Ore minerals in stream sediments from North Greenland

Martin Ghisler

Open File Series 94/17

December 1994

GRØNLANDS GEOLOGISKE UNDERSØGELSE Ujarassiortut Kalaallit Nunaanni Misissuisoqarfiat GEOLOGICAL SURVEY OF GREENLAND

GRØNLANDS GEOLOGISKE UNDERSØGELSE Ujarassiortut Kalaallit Nunaanni Misissuisoqarfiat GEOLOGICAL SURVEY OF GREENLAND

Øster Voldgade 10, DK-1350 Copenhagen K, Denmark

The Geological Survey of Greenland (GGU) is a research institute affiliated to the Mineral Resources Administration for Greenland (MRA) within the Danish Ministry of Environment and Energy. As with all other activities involving mineral resources in Greenland, GGU's investigations are carried out within the framework of the policies decided jointly by the Greenland Home Rule Authority and the Danish State.

Open File Series

The Open File Series consists of unedited reports and maps that are made available quickly in limited numbers to the public. They are a non-permanent form of publication that may be cited as sources of information. Certain reports may be replaced later by edited versions.

Citation form

Open File Series Grønlands Geologiske Undersøgelse

conveniently abbreviated to:

Open File Ser. Grønlands geol. Unders.

GGU's Open File Series består af uredigerede rapporter og kort, som publiceres hurtigt og i et begrænset antal. Disse publikationer er midlertidige og kan anvendes som kildemateriale. Visse af rapporterne vil evt. senere blive erstattet af redigerede udgaver.

ISSN 0903-7322

GRØNLANDS GEOLOGISKE UNDERSØGELSE

Open File Series 94/17

Ore minerals in stream sediments from North Greenland

Martin Ghisler

December 1994

Abstract

Ore minerals in stream sediments have been used to determine distinct areas of interest for mineral exploration. Although the sample coverage is not homogeneous, the study indicates areas of interest for base metals along the lineament through Federick E. Hyde Fjord. High concentrations of pyrite with framboidal textures but without accompanying galena or sphalerite may be pathfinders for zinc deposits. Occurrences of pyrrotite is restricted to areas of highest metamorphic grade.

Contents

Introduction
Geology
Sampling programme and sample preparation
Ore microscopy
Data presentation
Discussion of results
Conclusions
Acknowledgements
References

Table 1. Main tectonic-stratigraphic divisions of eastern North Greenland.
Table 2. Distribution of opaque minerals from Heilprin Land.
Table 3. Distribution of opaque minerals from J. C. Christensen Land.
Table 4. Distribution of opaque minerals from Mylius-Erichsen Land.
Table 5. Distribution of opaque minerals from central Peary Land.
Table 6. Distribution of opaque minerals from Johannes V. Jensens Land.
Table 7. Distribution of opaque minerals from eastern Peary Land.
Table 8. Distribution of opaque minerals from Kronprins Christian Land.
Table 9. Coordinates of stream sediment sample localities.

Map 1. Geological map 1:500 000 map sheet 8 Peary Land.

- Map 2. Sample location distribution map.
- Map 3. Anomaly map for chalcopyrite.
- Map 4. Anomaly map for galena.
- Map 5. Anomaly map for sphalerite.
- Map 6. Anomaly map for native copper.
- Map 7. Anomaly map for total iron sulphides (pyrite, marcasite, pyrrhotite).
- Map 8. Anomaly map for pyrrhotite.

Fig. 1. Simplified geological map of eastern North Greenland, indicating the area under investigation (from Higgins, 1986, fig. 2) A: Amdrup Land, C: Citronen Fjord, FF: Frederick E. Hyde Fjord, H: Hovgaard Ø, HL: Holm Land, JB: Jørgen Brønlund Fjord, KW: Kap Washington, LØ: Lockwood Ø, M: Midtkap, PT: Prinsesse Thyra Ø, VG: Valdemar Glückstadt Land.

Introduction

As part of the regional geological mapping programme in North Greenland (Fig. 1) in the years 1978 to 1980 (Henriksen, 1980, 1981), a great number of stream sediment samples were collected. The purpose was to provide a reconnaissance survey for an evaluation of the mineral potential of the region and to obtain general geochemical data on bedrock composition and element distribution anomalies.

The present report deals with the results of an ore microscopic study of heavy mineral concentrates from the sand fraction of stream sediments. Preliminary results have been presented by Ghisler *et al.* (1979), Ghisler & Stendal (1980) and Ghisler *et al.* (1983). Results from the geochemical investigation of the silt fraction of stream sediments were given by Steenfelt (1980).

Geology

The geology of the major part of the area under consideration is covered by the Geological map of Greenland 1:500 000 Peary Land, sheet no. 8 (1986), and a descriptive text to this map is given by Henriksen (1992). Four detailed map sheets at scale 1:100 000 cover a transept from J. C. Christensen Land in the south to Nansen Land in the north (Special geological maps 1:100 000, North Greenland, 1986).

The investigated area (Fig. 1) includes representatives of nearly all periods of the geological column: remnants of the Precambrian Greenland shield, Proterozoic sediments and volcanics, Palaeozoic and Mesozoic sediments, Tertiary sediments and volcanics and Quaternary deposits (Table 1).

Precambrian crystalline rocks are exposed in the eastern parts of Kronprins Christian Land. They are largely of Early Proterozoic age of formation, but have been reworked during the Caledonian orogeny.

To the south-west, along the Greenland Inland Ice margin, thick sequences of Middle Proterozoic fluvial and lacustrine sediments belonging to the Independence Fjord Group are found. In J. C. Christensen Land and Mylius-Erichsen Land these sediments are overlain by plateau basalts of the Zig-Zag Dal Basalt Formation of Middle Proterozoic age. Probable contemporaneous with these basalts are the numerous dykes and sills which cut the sandstones of the Independence Fjord Group. After a hiatus of more than 400 million

Table 1. Main tectonic-stratigraphic divisions of eastern North Greenland (after Henriksen, 1992)

Quaternary	Complete glaciation and succeeding deglaciation
Early Tertiary	Wandel Sea Basin area Eurekan orogeny - thrusting in the north Kap Washington Group - volcanic activity NW-SE strike-slip fault belt
Early Triassic	several local sedimentary basins
Late Permian	Wandel Sea Basin area
Early Carboniferous	fluviatile and marine sediments
Devonian/Carboniferous	Ellesmerian orogeny - North Greenland fold belt
Silurian	Caledonian orogeny - fold belt in East Greenland
Late Silurian	Franklinian Basin shelf and deep water sediments
Early Cambrian	I I I I I I I I I I I I I I I I I I I
Late Proterozoic	Hagen Fjord Group shelf sediments (600-800 Ma?) and deep water correlatives
Middle Proterozoic	Zig-Zag Dal Basalt Formation plateau basalts (c. 1230 Ma) and basic sills and dykes (Midsommersø Dolerites) Independence Fjord Group continental clastic sediments (c. 1380 Ma)
Early Proterozoic	Orogenic event in the crystalline Greenland shield (c. 1800-2000 Ma)
Archaean	Orogenic event in the crystalline shield (c. 3000 Ma)

years the late Proterozoic Hagen Fjord Group was deposited, in the central part of the region as shelf sediments, to the east as deep water correlatives. To the west, the Morænesø Formation records a Late Proterozoic glacial event, probably of the same age as the Vendian tillites in Scandinavia. The relationship between the Hagen Fjord Group and the Morænesø Formation is unclear.

During Early Palaeozoic time thick sedimentary sequences accumulated across all of North Greenland. Deposition can be divided into a southern shelf succession dominated by carbonates, and a northern deep water succession of mainly siliciclastic sediments. Ellesmerian orogenic deformation in the Devonian – Early Carboniferous mainly affected and metamorphosed the deep water sequence of the northern part of the basin. The deformed region, conventionally known as the North Greenland fold belt, covers all of Johannes V. Jensen Land with the southern limit of folding following approximately the south side of Frederick E. Hyde Fjord.

Late Palaeozoic to Tertiary sediments, known as the Wandel Sea Basin sequence, were deposited across the north-eastern corner of Greenland. Volcanics of varying composition erupted in late Cretaceous time are found at Kap Washington and Lockwood \emptyset , and intrusions occur in the Midtkap area. New deformation also took place (Eurekan orogeny).

Structually the region is dominated by the N–S trending Caledonian fold belt to the east, and the E–W trending North Greenland fold belt to the north. Prominent lineaments strike east–west in the northern part of the area, north–south in the eastern part, whereas north-west–south-east lineaments characterize the north-eastern area.

Sampling programme and sample preparation

Samples were collected in connection with the geological mapping programme; accordingly there is no systematic coverage. Samples were taken from as many lithological and stratigraphical units as possible. Each sample consisted of 1 litre of unsieved stream sediment. Sampling was undertaken from streams of medium to small size belonging to the local drainage system, as these offer the best possibility for correlation to a specific source area.

