250 000 topographic maps. Geographical coordinates are given in decimal degrees. Minus signs indicate western longitude.

_				
Map :	sheet	60V1 Julian	iehåb	
Loc.		Lat. (N)		Rock type
60V1	1	60.86382	-46.15289	Ultramafic lamprophyre
60V1	2	60.92615	-46.07998	Pyroxenite
60V1	3	60.92317	-46.07484	Pyroxenite
60V1	4	60.92128	-46.07265	Pyroxenite
60V1	5	60.91650	-46.06588	Pyroxenite
60V1	6	60.91023	-46.04180	Pyroxenite
60V1	7	60.89615	-46.25105	Pyroxenite
60V1	8	60.90782	-46.19011	Pyroxenite
60V1	9	60.91457	-46.20370	Ultramafic lamprophyre
60V1	10	60.90751	-46.17130	Ultramafic lamprophyre
60V1	11	60.90508	-46.17022	Ultramafic lamprophyre
60V1	12	60.88601	-46.08321	Ultramafic lamprophyre
Map sheet 60V2 Nanortalik				
Loc.	no.	Lat. (N)	Long. (W)	Rock type
60V2	1	60.97183	-45.11909	Ultramafic lamprophyre
60V2		60.96815	-45.11978	Ultramafic lamprophyre
60V2	3	60.96379	-45.10033	Ultramafic lamprophyre
60V2	4	60.96002	-45.10306	Ultramafic lamprophyre
		61V1 Ivigtu		
Loc.		Lat. (N)	Long. (W)	Rock type
61V1	1	61.36614	-48.19861	Kimberlite
61V1	2	61.37225	-48.19836	Kimberlite
61V1	3	61.37838	-48.19886	Kimberlite
61V1	4	61.38233	-48.19712	Kimberlite
61V1	5	61.38691	-48.19520	Kimberlite
61V1	6	61.38756	-48.20756	Kimberlite
61V1	7	61.38220	-48.21811	Kimberlite
61V1	8	61.37544	-48.21201	Kimberlite
61V1	9	61.37259	-48.22009	Kimberlite
61V1	10	61.40201	-48.27305	Kimberlite
61V1	11	61.41293	-48.25063	Kimberlite
61V1	12	61.42056	-48.24362	Kimberlite
61V1	13	61.42442	-48.24527	Kimberlite
61V1	14	61.42714	-48.25369	Kimberlite
61V1	15	61.43199	-48.24801	Kimberlite
61V1	16	61.44597	-48.23079	Kimberlite
61V1	17	61.45057	-48.23657	Kimberlite
61V1	18	61.45016	-48.25010	Kimberlite
61V1	19	61.43526	-48.26394	Kimberlite
61V1	20	61.42508	-48.29988	Kimberlite
61V1	21	61.42078	-48.30967	Kimberlite
61V1	22	61.54172	-48.17663	Kimberlite
61V1	23	61.53792	-48.16480	Kimberlite
61V1	24	61.54207	-48.13142	Kimberlite
61V1	25	61.54857	-48.13984	Kimberlite
61V1	26	61.55263	-48.14771	Kimberlite
61V1	27	61.98607	-49.68454	Lamprophyre
61V1	28	61.94991	-49.55439	Lamprophyre

```
29
                        -49.64781
                                       Ultramafic lamprophyre
61V1
            61.93059
                                       Ultramafic lamprophyre
61V1
       30
                        -49.60477
            61.93146
                                       Ultramafic lamprophyre
                        -49.64803
61V1
       31
            61.91416
                                       Ultramafic lamprophyre
61V1
       32
            61.91667
                        -49.62385
61V1
       33
            61.90402
                        -49.65205
                                       Ultramafic lamprophyre
            61.90428
                        -49.62788
                                       Ultramafic lamprophyre
61V1
       34
       35
            61.91391
                        -49.55304
                                       Ultramafic lamprophyre
61V1
            61.89757
                        -49.66614
                                       Ultramafic lamprophyre
61V1
       36
       37
            61.89353
                                       Ultramafic lamprophyre
61V1
                        -49.65759
61V1
       38
            61.88787
                        -49.65740
                                       Ultramafic lamprophyre
61V1
       39
            61.88804
                        -49.64371
                                       Ultramafic lamprophyre
61V1
       40
            61.88678
                        -49.63230
                                       Ultramafic lamprophyre
       41
            61.87969
                                       Ultramafic lamprophyre
61V1
                        -49.63498
       42
            61.89304
61V1
                        -49.60755
                                       Ultramafic lamprophyre
            61.89007
61V1
       43
                        -49.59729
                                       Ultramafic lamprophyre
61V1
       44
            61.89115
                        -49.58892
                                       Ultramafic lamprophyre
61V1
       45
            61.89994
                        -49.59116
                                       Ultramafic lamprophyre
61V1
       46
            61.89957
                        -49.57214
                                       Ultramafic lamprophyre
61V1
       47
            61.89723
                        -49.56397
                                       Ultramafic lamprophyre
61V1
      48
            61.88548
                        -49.57030
                                       Ultramafic lamprophyre
61V1
      49
            61.88224
                        -49.56955
                                       Ultramafic lamprophyre
61V1
      50
            61.87910
                        -49.56444
                                       Ultramafic lamprophyre
61V1
      51
                        -49.55575
            61.86616
                                       Ultramafic lamprophyre
61V1
      52
                        -49.54816
            61.86337
                                       Ultramafic lamprophyre
61V1
      53
            61.85898
                        -49.55255
                                       Ultramafic lamprophyre
61V1
      54
            61.85224
                        -49.54689
                                       Ultramafic lamprophyre
61V1
      55
            61.85249
                        -49.53719
                                       Ultramafic lamprophyre
                        -49.46663
61V1
      56
            61.86281
                                       Ultramafic lamprophyre
      57
61V1
            61.85957
                        -49.46153
                                       Ultramafic lamprophyre
61V1
      58
            61.84009
                        -49.46548
                                       Ultramafic lamprophyre
61V1
      59
            61.83572
                        -49.43020
                                       Ultramafic lamprophyre
61V1
      60
            61.83131
                        -49.42264
                                       Ultramafic lamprophyre
61V1
      61
            61.82213
                        -49.41532
                                       Ultramafic lamprophyre
61V1
      62
            61.81714
                        -49.43093
                                       Ultramafic lamprophyre
61V1
      63
            61.19313
                        -48.37544
                                      Ultramafic lamprophyre
61V1
      64
            61.18215
                        -48.47606
                                       Ultramafic lamprophyre
61V1
      65
            61.16966
                        -48.48465
                                       Ultramafic lamprophyre
61V1
      66
            61.17100
                        -48.47460
                                      Ultramafic lamprophyre
Map sheet 61V3 Narssarssuag
                         Long. (W)
                                      Rock type
Loc. no.
