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The dynamic behav ior o f naturally fractured petroleum reservoirs is described 
by a mathematical model based on the assumption tha t the reservoir rock can 
be represented by an array of identical , rectangula r parallelopipeds where the 
blocks correspond to the matrix and the spacing between, to the fractures. 
Material balance conditions imposed on the oil and/o r gas phases result , in 
general, in a coupled set of nonlinear partial differential equations. By solving 
this system of equations one gets reservoir pressure history. Phys ical proper­
ties of the reservoir such as porosity and permeability and those characterizing 
the deviation of the behavior of a medium with »double porosity « from that of 
a homogeneous porous medium are represented by parameters appearing in 
the model. This paper deals with the problem of determina tion of the 
parameters described above in real life naturally fractured reservoirs. 

A11a10/ Wimer, Geological Survey of Denmark, Thoravej 31, DK-2400 
Copenhagen NV, Denmark. 

In this paper the problem of estimation of naturally fractured petroleum 
reservoir properties on the basis of data obtained during a production test is 
described . More specifically, the paper deals with interference tests per­
formed in hard formations where presence of fractures is of great impor­
tance: they act as channels between matrix and a borehole. On the other 
hand, their contribution to the overall porosity and their volume are negligi­
ble as compared to the matrix porosity and the total volume of the reservoir. 

In an interference test one deals with a system composed of two (or more) 
wells: an active well (producing or injecting fluids) and an observation well. 
The active well is shut in after some time and the resulting pressure change is 
registered at the observation well. The pressure response can help determine 
formation continuity, degree of fracturing, and areal average transmissibility 
and storage between a well pair. 

The problem of estimation of reservoir parameters using production data is 
inherently undetermined because the number of parameters usually exceeds 
the available data. The undeterminacy can be reduced by a classification of 
porous rock property distributions, each possible distribution being referred 

* This paper was presented at Symposium " Mathematical Models and Simulation " he ld as part 
of the 26th International Geological Congress , Paris, France, July I 980. 
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to one of a final number of categories. The success of this approach (also 
known as parametrization) requires that the number of potential categories is 
small. 

A typical example of parametrization is the zonation technique: the esti­
mated property distributions are assumed to be uniform within each of sev­
eral regions of the reservoir (zones). Thus, they change abruptly at the 
boundaries of the zones causing a considerable modelling error. 

An alternative approach to dimensionality reduction is that based on 
Bayesian estimation where an a priori statistical information concerning the 
unknowns is incorporated in the estimation algorithm. 

Recently, several papers have been published reflecting increasing interest 
in methods used to detect fractures from logs ( e.g., Aguilera 1976). Warren 
& Root (1963) pointed out that for good models of naturally fractured reser­
voirs the most important aspect of the model design strategy is that "all 
available measurements and observations are utilized, furthermore the model 
must be consistent with the physical inferences obtained from the perform­
ance of actual reservoirs of this particular type". 

The parallel problem of estimation of properties in a homogeneous petro­
leum reservoir has been treated previously by Gavalas et. al. (Gavalas 1976). 

Some remarks on the origin of naturally fractured reservoirs 

The genesis of naturally fractured reservoirs, in which salt domes are part of a 
trapping system, can be conveniently explained via the fluid mechanical 
hypothesis for the formation of salt domes. The first to demonstrate the 
applicability of this hypothesis to the formation of salt domes was Nettleton 
(1936). He assumed that the density difference between the salt and the 
surrounding sediments acts as an upward driving force of buoyancy. 
Moreover, the salt and the overlying sediments behave like highly viscous 
fluids. Since the salt is covered by denser sedimentary strata, the system 
becomes inherently unstable and any initial perturbation (caused, for exam­
ple, by some tectonic movement) will start the flow of the salt from an 
underlying bed to a rounded salt pillow. The next steps in this dynamic 
process are, broadly speaking, as follows (see Braunstein et. al. 1968): 
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a. the flow continues into the centre of the pillow, doming the overlying 
strata, 

b. simultaneously with the process described in a, the area from which 
salt has flowed subsides, 
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c. the strata overlying th e flowing salt are exposed to tension which 
causes a development of fractures. 