Duplicate samples were taken at 47 localities within 10–100 m distance from each other to evaluate the significance of variation. A total of 431 samples were collected at 384 different localities.

Fig. 2. Flow sheet showing the laboratory procedure for the stream sediment samples and the preparation of polished sections.

In the laboratory in Copenhagen the samples were sieved through a 1 mm screen (flow sheet Fig. 2). The minus 1 mm fraction was preconcentrated by hand with a pan ("chapeau chinois") and further separated by heavy liquid (bromoform $d = 2.89 \text{ g/cm}^3$). The heavy mineral fraction formed on average 0.5 per cent (by weight) of the minus 1 mm fraction, varying from 0.001% to a maximum of 5%.

Concentrates with a medium to high content of heavy minerals were separated with a hand Wilke magnet (Bentz & Martini, 1968, p. 33) into three different fractions: (1) a strongly magnetic magnetite-titanomagnetite fraction, (2) a weakly magnetic ilmenite-hematite fraction and (3) a non-magnetic fraction. Polished sections from heavy mineral concentrates were prepared for microscopic investigation under reflected light.

Ore microscopy

A total of 588 polished sections were investigated. For the major part of the samples only one heavy fraction was studied: the total heavy fraction (T: no magnetic separation), or the non-magnetic fraction (U). For one third of the samples two fractions were studied: the total heavy fractions (T) and the non-magnetic (U) fractions or a magnetic (M) and the

non-magnetic fraction (U). The magnetic fraction studied was mostly the ilmenite-hematite fraction (fraction 2 above) with omission of most of the magnetite and titanomagnetite grains. Where only a little material was present the magnetic fraction comprised both fractions 1 and 2.

The polished sections with a square surface of 2.5 cm \times 2.5 cm or a circular surface with a diameter of 3 cm were examined systematically. The relative amounts of the iron-titanium oxides were estimated into three categories dominant (+++), frequent (++) or present in minor amounts (+). The amounts of sulphides and other ore minerals of exploration interest were determined by grain counting.

Iron-titanium oxides are the most abundant opaque minerals of nearly all heavy mineral concentrates, in order of decreasing amounts: titanomagnetite, hematite, magnetite, ilmenite and rutile. Limonite is frequently very abundant as an alteration product of iron sulphides, mostly pyrite.

Chromite is found in nearly 40% of all samples either as individual grains or as inclusions in silicates. The distribution of chromite reflects bedrock composition; high values are found in samples from the crystalline basement or near dolerite dykes and peak values from samples originating from the Cretaceous Midtkap intrusion.

Pyrite, often more or less altered to limonite, is by far the most common and most abundant sulphide mineral, and is observed in 77 per cent of all samples. The number of grains varies considerably from only a few to several thousands per polished section. The Middle Proterozoic areas consisting mainly of sandstones, dolerites and basalts are poor in pyrite, which means 1-5 grains per section, with maximum figures of some 30 grains. Stream sediments from Heilprin Land show the highest contents. Distinctly higher pyrite contents occur in the samples from the Upper Proterozoic Hagen Fjord Group and Morænesø Formation. Of particular interest is framboidal pyrite. Framboidal textures, commonly also preserved as limonite framboids with relict pyrite cores, are common throughout the area reaching a maximum of several thousand grains per section.

Marcasite occurring mainly as an alteration product of pyrite, is rather scarce throughout the region. High contents, up to 1500 grains per section are, however, found in two samples from north-east Peary Land.

Pyrrhotite is, except for a few grains or inclusions from the Proterozoic areas, limited to the fold belt. It occurs always together with and subordinate to pyrite.

Chalcopyrite is present in 46% of all samples; one to four grains per sample are common. Samples with more than 4 grains are regarded as anomalous, with peak values of 50-75 grains.

Galena is found in 25 samples representing 6% of the "population", mostly as one or a few single grains or as inclusions in other sulphides.

Sphalerite is only found in 14 samples. It is, however, very difficult to identify during a routine microscopic study, as its reflectivity is very close to that of magnetite. Accordingly, sphalerite may be present in more samples and in higher amounts than indicated by this study.

Native copper is found in samples originating from the Zig-Zag Dal Basalt Formation in Mylius-Erichsen Land and J. C. Christensen Land. It occurs as small inclusions in silicate grains, probably epidote. The inclusions are mostly a few microns in size, but inclusions 10-15 µm across are not uncommon and may reach a maximum of 40 µm. 80 per cent of the samples originating from central J. C. Christensen Land contain native copper, in four cases associated with covellite, in some cases with cuprite and in one case with bornite. From Mylius-Erichsen Land 54 per cent of the samples from the basalts contain native copper, in three samples accompanied by covellite and cuprite.

Pyrolusite has been identified by the microprobe in one sample (GGU 196463) originating from the Midtkap intrusion. Pyrolusite was observed in three additional samples.

Native iron (identified on the microprobe) was found in one sample (GGU 270372) from the basalts in J. C. Christensen Land.

Native tin was identified on the microprobe in one sample (GGU 271008) from northeast Peary Land.

The examination of the heavy mineral concentrates under ultra-violet light did not reveal any flourescent minerals except zircon, which is widespread and abundant. High contents were found in one sample (GGU 273566) from a structurally complex area in Mylius-Erichsen Land.

Data presentation

The semiquantitative results of the microscopic study are presented in Tables 2 to 8 arranged geographically as follows. Table 2 - Heilprin Land and surroundings, Table 3 -

J. C. Christensen Land, Table 4 - Mylius-Erichsen Land and Valdemar Glückstadt Land, Table 5 - central Peary Land, Table 6 - Johannes V. Jensen Land and south coast of Frederick E. Hyde Fjord, Table 7 - eastern Peary Land and Prinsesse Thyra Ø and Table 8 - Kronprins Christian Land with Holm Land, Amdrup Land and Hovgaard Ø. Tables 2-4 are subdivided according to stratigraphic origin of the samples into: Independence Fjord Group, Zig-Zag Dal Basalt Formation, Hagen Fjord Group or Morænesø Formation, and Portfjeld and Buen Formations (both from the Lower Cambrian), whereas Tables 5–8 are samples geographically grouped without any stratigraphic subdivisions.

Duplicate samples collected from one and the same locality are grouped together by a bracket.

A locality map (Map 2) in the scale of 1:2 million showing the distribution of samples is enclosed together with the geological map in the scale of 1:500 000 (Map 1). Coordinates of all sample localities are given in Table 9.

The localities were originally plotted on now outdated topographic maps. The localities were later transferred by hand to the new maps and then digitized. The absolute accuracy of sample localization accordingly is regarded as not better than \pm 50 metres.

Anomaly distribution maps in the scale of 1:2 million are presented for chalcopyrite, galena, sphalerite, native copper, total iron sulphides (pyrite, marcasite, pyrrhotite) and for pyrrhotite (Maps 3–8).

More detailed specific information on sample location, as well as stratigraphic and lithologic source of the stream sediment samples can be studied in the survey archives.

Discussion of results

Duplicate samples were collected at 13% of the sampling localities in order to test the variation in mineral composition. The amount of heavy minerals varies considerably due to different sedimentation conditions in the small rivers. In 85% of the samples, however, the relative variation from the average value of the total heavy mineral content of duplicate samples lies within \pm 50%.

The amount of pyrite and other iron sulphides in the duplicates shows some variation. For 80% of the samples, the numbers of grains counted in the two samples lie within the same anomaly ranges. In 20% both duplicates were anomalous (more than 50 grains), but with different values. The chalcopyrite distribution showed consistancy for 94% of the duplicates. In the 47 duplicate sets investigated 5 anomalous samples (more than 4 grains) were found; 3 of these 5 anomalies would have been missed if only one sample had been taken at these 5 localities. Galena and sphalerite were observed in 7 of the 49 duplicates, but only in 2 cases were they present in both samples from each locality.

Native copper was found in samples from 7 duplicate localities; in 6 cases it was present in both samples.

A comparison of the duplicate samples collected close to each other shows a considerable variation in number and composition of the opaque minerals. The microscopic study of the stream sediments is considered significant for the qualitative identification of important ore minerals and quantitatively for the order of scale. The quantitative significance of minerals represented by only a few grains in a sample is of only limited value, but can be used to identify groups of samples or areas indicating anomalies.

Samples with more than 50 grains of iron sulphides (pyrite, marcasite, pyrrhotite) are considered anomalous and are plotted on Map 7. The distribution of iron sulphides shows a concentration of anomalies on both sides of the western part of Frederick E. Hyde Fjord. They are considered to be associated with the main east–west trending lineament. Relatively high contents of pyrite and limonite in the heavy fraction of sand samples collected at the north side of Frederick E. Hyde Fjord were already reported by Ellitsgaard-Rasmussen (1955). After the discovery of a large pyrite-sphalerite deposit at Citronen Fjord (Schønwandt, 1994), special attention should be given to samples rich in pyrite with framboidal textures. High concentrations of pyrite are also found along an east–west zone north of Heilprin Land at the border between the Proterozoic platform and the Cambrian sediments. A third group of anomalies is found along the north-west – south-east faults in eastern Peary Land.