            Lat. (N)
61V3
            61.14000
                        -45.53000
                                      Alkaline-ultramafic/carbonatitic rock
       1
       2
61V3
            61.15740
                        -45.57499
                                      Alkaline-ultramafic/carbonatitic rock
       3
                        -45.58735
61V3
            61.16672
                                      Alkaline-ultramafic/carbonatitic rock
       4
61V3
            61.17155
                        -45.55202
                                      Alkaline-ultramafic/carbonatitic rock
       5
61V3
            61.18559
                        -45.53927
                                      Alkaline-ultramafic/carbonatitic rock
61V3
       6
            61.18710
                       -45.55195
                                      Alkaline-ultramafic/carbonatitic rock
61V3
       7
            61.19523
                       -45.53227
                                      Alkaline-ultramafic/carbonatitic rock
       8
            61.20093
                       -45.56063
                                      Alkaline-ultramafic/carbonatitic rock
61V3
       9
61V3
            61,19142
                       -45.63656
                                      Alkaline-ultramafic/carbonatitic rock
61V3
      10
            61.19711
                       -45.63065
                                      Alkaline-ultramafic/carbonatitic rock
61V3
            61.19899
      11
                        -45.62583
                                      Alkaline-ultramafic/carbonatitic rock
61V3
      12
            61.20123
                       -45.63516
                                      Alkaline-ultramafic/carbonatitic rock
      13
61V3
            61.20516
                       -45.60166
                                      Alkaline-ultramafic/carbonatitic rock
61V3
      14
            61.20885
                       -45.60169
                                      Alkaline-ultramafic/carbonatitic rock
61V3
      15
           61.21929
                       -45.60235
                                      Alkaline-ultramafic/carbonatitic rock
61V3
      16
           61.22937
                       -45.63340
                                      Alkaline-ultramafic/carbonatitic rock
61V3
      17
           61.20897
                       -45.66693
                                      Alkaline-ultramafic/carbonatitic rock
61V3
      18
           61.18616
                       -45.45100
                                      Alkaline-ultramafic/carbonatitic rock
61V3
      19
           61.18966
                       -45.45642
                                      Alkaline-ultramafic/carbonatitic rock
61V3
      20
           61.18932
                       -45.43686
                                      Alkaline-ultramafic/carbonatitic rock
```

```
Alkaline-ultramafic/carbonatitic rock
61V3
       21
            61.19202
                        -45.43333
61V3
       22
            61.19652
                        -45.43353
                                       Alkaline-ultramafic/carbonatitic rock
       23
                                       Alkaline-ultramafic/carbonatitic rock
61V3
            61.21275
                        -45.47628
                                       Alkaline-ultramafic/carbonatitic rock
61V3
       24
            61.21412
                        -45.45485
       25
61V3
            61.21341
                                       Alkaline-ultramafic/carbonatitic rock
                        -45.44684
61V3
       26
                        -45.39427
                                       Alkaline-ultramafic/carbonatitic rock
            61.21714
61V3
       27
                                       Alkaline-ultramafic/carbonatitic rock
            61.25725
                        -45.36787
                                       Alkaline-ultramafic/carbonatitic rock
61V3
       28
            61.26088
                        -45.44050
61V3
      29
            61.14664
                        -45.22929
                                       Ultramafic lamprophyre
                        -45.20883
61V3
       30
            61.14816
                                       Ultramafic lamprophyre
                        -45.21107
61V3
       31
            61.14394
                                       Ultramafic lamprophyre
                        -45.02561
61V3
       32
            61.10555
                                       Ultramafic lamprophyre
61V3
      33
            61.10209
                        -45.04961
                                       Ultramafic lamprophyre
61V3
      34
                        -45.04313
            61.09902
                                       Ultramafic lamprophyre
                                       Ultramafic lamprophyre
      35
61V3
            61.09603
                        -45.03294
61V3
                                       Ultramafite
       36
            61.12508
                        -44.89718
       37
                                       Ultramafite
61V3
            61.15239
                        -44.83541
61V3
       38
            61.14928
                        -44.82244
                                       Ultramafite
61V3
       39
            61.03067
                        -45.39584
                                       Ultramafic lamprophyre
61V3
      40
            61.00884
                        -45.36690
                                       Ultramafic lamprophyre
                                       Ultramafic lamprophyre
61V3
      41
            61.25629
                        -45.18563
                                       Ultramafic lamprophyre
      42
            61.35522
61V3
                        -44.81823
      43
61V3
            61.36016
                        -44.77068
                                       Ultramafic lamprophyre
            61.37275
61V3
      44
                        -44.78853
                                       Ultramafic lamprophyre
Map sheet 62V1 Frederikshåbs Isblink
            Lat. (N)
                         Long. (W)
Loc. no.