The problem of estimation of parameters concerned with the fractured reser­
voir rock will be taken up in the subsequent sections. 

Mathematical model of a single-phase homogeneously 
fractured reservoir 

A petroleum reservoir can be viewed as a gigantic chemical reactor and, 
consequently , it is mode lled according to the same principles as chemical 
reactions in a spatial domain . More specifically, the following classification 
can be used as a frame for all models (Arnold 1980): 

i) global description (no diffusion, spatially homogeneous or "well 
stirred" case) versus local description (with diffusion, spatially in­
homogeneous case), 

ii) deterministic description (macroscopic, in terms of concentrations) 
versus stochastic description (operating with the number of particles 
and including internal fluctuations). 

By a combination of i) and ii) one gets four essential mathematical models. In 
this paper we shall be concerned only with the local-deterministic type. The 
reader interested in more details about various reaction models may consult 
Prigogine et. al. (1977). 

The problem of modelling a behaviour of naturally fractured reservoirs has 
been treated in many papers. The classical work dealing with this subject is 
that of Warren and Root (1963). In their model the fractured reservoir is 
represented by a system of identical, rectangular parallelopipeds separated 
by a regular network of fractures (see Fig. 1). Moreover, the formation fluid 
is assumed to flow through these (high conductivity) fractures. The crucial 
assumption i the Warren-Root model is that each fracture is parallel to one of 
the principal axis of permeability. A somewhat different model was suggested 
by Odeh (1965). He makes no assumptions about the size of the matrix 
blocks, their uniformity or geometric pattern. The only extension of the 
Odeh's model as compared with the conventional nonfractured reservoir is 
an introduction of the parameter ~ describing the degree of fracturing meant 
as fractures ' bulk volume per unit reservoir volume. Finally, Kazemi (1969) 
described a naturally fractured reservoir using a multilayered system corn-

D.G. U. ~rbog I 980 77 



Danm. Ceo/. Unders., A rbog 1980 

/4 
)?_ 

I 
Fig. 1. Mathematical idea liza tion o f the naturally fractured reservoir. 

posed of a thin, highly conductive layer representing the fracture which is 
adjacent to a thicker layer endowed with low conductivity and high storage 
capacity representing the matrix (see Fig. 2) . The results given by Kazemi are 
consistent with those of Warren- Root and Odeh. For more details and 
comparative analysis of different models the reader may consult the survey 
paper of Crawford et. al. (Crawford 1976). 

The basic differential equation governing the radial, single phase flow of oil 
in a naturally fractured reservoir is based on the following assumptions: 

a. the reservoir rock corresponding to the primary porosity is contained 
within an array of blocks which act like sources feeding the fractures 
with oil, 

b. all fluid flow is due to fractures (there is no fluid traffic in the primary 
blocks), 

c. the reservoir is assumed to be homogeneously fractured, i.e., the 
fractures' flow capacity and the degree of fracturing in the reservoir 
are uniform, 

d. the usual assumptions ensuring fully radial flow are fulfilled (see 
Dake 1978). 

It should be noted that the Warren-Root model formally belongs to the 
zonation type of parametrization and, consequently, it has all the shortcom­
ings of that approach: the constraint of uniformity of rock properties within 
each zone is very inflexible and does not usually correspond to geological 
knowledge about the reservoir. In real life petroleum reservoirs the estimated 
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Fig. 2. Mathematical mode ls of naturally fact ured reservoir [afte r Kazemi ( 1969)) 

parameters cannot be described with sufficient accuracy by a piecewise con­
stancy. Since they can be regarded as the result of several random conditions 
during sedimentation, a model given by a random process with a certain 
probability distribution seems to be much more appropriate. 