Anomalous concentrations (more than 4 grains) of pyrrhotite (Map 8) all appear north of the chlorite-muscovite line (Henriksen, 1992, fig. 14) of the North Greenland fold belt. The occurrence of pyrrhotite is restricted to the area with the highest metamorphic grades.

Samples with more than 4 grains of chalcopyrite are considered anomalous and plotted on Map 3, whereas samples with only 1 grain of galena or sphalerite are considered as anomalous and plotted on Maps 4 and 5, respectively.

Anomalies of chalcopyrite, sphalerite and galena are concentrated along the lineament around Frederick E. Hyde Fjord with a few scattered anomalous values in Heilprin Land. A significant but isolated chalcopyrite anomaly with 58 grains (GGU 198707) is found in southern Mylius-Erichsen Land at Campanuladal associated with the Hagen Fjord Group sediments. A 20 cm thick pyrite-chalcopyrite impregnated sandstone layer has been identified as the source for this anomaly (Lind & Tukiainen, 1994).

Samples with 1 grain of native copper are regarded as anomalous and plotted on Map 6. The distribution of native copper follows the basalt areas, with the highest anomalies (more than 50 grains) in north-east J. C. Christensen Land.

The identification of an isolated grain of native iron from J. C. Christensen Land may be due to laboratory contamination, but a natural origin from the basalts cannot be excluded. In a similar way the identification of one grain of native tin may be due to laboratory contamination. On the other hand, native tin as an alluvial mineral is reported from Australia and several places in the USSR (Taylor, 1979).

Conclusions

- 1. The study of opaque minerals in stream sediments from North Greenland delineates distinct areas of interest for mineral exploration.
- 2. The sample coverage of the study is not homogeneous. No sand fractions from stream sediments are available from a vast area in central Peary Land, where it was only possible to get silt samples. These areas should not be excluded with respect to prospectivity.
- 3. The study of duplicate samples shows that it is in general sufficient to collect one sample at each locality in order to identify anomalies.
- 4. The most interesting area for base metals seems to be a zone along the east—west lineament around Frederick E. Hyde Fjord.
- 5. High concentrations of pyrite with framboidal textures but without accompanying galena or sphalerite may be pathfinders to areas with a high potential for zinc deposits.
- The east-west striking zone from Jørgen Brønlund Fjord with pyrite-bearing "solfataras" described by Troelsen (1949), and further to the west to the innermost J. P. Koch Fjord is worthy of special mention. However, framboidal textures are relatively rare here.
- 7. The occurrence of pyrrhotite is restricted to the areas with the highest metamorphic

grade in the North Greenland Fold Belt.

- 8. The occurrences of native copper in the Zig-Zag Dal Basalt Formation can be used to select areas for more detailed investigations.
- 9. Since the investigation of the heavy mineral fractions a number of mineral occurrences and a major sulphide deposit at Citronen Fjord (Fig. 3) have been identified (Lind *et al.*, 1994).
- 10. The result of the ore microscope study combined with a careful study of the geochemical analyses of the silt samples is a valuable tool in defining the most prospective areas of the region under consideration.

Acknowledgements

Thanks to the expedition leader Niels Henriksen for organising the collection of numerous sand samples, and to the laboratory staff at the Geological Institute of the University of Copenhagen for the sample separation and preparation and microprobe identification. This study was supported by the Danish Natural Science Research Council (Grant 511.16/69).

References

- Bentz, A. & Martini, H. J. 1968: Lehrbuch der angewandten Geologie. 2(1), 1355 pp. Stuttgart: Ferdinand Enke.
- Ellitsgaard-Rasmussen, K. 1955: Features of the geology of the folding range of Peary Land, North Greenland. *Meddr Grønland* **127** (7), 44-48.
- Geological Survey of Greenland, 1986: Geological map of Greenland 1:500 000, sheet 8, Peary Land.
- Geological Survey of Greenland, 1986: Special geological maps 1:100 000. J. C.
 Christensen Land 81 Ø. Nord; Nordkronen 82 Ø. Syd; Wandel Dal 82 Ø. Nord; Harder Fjord 83 Ø. Syd.
- Ghisler, M., Henriksen, N., Steenfelt, A. & Stendal, H. 1979: A reconnaissance geochemical survey in the Proterozoic-Phanerozoic platform succession of the Peary Land region, North Greenland. *Rapp. Grønlands geol. Unders.* 88, 85-91.

Fig. 3. North Greenland mineral occurrence map based on GGU's Mineral database system (from Lind et al., 1994, fig. 2). Original in colour.

- Ghisler, M., Henriksen, N., Steenfelt, A. & Stendal, H. 1983: Reconnaissance geochemical survey in North Greenland. In Björklund, A. & Koljonen, T. (ed.) Abstracts 10th int. Explor. Symp; 3rd Symp. Methods of Geochem. Prosp., Espoo/Helsinki, 1983, 28-29.
- Ghisler, M. & Stendal, H. 1980: Geochemical and ore microscopic investigations on drainage sands from the Peary Land region, North Greenland. *Rapp. Grønlands geol. Unders.* 99, 5 only.
- Henriksen, N. 1980: Systematic geological mapping in 1979 in the Peary Land region, North Greenland. *Rapp. Grønlands geol. Unders.* **99**, 5 only.
- Henriksen, N. 1981: Systematic geological mapping in the Peary Land Kronprins Christian Land region, North Greenland. *Rapp. Grønlands geol. Unders.* **106**, 5-6.
- Henriksen, N. 1992: Geological map of Greenland 1:500 000, sheets 7 & 8. Nyboe Land and Peary Land. Map sheet descriptions. Copenhagen: Grønlands Geologiske Undersøgelse, 40 pp.
- Higgins, A. K. 1986: Geology of central and eastern North Greenland. *Rapp. Grønlands* geol. Unders. **128**, 37-54.
- Lind, M. & Tukiainen, T. 1994: Mineral resource reconnaissance programme: eastern North Greenland 1994. *In* Henriksen, N. (ed.) Express report. Eastern North Greenland and North-East Greenland 1994, 77-83. Internal report Grønlands Geologiske Undersøgelse.
- Lind, M., Tukainen, T. & Thomassen, B. 1994: Greenmin-database system for the registration of Greenland mineral occurrences. *Rapp. Grønlands geol. Unders.* 160, 32-36.
- Schønwandt, H. K. 1994: Mineral resource activities 1993: spectrum of research and services. *Rapp. Grønlands geol. Unders.* **160**, 18-21.
- Steenfelt, A. 1980: The geochemistry of stream silt, North Greenland. *Rapp. Grønlands geol. Unders.* **99**, 129-135.
- Taylor, R. G. 1979: Geology of tin deposits. Developments in economic geology 11, 331-334. Amsterdam, Oxford, New York: Elsevier.
- Troelsen, J. C. 1949: Contributions to the geology of the area around Jørgen Brønlunds Fjord, Peary Land, North Greenland. *Meddr Grønland* **149** (2), 25-27.

		GEOLOG	GY: Indep	endence	Fjord Gro	oup					REGION	I: Heilpı	rin Lano	d		
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Pyrrhotite	% Heavy minerals (by weight)
198501	TU	+	+	+	+	+		+	5	1	1	1				0.47
198503)	TU	+	+++		+	+		+	18			2				0.45
198505	TU	+	+		+++	+			7		1	3				3.22
198507	TU	+	+		+++				1							2.21
211644	MU	+++	+	+++	+++	+	34		1							0.17
211645	MU	+++		+++	+++	+	31									0.16
211646	MU	+++	+	+++	+++	+	12	++								0.14
211648	MU	+++	+	+++	+++	+	1									0.11
211651	MU	+++		+++	+++	+	35	++	1							0.19
211652	MU	+++	+	++	+++	+	17	+	3			2				0.06
233103	U	++	+	+++		+	2	+	1							0.10
233106	U	+				++		+	1				-			0.29
233107	U	+	+	+		++	1		1							0.55
233108	U	+	+	+		++	1	+								0.63
270327	TU	+	+	+		+	+	+	1			1				5.34
270329	TU	+	+	++	++	+++	++	+	35	1	11	7				0.72
273237	TU	+	+	+	+	+	+	+	11			7				2.30
273249	TU	+	+	+	+	+	+		12		1	3	1			1.11

Table 2. Distribution of opaque minerals from Heilprin Land and surroundings

Table 2 (2). Cont.