                                       Rock type
            62.04240
                        -48.86500
62V1
       1
                                       Kimberlite
62V1
       2
            62.87630
                        -50.53870
                                       Monchiquite
62V1
       3
            62.73370
                        -50.37830
                                       Monchiquite
       4
62V1
            62.72400
                        -50.38280
                                       Olivine monchiquite
       5
62V1
            62.70070
                        -50.35490
                                       Olivine monchiquite
62V1
       6
            62.67650
                        -50.40140
                                       Olivine monchiquite
62V1
       7
            62.67350
                        -50.40230
                                       Olivine monchiquite
62V1
       8
            62.66650
                        -50.35350
                                       Olivine monchiquite
62V1
       9
            62.64500
                        -50.34090
                                       Olivine monchiquite
62V1
      10
            62.65660
                        -50.30350
                                       Monchiquite
62V1
      11
            62.65770
                        -50.27810
                                       Olivine monchiquite
62V1
      12
            62.74060
                        -50.18000
                                       Monchiquite
62V1
      13
            62.72670
                        -50.10940
                                       Alnöite
           62.70480
62V1
      14
                        -50.12110
                                       Aillikite
           62.70430
62V1
      15
                        -50.10160
                                       Monchiquite
62V1
      16
            62.78720
                        -49.95590
                                       Monchiquite
62V1
      17
            62.72400
                        -49.96680
                                       Olivine monchiquite
62V1
      18
            62.72160
                        -49.92540
                                       Aillikite
62V1
      19
            62.69960
                        -49.87850
                                       Monchiquite
62V1
      20
            62.68870
                        -49.88480
                                       Aillikite
62V1
            62.66580
                       -49.83220
      21
                                       Olivine monchiquite to Monchiquite
62V1
      22
            62.65340
                        -49.82830
                                       Alnöite
      23
62V1
            62.67650
                       -49.93830
                                       Monchiquite
62V1
      24
            62.65830
                       -50.00530
                                       Monchiquite
62V1
      25
           62.65500
                       -50.01070
                                       Olivine monchiquite
62V1
      26
            62.64520
                       -49.97520
                                       Alnöite
62V1
      27
           62.63080
                       -49.97420
                                       Alnöite
           62.55240
62V1
      28
                       -50.18450
                                       Olivine monchiquite
      29
62V1
           62.56757
                       -49.75950
                                       Alnöite?
62V1
      30
           62.56560
                       -49.72840
                                       Olivine monchiquite
62V1
      31
           62.55293
                       -49.75380
                                      Monchiquite
62V1
      32
           62.54617
                       -49.75700
                                      Monchiquite
62V1
      33
           62.53294
                       -49.72900
                                      Olivine monchiquite
62V1
      34
           62.55546
                       -49.69720
```

```
62V1
       35
            62.55715
                        -49.65650
                                       Alnöite
62V1
       36
            62.55011
                        -49.60810
                                       Monchiquite
62V1
      37
            62.54364
                        -49.59478
                                       Olivine monchiquite
Map sheet 63V1 Færingehavn
                                       Rock type
Loc. no.
            Lat. (N)
                         Long. (W)
            63.91339
                                       Mica-rich ultramafic lamprophyre
63V1
       1
                        -51.68420
        2
            63.91251
                                       Mica-rich ultramafic lamprophyre
63V1
                        -51.60370
        3
63V1
            63.69713
                        -51.56980
                                       Aillikite or micaceous kimberlite
                                       Carbonate-rich ultramafic lamprophyre
63V1
        4
            63.66667
                        -51.52230
63V1
        5
            63.64830
                        -51.55870
                                       Mica-rich ultramafic lamprophyre
63V1
       6
            63.63978
                        -51.56280
                                       Carbonate-rich ultramafic lamprophyre
Map sheet 63V2 Fiskenæsset
            Lat. (N)
Loc. no.
                         Long. (W)
                                       Rock type
                        -50.69300
            63.20650
                                       Stream sediment sample. Diamonds
63V2
       1
63V2
       2
            63.21650
                        -50.66100
                                       Stream sediment sample. Diamonds
Map sheet 65V1 Sukkertoppen
Loc. no.