Looking more closely at the Warren-Root model one can easily discover 
that it implies heterogeneity only on a microscopic scale. If the dimensions of 
the blocks are small in comparison with the dimensions of the reservoir, it 
may be considered as homogeneous. Thus, the "zones" in the model should 
be viewed as a tool in the process of averaging the unknowns rather than 
reflecting the existing physical spacing. In fact, it has been shown that the 
behaviour of a homogeneously heterogeneous system can be approximated 
by that of a homogeneous system with a (global) permeability equal to a 
geometric mean of the individual (local) permeabilities (see Matheron 1966). 

In order to derive the differential equation for the fluid flow in a 
homogeneously heterogeneous system two pressures are defined at each 
point following Warren & Root (1963) . 
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P1 = l p gl (V)dV / l gl (V)dV, 

P2 = l p g2 (V)dV / l g2 (V)dV, 

where V denotes an elementary volume and 

1, in the primary porosity, 
gl (V)= { 

0, outside of primary porosity, 

V = 1, in the secondary porosity, 
g2 

( ) {O, outside of secondary porosity, 

and two porosities 

l gl (V)dV = (jli, 

J g2 (V)dV = cp 2, 

(1) 

(2) 

(3) 

(4) 

We are now in a position to derive the partial differential equation for radial 
flow in naturally fractured reservoirs . 

From the principle of mass conservation (Fig. 3) 

Mass flow rate - Mass flow rate Rate of change of mass 
in the volume element 

2n rhdr ap2) (S) 
at 

where 2rcrhdr is the total volume of the infinitesimal element of thickness dr 
and 
q=flow rate, positive for production and negative for injection, 
gi=density of oil (i= 1 refers to the matrix, i=2 to the fractures) . 

h 

80 

r 
e 

r 
w 

dr 

Fig. 3. Radial model of a single 
phase fluid flow 

D.G.U. ~,bog 1980 



Winter: Frac1ured resevoirs 

After some straightforward, but tedious calculations the following equations 
can be obtained (see Kazemi 1969). 

cl 2P20 + 
1 cl pzo (1-w) cl p10 clP20 

(!) 

clri5 ro cl r 0 cl t 0 clt 0 

0< r 0<oo, t 0> 0 (6) 

(1- w) clp10 
= "-(P20-P10), 

clt 0 

0< r 0< oo , t 0> 0 (7) 

where the second equation (7) describes the rate of feed to the fractures by 
the matrix blocks and 

r O dimensionless radius: r/ r w, 

t0 dimensionless time: 
2.637 X 10-4 (k 2t) / ((C1(/l1+(/l2C2)µr~), 

k2 = effective permeability (md), 

Po(ro,to)= dimensionless pressure: (pi-p) /(--1-4_1_·2~q~µ_B __ ), 
kh 

µ viscosity( cp ), 

A interporosity flow parameter: 

w ratio of storage capacity of fractures to the total storage capacity: 

The boundary conditions corresponding to the interference test are as follows 

a) Pm= P20 = 0, t 0=0, 0< r0< 00 

b) Jim 
ro~o 
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= - 1, 

(8) 

to >0 
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c) (10) 

In the next section the identification problem will be formulated. We have 
assumed that the solution of eqs. (6) and (7) subject to the boundary condi­
tions (8), (9) and (10) is available either in an analytical or in a numerical 
form. 

Formulation of the identification problem 

The usual procedure used in the identification of naturally fracture reservoir 
properties via pressure tests is, broadly speaking, as follows : 

a) define a mathematical model describing fluid flow in the reservoir rock, 

b) derive the solution of the equation introduced in (a) . Variable production 
tests can be treated by convoluting the constant rate solutions. Problems 
with two or more wells with different production schedules can be solved 
by superposition. 

c) match the theoretically predicted pressure response ( obtained via the 
mathematical model) with measured field data and identify the paramet­
ers appearing in the model. If the unknown parameters can be described 
by an a priori probability distribution, it should be incorporated into the 
model. This is equivalent to the requirement that the parameters follow 
some preconceived pattern . 