		GEOLO	GY: Indep	endence	Fjord Gro	oup			-		REGION	I: Heilp	rin Lan	d		
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Pyrrhotite	% Heavy minerals (by weight)
273256	TU	+	+	+	+	+	+	+	3			2				0.15
273297	TU	+	+	+	+	+		+	18		3	8				1.32
		GEOL	LOGY: Mo	orænesø	Formatior	1					REGION	I: Heilp	rin Lan	d		
196802	MU	+	++	+++	+			+++	227		102	1				0.73
196804	MU	++	+	+++	+			+++	94		45					0.36
198509	TU	+++		+		+		+	28		5	1				0.65
208803	Т	+++		++	+	+	3	+	52	2						0.02
208806	Т	+++		+	+	+	1	+				1				0.02
208810	U	++				+	6	+	3		1					0.03
208812	U	+	+			+	7	+	1			1				0.04
208813	U	+	+	+		++										0.08
208817	U	+	+	+		+	3	+	2			3				0.06
233101	U	++		+++		+		+	15							0.24
233102	U	+++	+	+++		+		+	14							0.33
233104	Т	++	+	+++	+			++	86	9						0.02
233105	Т	+	+		++	+		+++	421	11						0.03
270319	TU	+	+	+	+	+	1	+	26	5	7	1			1	0.23

Table 2 (3). Cont.

		GEOL	.OGY: Mo	orænesø	Formatior	ı					REGION	I: Heilpi	rin Lan	d		
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Pyrrhotite	% Heavy minerals (by weight)
270322	TU	+	+	+	+	+	3	+	26	9	7	2				1.01
270324	TU	+	+	+	+	+	++	+	735	3	7	11				2.04
270325	TU	+	+	+	+	+	+	+	12		2	1				0.24
270351	TU	+	+		+	+	+		5		1	1				1.29
270352	TU	+	+	+	+	+	+		14	1	5	3				1.61
270353	TU	+	+		+	+	+	+	3	1	1	1				0.84
270354	TU	+	+	+	+	+	+	+	105		3	8				1.67
271909	TU	+	+	+++	+	+	+	+	7			1				3.79
271910	TU	+	+	+++	+	+		+	8							1.35
		Geo	logy: Por	rtfjeld Fo	rmation						Region:	Heilpr	in Land	l	_	
198092	U					+		+	1500	+		2				0.27
208835	Т	+	+	+	+	+		++	540	3						0.02
208836	Т		+	+		+		+++	2200		+	1				0.02
208846	U	+	+			+	15	++	10	1	2					0.28
208847	U	+	+			+	10	++	35		5			1		0.23
208848	U	+				+	21	++	75		12			1		0.32
208850	U	+	+			++	12	+++	30		4					0.14

Table 2 (4). Cont.

		Geo	ology: Po	rtfjeld Fo	ormation						Region:	Heilpr	in Land	l		
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Pyrrhotite	% Heavy minerals (by weight)
208851	U	+	+			++	17	+++	80		6					0.31
208852	U	+	+			+	14	+++	23		2					0.13
208853	U	+	+			+	7	+++	65		10					0.25
208854	U	+	+			+	16	+++ :	115		6	1				0.17
208855	U	+	+			+++	5	+++	35		5	1				0.06
208856	U	+	+			+++	4	+++	80	1	1					0.13
208857	U	+	+			++	8	+++	45		8					0.12
208858	U	+	+			++	9	++	10							0.05
211656	MU	+	+	+	+++	+		+++	1400		+					0.04
211657	Т	+			+	+		+++	1000		50					0.03
211658	Т		+		+	+		+++	1000		214					0.03
211661	Т		+	+	+	+		+++	800		25	1				0.02
256295	U	+	+	+++				+	11			2				0.06
256296	U	+	+	+++		+	1	+	38	1						0.06
270335	TU	+	+	+	+	+	+	+	100		17	2				2.33
270337	TU	+	+	+		+	+	+	67		4	1				0.53

Table 2 (5). Cont.

		Geo	logy: Por	rtfjeld Fo	rmation							Region:	Heilpri	n Land		
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Pyrrhotite	% Heavy minerals (by weight)
270338	TU	+	+	+	+			+	11							0.53
270339 ∫	U	++		+	+	+		+	130	+	+					0.03
270341	TU	+	+	+	+	+		+	800		1					0.20
270342	U	+	+			+		+	30	+						0.06
270343	TU	+	+	+		+		+	42		1					0.30
270345	U					++		+	102	+		1				0.05
270346	TU	+	+	+	+	++		+	116	1		1				0.21
270350	TU	+	+	+	+	++		+	20			5				0.31
271913	TU	+	+	+	+	+		+	200		8	1				0.40
271914	TU	+	+	+		+	+	+	92		3					0.31
		GE	OLOGY: 1	Buen For	mation							REGION	I: Heilpr	in Land		
198109	U							+	12	+						0.03
198111 ∫	U		-					+	11							0.29
208839	U	+				+		++	2							0.37
208840	U	+	+	+		+	1	+	3							0.52
208841	U	+	+			+	2	+++	9							0.26

Table 2 (6). Cont.

		GE	OLOGY:	Buen For	mation						REGION	J: Heilp	rin Lan	d		
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Pyrrhotite	% Heavy minerals (by weight)
208843	U	+	+			+	1	++								0.22
208844	U	+		+		+	3	+	6							0.43
208845	U	+	+	+		+	6	+++	10		-					0.09
211531	U	++	+			+		+++	4	1						0.32
211534	U	+	+			+	3	+++	5							0.48
211535	U	+				+		+++	20							0.36
211536	U	+	+			+	6	+++	23							0.63
211537	U	++	+			++		+++	35		2					0.45
245428	Т	+	+	+	+			+++	251	244	21	3				0.02
245429	U	+	+	+	+			+++	250	240	20	1				0.04
245432	Т	+		+	+	+		+++	26	4		1	1			0.01
		Geology:	Wandel V	/alley Fn	ı (Ordovi	cean)					Region	: Heilpri	n Land			
208833	Т	+	+	+	+	+	2	+++	3							0.003

		Geology	Indepen	dence Fjo	ord Grou	р						Regio	n: J. C. (Christen	sen Land			
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Native copper	Covellite / Bornite	Cuprite	% Heavy minerals (by weight)
197277	TU	+	++	+++				+	5			2	1					2.80
197287	TU	+	+	+	+	+			3									4.48
208859	Т	+	+	+	+		1	+										0.01
208860	Т	++	+	++		+		++										0.01
208861	Т	+++	+	++	+			+										0.02
208862	U	+	+															0.04
208863	U																	0.05
208864	Т	+	++	+++	+			+				1						0.03
208865	U	+	+															0.07
208866	U	+																0.07
208867	U	No opa	ique mine	erals in th	his fractio	n			1									0.04
208868	U	+							+									0.15
208869	Т	+	++	+++	+	+												0.03
208870	U																	0.79
208871	U																	0.93
208872	U		+															1.58
208876	U							+	3			1						0.37
208877 \$	U	+	+					+	1									0.29

Table 3. Distribution of opaque minerals from J. C. Christensen Land

Table 3 (2). Cont.

		Geology	: Indepen	dence Fjo	ord Group	p						Regio	n: J. C. (Christer	isen Land	L		
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Native copper	Covellite / Bornite	Cuprite	% Heavy minerals (by weight)
208878	U	+	+					+										0.48
208882	U	+				+												0.69
208883	U	+				+												0.50
208889	U	+																0.11
208891	U	+																2.24
208892	U	+						+	1									0.12
208893 \$	U .	+	+			+		+	1									0.78
208894	U	+		+			2											1.54
208896	U	+	+						1									1.40
208898	U	+	+			+	2											0.74
208899	U	÷				+	2		1									0.17
208900 }	U	+				+	2											0.57
211501	U	+				+	1											0.18
211503	U	+				+	1	+										0.54
211505	U	+				+	5											0.25
211506	Т	+++	+++		+++	+		+										0.02
211507	U	+							1									0.55
211508	U	+							1									0.60

Table 3 (3). Cont.

		Geology	Indepen	dence Fjo	ord Group)						Regio	n: J. C. (Christen	sen Land			
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Native copper	Covellite / Bornite	Cuprite	% Heavy minerals (by weight)
211509	U	+	+			+	1											0.58
211511	U	+				+												0.25
211512	U	+				+		+										0.36
211514	U	+	+			+	1	+	1									0.27
211516	U	+	+				3		1									0.41
211517 \$	U	+	+				2		1									0.39
211538	Т	++	+	+++	+			++										0.003
211539	U	+				+		+										0.08
211540	Т	++	+	++		+		++										0.003
211542	Т	+	+	+++	+													0.02
211544	Т	++	+	+++	+	+		+										0.01
211546	U	+	+	+		+		+	1									0.04
211547	Т	++	+	+++	+	+	1	+										0.02
211548	U	+		+		+		+										0.23
211549	Т	++	+	+++	+	+	1	+										0.02
211550	U	+				+		+										0.05
211551	Т	+++	+	+	+	+		+										0.01
211552	U	++	+			+		+										0.03

Table 3 (4). Cont.