            Lat. (N)
                         Long. (W)
                                       Rock type
65V1
       1
            65.45880
                        -52.70780
                                       Mica-rich ultramafic lamprophyre
65V1
       2
            65.39200
                        -52.40000
                                      Kimberlite
65V1
       3
            65.35833
                        -51.88430
                                      Kimberlite
65V1
       4
            65.30751
                        -52.30080
                                      Kimberlite
65V1
       5
            65.30300
                        -52.26700
                                      Kimberlite and alkali basalt
65V1
            65.26129
                        -51.78240
                                      Kimberlite
       6
65V1
                        -51,98730
       7
            65,22633
                                      Kimberlite
65V1
       8
            65,21247
                        -52,19800
                                      Kimberlite
65V1
       9
            65.18161
                        -52.29650
                                      Kimberlite
65V1
      10
            65.08441
                        -52.17940
                                      Kimberlite
65V1
      11
                        -52.03280
                                      Kimberlite
            65.08306
            65.45000
                        -51.80000
65V1
      12
                                      Carbonatitic lamprophyre (kimberlite?)
Map sheet 65V2 Majorqaq
                                      Rock type
Loc. no.
            Lat. (N)
                         Long. (W)
                        -51.70130
            65.40225
65V2
       1
                                      Micaceous lamprophyre (monchiquite)
                        -51.55180
                                      Micaceous lamprophyre (monchiquite)
65V2
       2
            65.37000
                                      Micaceous lamprophyre (monchiquite)
65V2
       3
            65.37560
                       -51.53810
65V2
       4
            65.38238
                       -51.51850
                                      Micaceous lamprophyre (monchiquite)
65V2
       5
            65.32469
                       -51.69050
                                      Kimberlite
65V2
       6
            65.30165
                       -51.64600
                                      Kimberlite
65V2
       7
            65.29249
                       -51.71140
                                      Kimberlite
65V2
       8
            65.19748
                       -51.54210
                                      Kimberlite
65V2
       9
           65.19843
                       -51.52860
                                      Kimberlite
65V2
      10
                       -51.51980
                                      Kimberlite
           65.19373
65V2
      11
           65.08149
                       -51.71480
                                      Kimberlite
65V2
      12
                       -51.53190
                                      Micaceous lamprophyre (monchiquite)
           65.37806
Map sheet 66V1 Holsteinsborg
Loc. no.
           Lat. (N)
                        Long. (W)
                                      Rock type
66V1
           66.97494
                       -53.78615
                                      Kersantite (kimberlite?)
       1
           66.94993
66V1
       2
                       -53.69821
                                      Kimberlite
66V1
           66.95338
       3
                       -53.70863
                                      Kimberlite
66V1
       4
           66.95051
                       -53.70945
                                      Kimberlite
66V1
       5
           66.94746
                       -53.62386
                                      Kersantite (Kimberlite?)
66V1
       6
           66.88973
                       -53.45403
                                      Kimberlite
66V1
       7
           66.86909
                       -53.60354
                                      Kimberlite
66V1
       8
           66.86606
                       -53.59638
                                      Kimberlite
66V1
       9
                       -53.59089
           66.86599
                                      Kimberlite
      10
66V1
           66.86449
                       -53.58560
                                      Kimberlite
66V1
      11
           66.86339
                       -53.56936
                                      Kimberlite
```

```
66V1
                                        Kimberlite
       12
            66.86467
                         -53.56230
                                        Kimberlite
66V1
       13
            66.86118
                         -53.55674
                                        Kimberlite
66V1
       14
            66.84871
                         -53.57425
                                        Kimberlite
66V1
       15
            66.84592
                         -53.57602
66V1
                         -53.57825
                                        Kimberlite
       16
            66.84385
                         -53.49927
       17
                                        Lamproite
66V1
            66.81132
                         -53.42087
                                        Lamprophyre
66V1
       18
            66.82512
       19
                                        Kimberlite
66V1
            66.85797
                         -53.43720
       20
66V1
            66.89676
                         -53.09638
                         -52.91493
       21
            66.90891
                                        Kersantite
66V1
       22
                         -52.87106
66V1
            66.89522
                                        Kersantite
       23
                         -52.61535
66V1
            66.90794
                                        Lamprophyre
66V1
       24
            66.94231
                         -52.59535
                                        Lamprophyre
66V1
       25
            66.94004
                         -52.58667
                                        Lamprophyre
66V1
       26
            66.85922
                         -52.50783
                                        Lamproite
66V1
       27
                         -52.39890
            66.85850
66V1
       28
                         -52.39673
            66.85345
                         -52.29080
       29
                                        Kersantite
66V1
            66.82049
       30
66V1
            66.81637
                         -52.81604
                                        Lamproite
66V1
       31
            66.82366
                        -52.82784
66V1
       32
                        -52.88874
            66.82354
       33
            66.80571
66V1
                        -52.84551
66V1
       34
            66.80385
                        -52.88381
66V1
       35
            66.77204
                        -52.78653
                                        Lamproite
       36
66V1
            66.76504
                        -52.79501
66V1
       37
            66.75715
                        -52.80599
66V1
       38
            66.75338
                        -52.82308
                                        Lamproite
66V1
       39
            66.75097
                        -52.83082
                                        Lamproite
66V1
       40
            66.74489
                        -52.77903
                                        Lamproite
66V1
       41
            66.78501
                        -53.01710
66V1
       42
            66.77656
                        -53.03166
66V1
       43
            66.77224
                        -53.05965
66V1
            66.73557
                                        Kersantite
      44
                        -53,08408
66V1
      45
            66.73234
                        -53.17701
                                        Lamproite
66V1
      46
            66.73581
                        -53.19772
66V1
      47
            66.74393
                        -53.28872
            66.73887
      48
66V1
                        -53.30662
66V1
      49
            66.72577
                        -53.52702
                                        Lamproi te
      50
66V1
            66.71229
                        -53.47156
                                        Lamproite
      51
66V1
            66.73043
                        -53.47896
                                        Lamproite
       52
66V1
            66.73632
                        -53.46135
                                        Lamprophyre
       53
66V1
            66.73455
                        -53.45540
                                        Lamprophyre
                                        Lamprophyre
66V1
      54
            66.73591
                        -53.44907
66V1
      55
            66.73266
                        -53.45537
                                        Lamproite
66V1
      56
            66.72692
                        -53.44935
                                        Lamproite
      57
            66.72530
                        -53.45387
66V1
                                        Lamproite
66V1
      58
            66.68335
                        -53.37892
                                        Lamproite
66V1
      59
            66.69755
                        -53.30041
                                        Lamproite
66V1
      60
            66.70563
                        -53.25420
                                        Lamproite
      61
66V1
            66.69958
                        -53.21261
                                        Kersantite
      62
66V1
            66.71443
                        -53.11783
                                        Lamproite
66V1
      63
            66.71383
                        -53.07605
                                        Lamproite?