Among the most important sources of information about the estimated 
parameters the following can be mentioned: 

a) well logs run inside the drilled wells, 
b) analysis of rock and fluid samples, 
c) production tests and history, 
d) seismic data. 

Since changes in lithology may have similar influence on recording as the 
presence of fractures, the interpretation of available information should be 
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Wi111er: Frac1ured reservoirs 

Fig. 4. Typical bui ld-up 
test; (a) rate, (b) Wellbore 
pressure response. 

done with care. In many cases the prior statistical information, concerning the 
unknowns, is limited to the knowledge of the size of their fluctuations. 

The property estimation problem is defined as follows. Firstly, a conven­
tional buildup test is matched to the Warren-Root model and the parameters, 

W~ cp2C2/(cp1C1+cp2C2) 

A~(aki/k2)r w
2 

(11) 

are determined. It should be noted that the second of the above parameters 
can be used to calculate fracture permeability k 2 ( all other parameters as­
sumed known from laboratory experiments and core studies). 

Secondly, the average diffusivity between the producing and the 
observation wells 

where 

6* 

(13) 

(14) 

(15) 
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Fig. 5. Build-up curves 
obtained via Warren-Root 
mode l. (after Warren, 
1963). 

is estimated via an interference test. By combining the above equations one 
can estimate cp 2 and c2 . Especially, the parameter cp 2 (fracture porosity) is 
extremely important in reservoir engineering calculations. In som cases 
(when there is no porosity in the matrix blocks) it is not accessible for direct 
measurements and an interference test is the only way to estimate its range. 

In a buildup test a well is flowed at a constant rate q for a total time t and 
then closed in. The rate schedule and the corresponding pressure response 
for a simple buildup test are shown in Fig. 4. 

The parameter w can be obtained from the following relationship 

w= antilog (-op/m) (16) 
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where 

Op=vertical separation of the two straight lines(psi) of the buildup plot, 

m= slope of the abovementioned lines (see Fig. 5). 

Recently, a method of estimation of the parameter A via the coordinates of 
the inflection point on a buildup plot was presented (see Uldrich, 1979). 

In the next section the main lines of the solution of the identification 
problem will be described. 

Strategy of the solution 

The interference test data are matched to the solution of the system of 
equations (6) and (7) subject to the boundary conditions (8), (9) and (10) by 
minimizing the following functional with respect to the parameters w and "A.: 

M 

J p = L (w;) { Pwini(W,A, (L'-.t;)o) - (Pwint)ob (L.t;)o} 2 (17) 
i = I 

where 

M=total number of measurements, 

Pw; 0 i(L.t;) 0 = wellbore pressure at the observation well computed at (L.t;)o 
from the theoretical model, 

(Pwin1) 0 iL.t;) 0 = measured wellbore pressure at the observation well, 

w;= weighting coefficients depending on statistics of different observation 
errors. 

The mm1m1zation of J P corresponds to the incorporation the information 
contained in the pressure measurements into the estimation procedure. In 
order to include also the prior geological information about the identified 
parameters we have to redefine the objective function ( 17) 

D.G.U . arbog 1980 
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The term Jg is defined in the following way 

(19) 

where 

y={ (w- &) (A-1-)}, 

P 0 =E{yyT} is the prior covariance associated with the parameter y, 

and &, A denote the prior mean values of the respective parameters. 

In order to estimate the parameters w and A, we have to find a particular 
vector 

so that the composite functional J (defined by eq . 18) is minimum. 
The above considerations can be generalized to cover a multiwell case. The 

simplest example is that with N wells spaced equidistantly along a straight 
line. 