		Geology	: Indepen	dence Fje	ord Group)				*		Regio	n: J. C. (Christen	sen Land	l		
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Native copper	Covellite / Bornite	Cuprite	% Heavy minerals (by weight)
211553	Т	+++	+	+	+	+	2	+				1						0.02
211554	Т	+++	+	++	+	++		+++										0.01
211555	Т	+++	+	+	+	+	2	++	1									0.02
211556	Т	++	+	+		++		++										0.002
211558	Т	+				+												0.000
211562	U	+			+			+										0.10
211564	Т	+++	+	+	+	+	3	+	2									0.01
211571	U	+++				+	1	+										0.12
211572	U	+++	+	+		+	1	++	1									0.15
271903	TU	+	+	+	+	+	+	+	5			1						1.10
271904 ∫	TU	+	+	+	+	+		+	25			3				1		2.61
271906	TU	+	+	+++	+	+			4			1						2.38
271908 \$	TU	+	+	+++		+			12		1	3						1.16
271915	U	+++	+			+	1	+										0.10
271916	TU	+	+	+	+	+	+	+	10			1						0.21
271917	TU	+	+	+	+	+	+	+	1							1		1.80

Table 3 (5). Cont.

	(Geology: /	Zig-Zag I	Dal Basal	t Formatio	on						Regio	n: J. C. (Christen	sen Land			
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Native copper	Covellite / Bornite	Cuprite	% Heavy minerals (by weight)
211565	U	+		+			÷ .								1			0.51
211573	U	+++	+	+		++	4 .	++	2									0.33
235202	U	+++		+		+		++										0.03
235221	U	+++	+			+		+										0.12
235223	U	+++	+					++	2		1		1					0.20
235225	U	+++	+	+		+		+	+ .									0.03
235232	U	++`				+		+	9						1		1	0.15
235234	U	+++	+			+		++	1						2		2	0.81
235236	U	+++				+		+	1									0.04
256266	U	++	+	+		++	3	+	1									0.12
256267	U	++	+			++	1	+										0.87
256270	Т	+	+	+++	+	+		+	4			4						0.02
270260	TU	+	+	+	+			+				1						1.23
270262	TU	+	+	+	+	+						1			2			2.04
270264	TU	+	+	+	+	+			1			1						1.43
270367	TU	.+++	+			+	+	+	3			2			>10	1		1.30
270368	TU	+++	+		+	+		+	3		1	2			>50			0.61

Table 3 (6). Cont.

		Geology:	Zig-Zag I	Dal Basal	t Formatio	on						Regio	n: J. C. (Christen	sen Land			
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Native copper	Covellite / Bornite	Cuprite	% Heavy minerals (by weight)
270371	TU	+++		+	+	+		+	6			1			>10			1.22
270372 ∫	TU	+	+	+	+	+		+	5			2			>10			0.39
270373	U	+		+		+			2						+			0.11
270374 \$	TU	+	+	+	+	+	+	+	22		1	1			2	1		0.23
270375	TU	+++	+	+	+	+		+	+						+			1.33
270376	TU	+++	+	+	+	+		+	2			1			>50			1.33
270378	TU	+++	+	+	+	+	+	+	34			3			>10	2		1.58
270380	TU	++	+	+	+	+	+	+	2									0.14
270381	TU	++	+	+	+	+		+	2			2			3	2		1.16
270387	TU	+++	+	+	+	+		+	2						3			2.32
270388 ∫	TU	+++	+	+	+	+		+	2						2			2.28
270389	TU	+++	+		+			+	6			2			3			2.16
		Geol	ogy: Hage	en Fjord	Group							Regio	n: J. C. (Christen	sen Land			
198512	TU	+++	+++		+	+++			1									0.41
198515	TU	+	+			+			60	+	50	1						0.90
211574	U	+++			+	+						1						0.09
211575	U	+++	+			++	+	+										0.08
211576 ∫	U	+++	+		+	++		+	1									0.04

Table 3 (7). Cont.

		Geol	ogy: Hage	en Fjord	Group							Regio	n: J. C. (Christen	sen Land			
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Native copper	Covellite / Bornite	Cuprite	% Heavy minerals (by weight)
211577	U	++	+	+			+	+										0.04
211578	U	+++	+			+	1	+										0.06
211579	U	+++				+		+									-	0.04
211580	U	+++		+	+	+		+										0.07
211602	MU	+++	+	+++	++	+		4			1				3			0.07
211603	Т	+++	+	+++	+	+		+		1		1						0.007
211608	Т	++	+	+++	+	+		+	4									0.004
211609	Т	+	++	+++	+		2	+	3			2						0.011
211611	Т	+	+	+++	+		4											0.011
211613	Т	++	+	+++	++		2	+	1									0.015
211616	MU	++	+	+++	+++	+	3	+	5									0.09
211619	MU	+++	+	++	++			+	8			5						0.03
211622	Т	+	+	+++	++			+	79	10		3						0.009
211623	MU	+++	+	+++	++	+		++	141	21	1	11						0.06
211626	MU	+++	+	++	+++	+												0.05
211630	MU	+++	+	++	+++		4											0.03
211632	MU	+++	+	++	+++		3	+	1	3		1						0.05
211639	MU	+++	+	++	+++	+	10											0.08

Table 3 (8). Cont.

		Geol	ogy: Hag	en Fjord	Group							Regio	n: J. C. (Christen	sen Land			
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Native copper	Covellite / Bornite	Cuprite	% Heavy minerals (by weight)
211676	MU	+++	+	+++		+	20	+				1						0.24
211678	MU	+++	+	+++	+++		25	+										0.19
211679	MU	+++	+	+++	++	+	16	+	1									0.27
211680	MU	+++	+	+++	+++	+	15	+										0.16
211681	MU	+++	+	++	+++	+	12	+	2									0.20
211683	MU	+++	+	+++	+++	+	17	+										0.18
235226	U	+++		+		+++	1	++	100	23		4						0.23
235228	Т	++		+	+	+		++	15	9								0.01
235230	U	++		+	+	+		+	31	2		3						0.04
270360	U	+	+	+		+		+				1						0.06
270365	U	+	+	+		+												0.07
270391	TU	+	+	+	+	+		+										0.16
270392 ∫	TU	+	+	+	+	+	+	+	1						1			0.37
270393	U	+++	+	+		+	1	+	9									0.09
270394	U	++						+	10	3								0.03
270396	TU	+	+	+	+	+	+	+	85	23		2			1			0.13
270397	U	+	+	+		+		+	89	+	5	3						0.03

Table 3 (9). Cont.

	(Geology: I	Portfjeld a	nd Buen	Formatio	ns						Regio	n: J. C. (Christen	sen Land			
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Native copper	Covellite / Bornite	Cuprite	% Heavy minerals (by weight)
198516	U	+	+		+	+		+	3		1							0.03
211666	MU	+++	+	+++	++	+												0.07
211668	MU	+++	++	+++	++		6	+++										0.21
211670	MU	+++	+	+++	++		14	++	1									0.25
211671	MU	+++	+	+++	+	+	1	+										0.21
211674	MU	+++	+	+++	++		8	+	1									0.21

		Geology	Independ	dence Fjo	ord Group)						Regio	n: Myliı	us-Erichs	en Land			
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Native copper	Covellite	Cuprite	% Heavy minerals (by weight)
233109	Т	+++	+		+	+		+++	3									0.01
233110 \$	Т	+++	+	++		+		+++										0.01
233111	Т	+	+	+++	+	+		++										0.01
273574	TU	+	+	+++	++	+			2			1						2.31
273576	TU	+	+	+	+	+			16			1						4.44
273578	TU	+	+	+	+	+			7			5						4.31
273580	TU	+	+	+++	+	+	1		1									3.90
273582	TU	+	+	+	+	+		+	3				-					0.51
273584	TU	+	+	+	+	+		+	1			1						1.03
273586	TU	+	+	+	+	+		+	2			2						0.43
273588	U	+				+		+										0.07
273590	TU	+	+	+	+	+	+		2			1						0.86
273592	TU	+	+	+	+	+	+	+	3			1						1.37
273594	TU	+	+	+	+	+		+	3									0.94
273596	TU	+	+	+	+	+	1		3									0.28

Table 4. Distribution of opaque minerals from Mylius-Erichsen Land and Valdemar Glückstadt Land

Table 4 (2). Cont.