66V1
      64
            66.67592
                        -53.00836
66V1
      65
            66.57705
                                        Lamproite
                        -53.44769
66V1
            66.57770
      66
                        -53.43957
                                        Lamproite
66V1
      67
            66.58119
                        -53.44257
                                        Lamprophyre
66V1
      68
            66.57587
                        -53.41989
                                        Micaceous lamprophyre
66V1
            66.57069
      69
                        -53.40648
                                        Lamprophyre
66V1
      70
            66.56519
                        -53.41542
                                        Lamproite
      71
            66.56595
                        -53.36352
66V1
                                        Kersantite
66V1
      72
            66.56693
                        -53.32810
                                        Kersantite
```

```
66V1
      73
            66.59949
                        -53.38889
            66.59282
66V1
      74
                        -53.32145
       75
66V1
            66.56274
                        -52.71559
66V1
      76
            66.55489
                        -52.65408
66V1
      77
            66.33045
                        -52.67325
                                        Kimberlite
66V1
      78
            66.46560
                        -52.35684
                                        Kimberlite
66V1
      79
            66.47159
                        -52.28834
            66.53047
                        -52.32401
                                        Kimberlite
66V1
      80
            66.51830
                        -52.13263
                                        Kimberlite
66V1
      81
                        -51.96102
66V1
      82
            66,66330
                        -51.82927
66V1
      83
            66.64575
                                        Kimberlite and lamproite
66V1
      84
            66.45746
                        -51.93368
66V1
      85
            66.41930
                        -51.83769
                                        Kimberlite
66V1
            66.41857
                        -51.83548
                                       Kimberlite
      86
            66.41816
                                       Kimberlite
66V1
      87
                        -51.84088
            66.41540
66V1
      88
                        -51.83203
                                       Kimberlite
66V1
      89
            66.41726
                        -51.83015
                                       Kimberlite
66V1
      90
            66.41223
                                       Kimberlite
                        -51.85260
      91
            66.41135
                                       Kimberlite
66V1
                        -51.86856
      92
66V1
            66.50207
                        -51.83218
                                       Kimberlite
66V1
      93
            66.50130
                        -51.80227
                                       Kimberlite
66V1
      94
            66.49819
                        -51.78877
                                       Kimberlite
                        -51.77919
66V1
      95
            66.49173
                                       Kimberlite
66V1
      96
            66.50174
                        -51.77703
                                       Kimberlite
66V1
      97
            66.49640
                        -51.75577
                                       Kimberlite
66V1
      98
            66.47288
                        -52.04006
                                       Kimberlite
66V1
      99
            66.49813
                        -51.85271
                                       Stream sand/gravel. Diamond
66V1 100
            66.48889
                        -51.81803
                                        Stream sand/gravel. Diamond
66V1 101
            66.85978
                        -53.49412
                                       Kimberlite
66V1 102
            66,60897
                        -53,40623
66V1 103
            66.71953
                        -52.62095
                                       Kimberlite
Map sheet 66V2 Søndre Strømfjord øst
Loc. no.