Let n T= (w T, ,1, ~ be the 2N composite vector of parameteres, 
e 1 >e 2 > ... >e 2 N the characteristic values of P O (P O is a symmetric and posi­
tive definite matrix, consequently, all of its eigenvalues are real and positive), 
and z(l), z(2), ... z(2N) the corresponding characteristic vectors. Defining 
the matrices 

Z=(z(l), z(2) , .. . , z(2N)) 

we can write the prior covariance matrix in the following form 

(20) 

Assuming that n-n is a stationary random vector, it can be decomposed along 
the complete, orthonormal set of vectors z(l) , z(2), ... , z(2N) 
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2N 

n-n= Zu= I u_1U) 
j = i 

(21) 
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or (as a result of orthogonality of Z) 

where n = E {.n} and u is a Gaussian random vector with the following prop­
erties 

E{u }=0 

E{uu T}= zip c,Z =A (22) 

The above results can be used to rewrite the Bayesian penalty term in the 
eq .19. Using the fact that Z1l>c,Z is diagonal (with entries l/e1), and that 
y=.n- n=Zu, we get 

Thus, 

2N 

(23) 

and the estimation problem has been reduced to the class of nonlinear least 
squares problems. It can be solved by, for example, the Newton-Raphson or 
the Gauss-Newton method (see Mc Keown 1979). 

In many real life cases the reservoir properties are spatially correlated. 
Sometimes the best evidence of such correlation can be obtained by seismic 
facies analysis (see Payton, ed. 1977). Seismic facies analysis involves the 
description and geologic interpretation of seismic reflection parameters such 
as amplitude, frequency and interval velocity. Frequency can be related to 
lateral changes in interval velocity and, consequently, to variations in 
porosity. 

In the case of spatial correlation of the estimated parameters the charac­
teristic values decline with increasing j (see eq. 23) and those ui which corre­
spond to very small ei will be effectively suppressed in the minimization. 
Thus, the modified functional Jg can be rewritten as follows 

K 

Is= r 
j = l 

(24) 
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The number of parameters to be estimated is now K (u 1, ... uJ instead of2N. 
This is an important contribution of seismic stratigraphy to the alleviation of 
the »curse of dimensionality". Unfortunately, practical applicability of this 
approach depends heavily on the quality of seismic data. 

Concluding remarks 

In this paper we have described a methodology for parameter identification 
in naturally fractured reservoirs. The estimation problem has been posed as a 
minimization of a composite functional including the prior geological infor­
mation about the unknowns. Its solution will usually require the knowledge 
of the derivatives of the abovementioned functional with respect to the esti­
mated parameters. An efficient calculation method using the adjoint equa­
tion approach of the optimal control theory has been given by Chavent 
(1975). 

It should be noted that in practical applications of the described 
methodology some serious obstacles can be encountered. They are mainly 
due to a poor quality of production tests. Consequently, there will be no 
sufficient basis for the prior statistical information about the estimated 
parameters. Also, in some cases, certain co~bination of the parameters result 
in the pressure response which is identical for homogeneous and uniformly 
fractured cases (see Odeh 1965). 

The approach to parameter identification described in this paper stresses a 
multidisciplinary character of a reservoir developement study: geological, 
geophysical and engineering knowledge must be combined in order to pro­
duce reliable estimates. 
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Notation 

( only the parameters not defined explicitly in the paper) 

cp 1 = matrix porosity, fractio n 

cp 2 = fracture porosit y, fractio n 
c0 = oil compress ibi li ty , psi - 1 

Cw= water co mpressibility, psi-1 

c 1 = matrix compressibility, psi-' 

c 2 = fracture compress ibility, psi-' 

h = reservo ir thickness, ft 
Swm = connate water saturation in the matrix , fraction 

r w = we ll bo re radius , ft , r • = reservoir radius, ft 
k 1 = matrix permeability, md 

k2 = fracture permeability, md 

p, = initial rese rvo ir pressure, psi 
a = shape factor depending on geometry of the matrix blocks, l / ft 2 

B = formation volume factor , fraction 

Subscripts 
I = primary porosity, 2 = secondary porosity 
D = dimensionless, f=flowing (pressure), s = shut-in (pressure) 

int = interfe rence (refers to prope rties measured during an inte rfe rence test) 
w = wellbore. 
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