		Geology: /	Zig-Zag I	Dal Basal	t Formatio	on						Regio	n: Myli	us-Erich	sen Land			
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Native copper	Covellite	Cuprite	% Heavy minerals (by weight)
197295	TU	+	+	+	+	+		+	5			1			4	1	+	3.01
197296	TU	+	+	+		+			1								+	0.99
197298	TU	+	+	+		+			4			1					+	1.89
197300	TU	+	+	+	+	+			3			3						1.80
235204	U	+++			+	+		+	2									0.48
235208	U	+++	+				+	+	1.						5			0.36
235209	U	+++	+			+		++	7						2			0.67
235210	U	+++			+	+		++							4			0.61
235213	U	+++		+				++	4			1			3	1	+	0.33
235215	U	+++		+	+	+	+	++	2			2			3			0.35
235217	U	+++	+	+		+	+	++				1						0.17
256054	U	+++	+			+		+	3			3			1			0.66
256056	U	+	+			+									1			0.08
256135	U	++	+	+		+	1	+	15			2						0.48
256136	U	++				+	+	+	4			1						0.41
273559	TU	+++	+++	+	+	+	+	+						3				0.43
273561	TU	+	+	+	+	+	+		1			1			1			0.36
273563	TU	+	+	+	+	+	+	+	5			1			1			0.89

Table 4 (3). Cont.

		Geology:	Zig-Zag I	Dal Basal	t Formatio	on						Regic	n: Myliu	us-Erich	sen Land			
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Native copper	Covellite	Cuprite	% Heavy minerals (by weight)
273566	TU	+++		+		++												0.11
273568	TU	+	+	+		+			2						3			0.80
273570	TU	+	+	+	+	+						1			24			1.78
273572	TU	+	+	+++	+	+	1	+	8		2	2			1	3		1.78
273598	TU	+	+	+	+	+	2	+	3			1			2			1.03
. 273600	TU	+	+	+	+	+	+	+	5			1						1.35
		Geol	ogy: Hage	en Fjord	Group							Regio	n: Myliu	us-Erichs	sen Land			
198518	U					+		+										0.09
198520	TU	+				+		+	2									0.07
198522	TU	+				+		+										0.16
198524	TU	+				+		+										0.15
198526	U					+		+										0.07
198528	U	+			+	+		+	300	+	1	1						0.05
198701	TU	+	+			+		+	1			1						0.17
198703	TU	+				+			17			2						0.31
198705	TU	+				+		+	23			1						0.40
198707	TU	+	+	+	+	+		+	300	300	+	58						0.31

		GEOL	OGY: Silu	rian shel	lf sequenc	ce					REGION: (Central I	Peary L	and		
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Pyrrhotite	% Heavy minerals (by weight)
198141	U					+		+++	25	25		1			3	0.05
198143)	U					+		+++	25	25						0.09
211685	U	+		++		+++		+++	24	112		3				0.002
211689	U		+	+		+++		+++	150	250		23				0.003
211691	U	+		+	+	+++		+++	225	250		14				0.005
211692	U	+		+	+	+++	2	+++	200	200		7				0.009
211694	U			+		+++		+++	21	36		2				0.002
211695	U		+	+		+++		+++	71	58		1				0.008
211696	U			+	+	++	3	+	+	8						0.002
211699	U			+	+	+++		+++	5	24	+					0.002
270218	TU		+		+	+++		+++	58	+		1				0.13
270658	U	+	+++			+		+++	160	+	2					0.053
270730	U	+	+		+	+		+++	200	200		13				0.021
270732	U		+					+	+	17		1				0.002
270734	U		+			+		+++	200	1700		15				0.057
270738	U		+		+	+		+++	200	200		3				0.01
303901	Т		+	+	+	++	2		4	1						0.004
303902	Т		+	+	+	+		+	2	1						0.002

Table 5. Distribution of opaque minerals from central Peary Land

Table 5 (2). Cont.

		GEOL	OGY: Silu	urian she	lf sequend	ce					REGION: (Central I	Peary L	and		
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Pyrrhotite	% Heavy minerals (by weight)
303904	Т			+	+	+++	2	+	16	8		1				0.001
303907	Т			+	+	+++			1							0.0006
303910	Т			+	+	+++		+++	152	70		15				0.006
303912	Т			+	+	+++	3		64	50		13				0.005
303913	Т			+	+	+++	2	+++	353	169		47				0.007
303914	Т					+++	6	+++	156	306	+	10	1			0.004
303917	Т					+++	1	+++	72	131		8				0.006
303918	Т		+	+	+	+++	15	+++	1050	1000		57	2			0.013
303920	Т					+++	2	++	20	83		2		4		0.003
303927	Т		+	+		+++	2	+++	46	30		8				0.005
303928	Т					+++	3	++	24	27		1				0.003
303929	Т		++	+		+++	1	++	346	190		21				0.008
303931	Т		+		+	+++		+++	156	155		11				0.006
303933	Т		+	+		+++		+++	47	33		11				0.002

		Geology	: North G	Greenland	l Foldbelt							Region	Johanr	les V. Jei	nsen Lanc	l		
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Covellite / Bornite	Pyrrhotite	Pyrolusite	% Heavy minerals (by weight)
196463	U	+	+++.	+	+	+	200	+++	227	3		23					3	0.04
196469	U	++	+		++	+	60	+++	23	+	1	21						0.08
196505	Т		+		+	++	150	+++	35		2	24						0.04
196550	MU		+++	++		+		+++	800			14				41		0.42
196552	MU	+	+++	++		++	4	+++	500			11				6		0.26
- 196587	MU	+	+++	++	+	++		+++	62			3				4		0.71
217702	U		++			+		++	38	35	+	12						0.10
217717	T		+	_	+			+++	700	+	10							0.02
217723	U		++			+	8	+	20	20	+	2		2				0.05
217735	U		+			+	1	+	150	150	30							0.04
217737	Т		+++	+	+++	+		+	1000	400	50	12						0.02
217752	Т		+	+	+	+++	3	+	150	130		7	1					0.01
217762	U		++			+		+	3	2		-	1					0.06
217767	U					+		++	120	100	50	50	10					0.04
217769)	U					+		++	210	84	15	63	1	1	2			0.07
217785	Т		+			+		+++	916	57	30	27	20	10				0.02
217798	Т	++	++	+++		+		+++	410	121		43						0.03

Table 6. Distribution of opaque minerals from Johannes V. Jensens Land and south coast of Frederick E. Hyde Fjord

Table 6 (2). Cont.

		Geology	: North G	Greenland	l Foldbelt							Region	: Johann	les V. Je	nsen Land	ł		
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Covellite / Bornite	Pyrrhotite	Pyrolusite	% Heavy minerals (by weight)
217811	Т	+	++	++	+	+		+++	560	50		71						0.02
218907	U		+		+	+++		+++	319	9		10						0.09
218909	U		+			+++		+++	1137	8		17	3		1			0.11
218919	Т	++	+	+++		+		+++	43	5		3						0.04
218924	U	++	+					+++	451			22	1	1				0.07
218935	U	+				+++		+++	12	1								0.05
218938	U	+				+++		+++	6	+								0.05
218947	U		+			+++		+++	31									0.34
218948	U		++			+++		+++	120			3						0.16
218955	U		+			+++		+++	214			1		4				0.09
218956	U	+	+			+++		+++	11			1						0.60
218971	U		+			+++		++	570			2	1			+		0.10
218993	Т	+	++	+++	+	+						1						0.03
218996	U	+	+			++		++	18	1								0.08
245305	Т		++	++	+	+		+++	110	95	2	10						0.049
245315	Т		+	+		+	1	+++	648	16	5	54		1				0.037
255649	U		++	+		+++		++	281			1						0.06

.

Table 6 (3). Cont.

		Geology	v: North C	Greenland	d Foldbelt							Region	: Johanr	ies V. Je	nsen Lan	d		
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Covellite / Bornite	Pyrrhotite	Pyrolusite	% Heavy minerals (by weight)
255709	U	++				+++		++	19			1						0.40
255717	U	++				+++		++	54			1						0.15
255721	U	+				++		++	11									0.05
255742	Т		+			+		+++	2									0.03
255743	U	+	++			+		+++	15									0.07
255744	U	+	+			++		+++	2									0.07
255776	U	++				+		+	16	4	+	1						0.24
270807	U					+			700	1000		16						0.03
270821	U					+	+	+	+	+		2						0.02
275505	Т					++		+++	205	+		2	5					0.052
275517	Т					+		+++	404			7				1		0.035
275522	MU		+++	+++	+			+++	1500	150	3	5	3					0.17
275544	Т		+++			+		+++	425			4	1			15		0.18
275553	Т		+++			++		+++	182			4						0.071
275578	U		+++			+		+++	182							6		0.30
275586	MU		+++	+++	+	+		+++	1200			1				97		0.36
275591	U		+++		++	+		+++	650			8				106		0.34
275595	U		+++		++	+		+++	117			2				4		0.23

Table 6 (4). Cont.