            Lat. (N)
                                       Rock type
                         Long. (W)
                        -50.96285
66V2
            66.96943
                                       Kimberlite
       1
            66.86061
                        -50.79300
                                       Kimberlite
66V2
       2
       3
            66.70634
                        -51.50087
66V2
                                       Kimberlite
66V2
       4
            66.70573
                        -51.44595
                                       Kimberlite
66V2
       5
            66.72626
                        -51.40278
                                       Kimberlite
66V2
       6
            66.71734
                        -51.18944
                                       Kimberlite
66V2
       7
            66.71451
                        -50.47870
                                       Kimberlite
                        -50.60221
66V2
       8
            66.60783
                                       Kimberlite
66V2
       9
            66.63147
                        -50.40848
                                       Kimberlite
            66.56925
66V2
      10
                        -51.52632
                                       Kimberlite
                        -51.72888
66V2
      11
            66.49137
                                       Kimberlite
66V2
      12
            66.49861
                        -51.66840
                                       Kimberlite
66V2
            66.49379
                                       Kimberlite
      13
                        -51.66245
            66.49242
66V2
                                       Kimberlite
      14
                        -51.64602
            66.47725
                                       Kimberlite
66V2
      15
                        -51.67305
            66.47451
66V2
      16
                        -51.63730
                                       Kimberlite
66V2
      17
            66.47532
                        -51.61105
                                       Kimberlite
66V2
      18
            66.47262
                        -51.52975
                                       Kimberlite
66V2
      19
            66.46850
                        -51.53214
                                       Kimberlite
66V2
      20
            66.47113
                        -51.51962
                                       Kimberlite
66V2
      21
                        -51.52041
            66.46530
                                       Kimberlite
66V2
      22
            66.49701
                        -51.56053
                                       Kimberlite
66V2
      23
            66.50179
                        -51.52691
                                       Kimberlite
66V2
      24
            66.50620
                        -51.47570
                                       Kimberlite
      25
66V2
            66.50852
                        -51.42871
                                       Kimberlite
66V2
      26
            66.50909
                        -51.38820
                                       Kimberlite
66V2
      27
            66.50976
                        -51.37583
                                       Kimberlite
```

```
28
            66.50946
                        -51.35489
                                       Kimberlite
66V2
      29
            66.52656
                        -51.34100
                                       Kimberlite
66V2
                                       Kimberlite
            66.53123
                        -51.27146
66V2
      30
                                       Kimberlite
      31
            66.50233
                        -51.29985
66V2
            66.51452
                        -51.27279
                                       Kimberlite
66V2
      32
            66.51008
                        -51.24730
                                       Kimberlite
66V2
      33
            66.50768
                        -51.23196
                                       Kimberlite
66V2
      34
                                       Shonkinite
66V2
      35
            66.50966
                        -51.18673
                                       Kimberlite
66V2
      36
            66.56143
                        -51.09886
66V2
      37
            66.55623
                        -51.09589
                                       Kimberlite
            66.55282
                        -51.09655
                                       Kimberlite
66V2
      38
            66.54921
                        -51.10170
                                       Kimberlite
      39
66V2
                        -51.10866
                                       Shonkinite, kimberlite, basanite
            66.54417
66V2
      40
            66.53968
                        -51.11494
                                       Shonkinite
66V2
      41
                        -51.09378
                                       Kimberlite
66V2
      42
            66.54393
                                       Shonkinite
66V2
      43
            66.53996
                        -51.09803
                                       Kimberlite
66V2
      44
            66.53500
                        -51.11603
                                       Kimberlite
66V2
      45
            66.53258
                        -51.11555
            66.53574
                        -51.10003
                                       Kimberlite
66V2
      46
                        -51.10568
                                       Shonkinite
66V2
      47
            66.53834
                                       Kimberlite
66V2
      48
            66.54983
                        -51.00385
                                       Shonkinite
      49
            66.55272
                        -50.99687
66V2
                                       Kimberlite
66V2
      50
            66.55272
                        -50.98763
66V2
      51
            66.53478
                        -51.14757
                                       Kimberlite
66V2
      52
            66.52102
                        -51.15893
                                       Kimberlite
      53
                        -51.15033
                                       Shonkinite
            66.51735
66V2
                                       Kimberlite
                        -51.14469
66V2
      54
            66.51458
                                       Shonkinite
      55
                        -51.13571
66V2
            66.51827
            66.51316
                        -51.13049
                                       Shonkinite
66V2
      56
                                       Kimberlite
                        -51.11410
66V2
      57
            66.51983
                        -51.09900
                                       Kimberlite
66V2
      58
            66.51832
66V2
      59
            66.51175
                        -51.11381
                                       Kimberlite
66V2
            66.51131
                        -51.09625
                                       Kimberlite
      60
66V2
            66.51025
                        -51.08094
                                       Kimberlite
      61
            66.50847
                        -51.07485
                                       Kimberlite
66V2
      62
            66.50183
                        -51.05995
                                       Kimberlite
66V2
      63
66V2
      64
            66.50537
                        -51.01248
                                       Kimberlite
66V2
                                       Kimberlite and shonkinite
            66.50664
                        -50.99944
      65
66V2
            66.50897
                        -50.98841
                                       Kimberlite
      66
            66.50718
                        ~50.95937
                                       Kimberlite
66V2
      67
            66.51078
                        -50.94565
                                       Kimberlite
66V2
      68
                        -50.93529
                                       Kimberlite
            66.51132
66V2
      69
                        -50.92944
                                       Shonkinite
      70
            66.51114
66V2
                        -50.92426
            66.51150
                                       Kimberlite
66V2
      71
                                       Kimberlite
66V2
      72
            66.51159
                        -50.91097
66V2
      73
            66.51230
                        -50.89702
                                       Kimberlite
            66.51186
                        -50.88508
                                       Kimberlite
66V2
      74
            66.50557
                        -50.87474
                                       Kimberlite
66V2
      75
                        -50.81778
                                       Kimberlite
66V2
      76
            66.50985
66V2
      77
            66.50591
                        -50.82838
                                       Kimberlite
66V2
      78
            66.50178
                        -50.84166
                                       Kimberlite
      79
            66.49563
                        -50.83537
                                       Kimberlite
66V2
            66.49257
                        -50.82506
                                       Kimberlite
66V2
      80
                                       Kimberlite
            66.48852
                        -50.81635
66V2
      81
                                       Kimberlite
66V2
      82
            66.48635
                        -50.80739
66V2
      83
            66.48329
                        -50.80001
                                       Kimberlite
66V2
            66.48130
                        -50.79106
                                       Kimberlite
      84
                        -51.09815
                                       Kimberlite
66V2
      85
            66.44702
                                       Kimberlite
66V2
      86
            66.44191
                        -51.08402
66V2
      87
            66.44210
                        -51.07079
                                       Kimberlite
66V2
            66.43509
                                       Kimberlite
      88
                        -51.06788
```

```
Lamprophyre
      89
            66,47901
                        -51.38058
66V2
            66.46674
                        -51.31469
                                       Kimberlite
66V2
      90
                        -51.38328
                                       Kimberlite
66V2
      91
            66,46151
                                       Kimberlite
      92
            66.45472
                        -51.37243
66V2
                                       Kimberlite
      93
            66.44481
                        -51.29295
66V2
                                       Kimberlite
                        -51.27677
66V2
      94
            66.43972
                                       Kimberlite
      95
            66.44333
                        -51.31804
66V2
                                       Kimberlite
      96
            66.44075
                        -51.31129
66V2
                                       Kimberlite
      97
            66.43833
                        -51.30477
66V2
                                       Kimberlite
      98
                        -51.29713
66V2
            66.43565
                        -51.28860
                                       Kimberlite
66V2
      99
            66.43396
                                       Kimberlite
66V2 100
            66.43147
                        -51.33294
                                       Kimberlite
            66.43126
                        -51.34728
66V2 101
            66.42390
                        -51.35033
                                       Kimberlite
66V2 102
            66.42647
                        -51.36671
                                       Kimberlite
66V2 103
66V2 104
            66.42325
                        -51.36981
                                       Kimberlite
66V2 105
            66.42100
                        -51.37135
                                       Kimberlite
66V2 106
            66.41652
                        -51.37085
                                       Kimberlite
                        -51.36175
                                       Kimberlite
66V2 107
            66.42334
                                       Kimberlite
                        -51.36239
66V2 108
            66.42111
                                       Kimberlite
                        -51.36368
66V2 109
            66.41679
                                       Kimberlite
                        -51.39321
66V2 110
            66.41414
                                       Kimberlite
66V2 111
            66.41153
                        -51.40101
                                       Kimberlite
66V2 112
            66.40944
                        -51.40546
                                       Kimberlite
66V2 113
                        -51.41280
            66.40603
                                       Kimberlite
66V2 114
            66.40008
                        -51.42212
                                       Kimberlite
66V2 115
            66.36930
                        -51.50170
66V2 116
            66.35980
                        -51.34090
                                       Kimberlite
66V2 117
            66.35097
                        -51.36403
                                       Kimberlite
66V2 118
            66.34782
                        -51.37158
                                       Kimberlite
66V2 119
            66.34574
                        -51.37670
                                       Kimberlite
                        -51.39113
66V2 120
            66.33979
                                       Kimberlite
                        -51.39464
                                       Kimberlite
66V2 121
            66.33441
                                       Kimberlite
            66.33436
                        -51.37321
66V2 122
                        -51.37024
                                       Kimberlite
66V2 123
            66.32836
                                       Kimberlite
                        -51.36464
66V2 124
            66.32667
                                       Kimberlite
66V2 125
            66.32300
                        -51.36147
                                       Kimberlite
66V2 126
            66.32138
                        -51.36168
                                       Kimberlite
66V2 127
            66.31708
                        -51.35806
                                       Kimberlite
66V2 128
            66.08249
                        -51.70958
Map sheet 67V1 Nordre Strømfjord vest
            Lat. (N)
                         Long. (W)
                                       Rock type
Loc. no.
                        -53.00700
67V1
            67.64964
                                       Lamproite
       1
                                       Lamproite
67V1
       2
            67.51254
                        -53.67060
            67.51344
                        -53.60510
                                       Lamproite
67V1
       3
            67.50630
                        -53.62620
                                       Lamproite
67V1
       4
                        -53.72380
                                       Lamproite
67V1
       5
            67.44642
                                       Kimberlite
67V1
       6
            67.26004
                        -53.43060
                        -53.41620
                                       Kimberlite
67V1
       6
            67.26116
       7
                        -53.81500
                                       Kimberlite
67V1
            67.21428
                                       Lamproite
67V1
       8
            67.21763
                        -53.65320
       9
                                       Kimberlite
            67.20646
                        -53.56650
67V1
      10
            67.08928
                        -53.92530
                                       Kimberlite
67V1
                        -53.81326
                                       Kimberlite
            67.07743
67V1
      11
Map sheet 69V2 Jakobshavn
                                       Rock type
Loc. no.