		Geology	r: North C	Greenland	d Foldbelt							Region	: Johanr	ies V. Je	nsen Land	d		
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Covellite / Bornite	Pyrrhotite	Pyrolusite	% Heavy minerals (by weight)
275600	U		+++		+	+		+++	257									0.17
275617	U	+	+++	+	++	+		+	16			1				3		0.45
275622	U	+	+++		+	+		++	133		1					9		0.34
275639	MU		+++	+++	+	++		+++	766		17	7	1	1		119		0.08
275656	MU	+	+++	+++		+		++	1200	250	+	54	5	2	4	311		0.14
303530	Т	+	+	+++	+	+		+++	700	10		5				1		0.017
303557	Т	+	+	+++	+	+		+++	500			1				1		0.014
303563	Т	+	+	+++	+	+		+++	213			1				1		0.031
303582	MU	+	+++	+++			5	+++	116									0.23
303584 ∫	MU	+	+++	+		+	32	+	717			5	6			2		0.43
303606	MU	+	+++	+++	+	+	1	++	292		1	1				1		0.20
303632	MU	+	++	+++	+	+++		+	442								2	0.19
303645	MU	++	+++	+++		+		++	92								1	0.11
303655	MU		+++	+		+		++	1200			6	2			19		0.19
303674	Т	+	++	+	+	+		++	41	1					1			0.025
303908	Т		+		+	+++	3	+++	122	75		12						0.004
303921	Т					+++	7	+++	248	251	+	24						0.005
303923	Т		+		+	+++	14	+++	800	460		42						0.010

Table 6 (5). Cont.

		Geology	: North C	Greenland	d Foldbelt							Region	: Johanr	nes V. Je	nsen Lan	d		
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Covellite / Bornite	Pyrrhotite	Pyrolusite	% Heavy minerals (by weight)
303924	Т					+++	3	+++	65	57		5						0.005
303925	Т					+++	2	+++	18	54		6	1					0.005

		GEOL	OGY: Dif	ferent I	Formation	S					RE	GION: 1	Eastern	Peary	Land			
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Bornite	Pyrrhotite	Pyrolusite	% Heavy minerals (by weight)
196074	U	+	+	+				+++									/	n.d.
196077	U			+				+	11	192	+							n.d.
196078	U			+				+	10	200	+							n.d.
196093	TU	++	+++		+	+	+	+	900			1						1.26
196094)	TU		+			+++			1400				2					1.08
196282	TU	+	+	+	+	+		+	50	60	13							0.42
196283	TU	+	+	+	+	+	+	+	50	60	13							0.21
196318	U					+++		+	70	20								0.03
196319	U					+++		+	70	20		-						0.02
197320	TU		+		+	+		+	1000	1	+	12				+		0.45
197321 \$	TU	+	+	+	+	+		+	89	+	+	3						0.48
235218	U	+++	+	+		+		+								-		1.89
271008	TU	+				+		+	6									1.91
271009	TU	+	+	+	+	+		+	280	+	+							0.95
271010 J	TU	+	+		+	+		+	900	+		2						0.61
271013	TU				+	+		+	500	+	1000	3			1			0.19
271014 J	TU	+	+	+	+	+		+++	700	+	1300	1						0.16
271017	TU	+	+			+			158		+		1	1			3	0.08

Table 7. Distribution of opaque minerals from eastern Peary Land and Princesse Thyra \emptyset

		GEO	LOGY: Di	fferent fo	ormations				-	RE	GION: Kro	nprins C	hristian	Land		
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Pyrrhotite	Heavy minerals (by weight)
213731	MU	+++	+++	. ++	+++	+	59	+	7		1					1.45
213732	MU	+++	++	++	+++	+	120	+	15			2				1.72
21373,8	MU	++	++	++	+++	+	10	+	319	16	5	5			2	0.75
213739	MU	++	++	++	+++	+	29	+	335	9	2	8	1	1		0.45
213751	MU	++	++	++	+++	+	19	++	5	5		2				0.38
213752 \$	MU	++	+	++	+++	+	8	+	.9			2				0.41
213758	Т					+		+++	389	191						0.02
213759 \$	Т					+	+	+++	222	124						0.01
213766	MU	+++	++	+++	+++	+	7	++	112	48	2					0.06
213767	MU	+++	++	++	+++		3	+++	84	43	+					0.11
213774	U	1	+		+	+ .		+	420	2500	5	1		2		0.07
213775	U		+		-			+	500	2000	5			10		0.08
213795	Т		+	++ .	+	+	2	+++	742	8	1					0.23
213796	Т	++	+	++	+	+		+++	740	3		1		7		0.22
213798	Т	+	+	++	+	+		+++	2000	10		1				0.19
213799	Т		+	++	+	+	3	+++	2000	15	-	5				0.20
273903	MU	÷+	++	+	+++	+	5	+	12	22	1	2				0.17
273906	MU	+++	+	++	+++	+		+	7							0.44

Table 8. Distribution of opaque minerals from Kronprins Christian Land with Holm Land and Hovgaard \emptyset

Table 8 (2). Cont.

1		GEO	LOGY: Di	fferent fo	ormations					RE	GION: Kro	nprins C	hristian	Land		
GGU No.	Fractions studied	Hematite	Ilmenite	Ti-magnetite	Magnetite	Rutile	Chromite	Limonite	Pyrite	Framboids	Marcasite	Chalcopyrite	Galena	Sphalerite	Pyrrhotite	Heavy minerals (by weight)
273910	MU	++	+	+++	++	+	1	++	72						1	0.07
273913	MU	++	+	+++	++	+	9	++	6			1				0.25
273915	MU	++	+	+++	++	+	4	++	26	6	1	1				0.12
273917	U	+	+			++		+	53		2				+	0.39

Table 9. Coordinates of stream sediment sample localities

GGU No	Long.	Lat.	GGU No	Long.	Lat.	GGU No	Long.	Lat.
196074	-22.576	82.692	 208862	-29.637	81.706	 211616	-25.915	81.889
196077	-21.973	82.772	208863	-29.614	81.707	211619	-25.876	81.889
196078	-21.969	82.772	208864	-29.583	81.707	211622	-25.876	81.889
196093	-24.445	82.203	208865	-29.574	81.709	211623	-25.876	81.889
196094	-24.445	82.204	208866	-29.573	81.711	211626	-25.883	81.817
196282	-19.056	81.855	208867	-29.571	81.712	211630	-25.810	81.821
196318	-19.033 -22.748	82 578	208869	-29.570	81 718	211632	-25.301 -26.007	81.840
196319	-22.750	82.579	208870	-29.993	81.658	211644	-34.928	82.051
196463	-32.159	83.169	208871	-30.194	81.652	211645	-34.884	82.055
196469	-31.871	83.167	208872	-30.198	81.652	211646	-34.856	82.058
196505	-31.600	83.174	208876	-29.484	81.793	211648	-34.836	82.066
196550	-39.588	83.239	208877	-29.485	81.793	211651	-34.784	82.073
196552	-39.581	83.230	208878	-29.387	81.839	211652	-34.775	82.073
196802	-39.332	82 033	208883	-29.838	81 863	211650	-35.714 -35.674	82 173
196804	-30.838	82.033	208889	-30.094	81 824	211658	-35 639	82.173
197277	-30.391	81.624	208891	-30.236	81.767	211661	-35.503	82.207
197287	-30.113	81.641	208892	-30.294	81.742	211666	-25.936	81.925
197295	-24.491	81.253	208893	-30.290	81.742	211668	-25.969	81.924
197296	-24.044	81.253	208894	-30.260	81.711	211670	-25.977	81.924
197298	-24.727	81.226	208896	-30.329	81.660	211671	-25.994	81.922
197300	-24.948	81.191	208898	-30.314	81.586	211674	-26.024	81.917
197320	-20.381 -26.381	83 128	208899	-30.309	81 567	211678	-26.032 -26.078	81.914
198092	-34.011	82 262	211501	-30.309 -30.371	81.507	211679	-26.078	81.913
198109	-33.942	82.267	211503	-31.556	81.604	211680	-26.149	81.906
198111	-33.940	82.267	211505	-31.800	81.639	211681	-26.172	81.907
198141	-29.635	82.501	211506	-31.513	81.656	211683	-26.216	81.909
198143	-29.635	82.501	211507	-31.383	81.667	211685	-32.593	82.702
198501	-34.555	81.992	211508	-31.383	81.667	211689	-32.708	82.722
198503	-34.555	81.992	211509	-31.313	81.682	211691	-32.735	82.728
198505	-34.424	82.004	211511	-31.233	81.713	211692	-32.738	82.755
198509	-36 381	82.199	211512	-31.162	81.771	211695	-32.788	82.752
198512	-26.877	82.005	211516	-30.999	81.843	211696	-33.326	82.866
198515	-24.920	81.734	211517	-31.000	81.843	211699	-33.354	82.875
198516	-24.716	81.819	211531	-30.438	82.103	213731	-17.170	80.780
198518	-22.717	81.615	211534	-30.358	82.113	213732	-17.170	80.780
198520	-22.701	81.540	211535	-30.339	82.118	213738	-16.893	80.658
198522	-22.131	81.040	211530	-30.312 -30.283	82.119	213739	-16.893 -16.317	80.658
198526	-22.738	81.646	211538	-29.030	81 742	213752	-16317	80.647
198528	-21.279	81.533	211539	-29.155	81.686	213758	-13.932	81.260
198701	-24.623	80.630	211540	-29.106	81.668	213759	-13.932	81.259
198703	-24.618	80.628	211542	-29.153	81.619	213766	-16.950	81.426
198705	-24.618	80.628	211544	-29.152	81.624	213767	-16.950	81.426
198707	-24.618	80.628	211546	-29.135	81.624	213774	-16.640	81.515
208805	-32.304 -32.200	82.150	211547	-29.142 -29.140	81.020	213775	-16.041 -16.184	81.514
208810	-32.290	82.154	211549	-29.157	81.629	213796	-16.184	81.533
208812	-32.221	82.158	211550	-28.720	81.664	213798	-16.185	81.548
208813	-32.199	82.160	211551	-28.680	81.682	213799	-16.185	81.547
208817	-32.183	82.169	211552	-28.686	81.683	217702	-34.080	83.039
208833	-34.081	82.321	211553	-28.417	81.709	217717	-35.307	82.906
208835	-33.763	82.259	211554	-28.224	81.680	217723	-34.106	83.052
208830	-33.732	82.230	211555	-28.241	81.685	217733	-30.514	82.898
208839	-30.750	82.110	211558	-28.250	81.605	217752	-33 822	82.869
208841	-30.748	82.119	211562	-28.253	81.715	217762	-34.010	83.073
208843	-30.749	82.122	211564	-28.044	81.650	217767	-34.094	83.114
208844	-30.746	82.124	211565	-27.680	81.654	217769	-34.097	83.114
208845	-30.746	82.127	211571	-27.663	81.631	217785	-34.431	83.097
208846	-30.744	82.129	211572	-26.932	81.632	217798	-33.459	83.078
208847	-30.735	82.131	211573	-26.762 -26.400	81.000	21/811	-33.303	83.104
208850	-30.686	82.130	211574	-26.382	81.757	218907	-34 458	83.247
208851	-30.681	82.140	211576	-26.382	81.757	218919	-32.009	83.284
208852	-30.673	82.143	211577	-26.370	81.758	218924	-32.219	83.299
208853	-30.667	82.144	211578	-26.348	81.756	218935	-30.781	83.250
208854	-30.659	82.146	211579	-26.313	81.757	218938	-30.784	83.250
208855	-30.660	82.148	211580	-26.293	81.756	218947	-33.936	83.574
208856	-30.650	82.150	211602	-25.995	81.950	218948	-33.872	83.572
208859	-30.000	02.154 82 154	211603	-26.070	81 881	218955	-34.038	83 568
208859	-29.712	81,705	211609	-26.003	81.881	218971	-32.864	83.549
208860	-29.703	81.707	211611	-25.994	81.883	218993	-27.680	83.228
208861	-29.663	81.706	211613	-25.989	81.885	218996	-28.008	83.254