            Lat. (N)
                         Long. (W)
                                       Ultramafic lamprophyre
69V2
       1
            69.75745
                        -50.26024
69V2
       2
            69.76267
                        -50.16750
                                       Ultramafic lamprophyre
69V2
       3
            69.76006
                        -50.16886
                                       Ultramafic lamprophyre
```

```
69.75728
                        -50.16686
                                      Ultramafic lamprophyre
69V2
                                       Ultramafic lamprophyre
       5
            69.75319
                        -50.21105
69V2
                                      Ultramafic lamprophyre
       6
           69.75052
                        -50.22226
69V2
                                      Ultramafic lamprophyre
       7
            69.74999
                        -50.16419
69V2
       8
           69.74114
                        -50.14757
                                      Ultramafic lamprophyre
69V2
           69.75893
                                      Ultramafic lamprophyre
69V2
       9
                        -50.36138
                                      Ultramafic lamprophyre
69V2
      10
           69,72035
                        -50.38246
                                      Ultramafic lamprophyre
69V2
           69.71435
                        -50,30308
      11
                                      Ultramafic lamprophyre
69V2
      12
           69.71385
                        -50,24821
                                      Ultramafic lamprophyre
69V2
      13
           69.71671
                        -50.20931
           69.71422
                        -50.15837
                                      Ultramafic lamprophyre
69V2
      14
                        -50.43826
                                      Ultramafic lamprophyre
69V2
      15
           69.68918
                                      Ultramafic lamprophyre
                        -50.41628
69V2
      16
           69.68951
                                      Ultramafic lamprophyre
                        -50.42447
69V2
      17
           69.67659
                                      Ultramafic lamprophyre
                        -50.40219
69V2
      18
           69.69838
                                      Ultramafic lamprophyre
69V2
      19
           69.69933
                        -50.38304
                                      Ultramafic lamprophyre
69V2
      20
           69.69912
                        -50.36674
                                      Ultramafic lamprophyre
69V2
      21
           69.69785
                        -50.36081
                                      Ultramafic lamprophyre
           69.69200
                        -50.35677
69V2
      22
                                      Ultramafic lamprophyre
           69.69271
                        -50.31047
69V2
      23
                                      Ultramafic lamprophyre
                        -50.30124
69V2
      24
           69.68820
                                       Ultramafic lamprophyre
69V2
      25
           69.69011
                        -50.27561
                                      Ultramafic lamprophyre
69V2
      26
           69.68895
                        -50.17893
                                      Ultramafic lamprophyre
69V2
      27
           69.67386
                       -50.24261
                                      Ultramafic lamprophyre
69V2
      28
           69.66565
                        -50.30193
                                      Ultramafic lamprophyre
           69.65954
69V2
      29
                        -50.33587
                                      Ultramafic lamprophyre
           69.65888
                        -50.28244
69V2
      30
                                      Ultramafic lamprophyre
           69.63975
                        -50.18350
69V2
      31
                                      Ultramafic lamprophyre
                        -50.16442
69V2
      32
           69.63969
                                      Ultramafic lamprophyre
                        -50.38584
69V2
      33
           69.61607
                                      Ultramafic lamprophyre
69V2
      34
           69.61625
                        -50.34178
69V2
      35
           69.62726
                        -50.27997
                                      Ultramafic lamprophyre
69V2
           69.62179
                        -50.24967
                                      Ultramafic lamprophyre
      36
           69,61947
                        -50.25384
                                      Ultramafic lamprophyre
69V2
      37
                        -50.23077
                                      Ultramafic lamprophyre
69V2
      38
           69,61410
                                      Ultramafic lamprophyre
69V2
      39
           69.61296
                        -50,20735
                                      Ultramafic lamprophyre
69V2
      40
           69.61409
                        -50.26168
                                      Ultramafic lamprophyre
69V2
           69.61540
                        -50,28073
      41
                                      Ultramafic lamprophyre
           69.61039
                        -50.28932
69V2
      42
                       -50.27505
                                      Ultramafic lamprophyre
69V2
           69.60308
      43
                                      Ultramafic lamprophyre
           69.62098
                        -50.28835
69V2
      44
                                      Ultramafic lamprophyre
           69.77509
                        -50.54492
69V2
      45
                                      Ultramafic lamprophyre
                        -50.52711
           69.76321
69V2
      46
                                      Ultramafic lamprophyre
                        -50.54941
69V2
      47
           69.76431
                                      Ultramafic lamprophyre
69V2
      48
           69.76712
                        -50.57197
                                      Ultramafic lamprophyre
69V2
           69.76139
                        -50.60547
      49
            69.76697
                        -50.63607
                                      Ultramafic lamprophyre
69V2
      50
                        -50.69862
                                      Ultramafic lamprophyre
69V2
      51
           69.73842
                                       Ultramafic lamprophyre
69V2
      52
            69.72450
                        -50.69448
                                      Ultramafic lamprophyre
69V2
      53
            69.72998
                        -50.72401
69V2
      54
           69.64068
                       -50.63751
                                      Ultramafic lamprophyre
           69.63511
                        -50.62179
                                      Ultramafic lamprophyre
69V2
      55
                        -50.63526
                                      Lamproite
69V2
            69.77703
      56
                        -50.45973
                                      Ultramafic lamprophyre
69V2
      57
            69.91269
69V2
      58
            69.90372
                        -51.33778
                                       Ultramafic lamprophyre
            69.76860
                        -51.06092
                                      Ultramafic lamprophyre
69V2
      59
```

Map sheet 71V1 Svartenhuk Halvø Loc. no. Lat. (N) Long. (W) Rock type 71V1 1 71.90000 -53.20000 Kimberlite, lamprophyre APPENDIX 2

MAPS