Table 9. cont.

GGU No	Long.	Lat.	GGU No	Long.	Lat.	GGU No	Long.	Lat.
233101	-36 393	82 199	270367	-26 856	81 913	 275522	_31 0/0	83 204
233102	-36 393	82.199	270368	-26.853	81 013	275544	-37.628	83 128
233103	-36 436	82.199	270300	-27.131	81 905	275553	-37.020	83 404
233104	-35 779	82 222	270372	-27.131	81 905	275578	-35 706	83 537
233105	-35 536	82.211	270372	-27 251	81 895	275586	-35 635	83 519
233106	-34.099	81.674	270374	-27.250	81.895	275591	-34.877	83.534
233107	-34.430	81.683	270375	-27.250	81.894	275595	-35.085	83.561
233108	-34,474	81.649	270376	-27.251	81.895	275600	-35.071	83.541
233109	-27.441	81.287	270378	-26.420	81.927	275617	-34.527	83.634
233110	-27.441	81.287	270380	-26.420	81.927	275622	-34.063	83.616
233111	-28.747	81.247	270381	-26.249	81.882	275639	-36.406	83.206
235202	-26.743	81.783	270387	-26.947	81.797	275656	-34.753	83.192
235204	-26.504	81.383	270388	-26.948	81.798	303530	-39.797	83.119
235208	-25.833	81.448	270389	-27.195	81.778	303557	-40.818	83.046
235209	-25.836	81.446	270391	-26.392	81.759	303563	-40.818	83.041
235210	-25.645	81.440	270392	-26.392	81.759	303582	-40.865	83.240
235213	-24.003	81.096	270393	-25.901	81.837	303584	-40.865	83.240
235215	-23.853	81.128	270394	-25.851	81.861	303606	-39.676	83.357
235217	-23.806	81.134	270396	-25.747	81.889	303632	-40.023	83.139
235218	-23.161	82.847	270397	-25.747	81.889	303645	-39.646	83.413
235221	-27.211	81.993	270658	-35.343	82.313	303655	-38.652	83.422
235223	-27.212	81.992	270730	-34.104	82.909	303674	-38.755	83.150
235225	-27.159	81.998	270732	-34.161	82.903	303901	-33.368	82.880
235226	-26.219	81.981	270734	-34.147	82.893	303902	-33.361	82.886
235228	-25.798	81.906	270738	-34.525	82.844	303904	-33.366	82.890
235230	-25.815	81.899	270807	-32.649	82.988	303907	-33.372	82.896
235232	-27.006	81.632	270821	-29.322	82.984	303908	-33.330	82.930
235234	-26.768	81.663	271008	-22.138	82.835	303910	-33.326	82.944
235236	-27.790	81.761	271009	-22.527	82.890	303912	-33.281	82.945
245305	-35.548	83.092	271010	-22.526	82.890	303913	-33.245	82.946
245315	-35.539	83.089	271013	-24.123	82.822	303914	-32.606	82.921
245428	-40.314	82.245	271014	-24.124	82.823	303917	-32.606	82.924
245429	-40.314	82.245	271017	-25.811	82.993	303918	-32.596	82.930
245432	-37.014	82.306	271903	-27.877	82.003	303920	-32.582	82.934
255649	-34.062	83.557	271904	-27.877	82.003	303921	-32.638	82.993
255709	-30.776	83.364	271906	-29.586	81.773	303923	-32.642	82.997
255717	-31.573	83.353	271908	-29.586	81.773	303924	-32.648	82.999
255721	-31.632	83.471	271909	-31.217	82.000	303925	-32.668	83.002
255742	-27.314	83.336	271910	-31.217	82.000	303927	-33.002	82.769
255743	-27.317	83.336	271913	-32.527	82.204	303928	-33.028	82.769
255744	-27.319	83.336	271914	-32.525	82.205	303929	-33.050	82.770
255776	-31.184	83.186	271915	-28.220	81.431	303931	-33.086	82.771
256054	-24.511	81.263	271916	-28.720	81.391	303933	-33.116	82.771
256056	-24.495	81.268	2/1917	-30.080	81.650			
256135	-25.225	81.188	273237	-50.3/3	15.692			
256136	-25.226	81.188	273249	-50.400	15.030			
250200	-28.239	81.429	273230	-30.479	/ 3.030			
256270	-20.230	01.429	273297	-33.085	81.810			
256205	-20.301	82 210	273551	-24.084	80.836			
256206	-32.505	82.210	273563	-24.744	80.850			
230290	-32.303 -30.115	82.211	273566	-24.708	81 266			
270218	-26 301	81 830	273568	-23.968	81 259			
270262	-26 332	81 839	273570	-24 139	81 248			
270264	-26 323	81 838	273572	-24 360	81 264			
270319	-32 855	82 126	273574	-27 245	80.963			
270322	-33 134	82.086	273576	-27 245	80.963			
270324	-33 134	82.086	273578	-26 685	80.998			
270324	_33 133	82.087	273580	-26 372	80.972			
270323	-33 561	82.007	273582	-25 993	80.893			
270320	_33 702	82.049	273584	-25.663	80.940			
270335	-33 187	82 183	273586	-25.667	80.955			
270337	_33 187	82 183	273588	-25 189	80.978			
270338	-33 179	82 183	273590	-25 181	81 046			
270339	-33.178	82,183	273592	-25.274	81.048			
270341	-33.171	82,183	273594	-25.624	81.054			
270342	-33.171	82.183	273596	-25.341	81.123			
270343	-33.163	82.183	273598	-25.073	81.170			
270345	-33.162	82.183	273600	-25.087	81.189			
270346	-33.065	82.175	273903	-19.663	80,588			
270350	-32.578	82.213	273906	-18.809	80.609			
270351	-31.724	82.166	273910	-20.406	80.009			
270352	-31.722	82.167	273913	-21.901	79.812			
270353	-31.430	82.171	273915	-22.232	79.866			
270354	-31.429	82.172	273917	-16.719	80.524			
270360	-26.418	81.984	275505	-37.743	83.158			
270365	-26.858	81.938	275517	-36.656	83.369			

80°

00'

00'

00°

00' 80°

00'

.