Survey Report

Geochemical seabed sampling Licence 1/99

Steen Lomholt and Jørn Bo Jensen

GEUS

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND MINISTRY OF ENVIRONMENT AND ENERGY

Survey Report

Geochemical seabed sampling Licence 1/99

Steen Lomholt and Jørn Bo Jensen

Released 01.11.2005

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND MINISTRY OF ENVIRONMENT AND ENERGY

Contents

1.	Introduction	3
2.	Time schedule, seismic and coring	4
3.	Technical details of the survey vessel	6
4.	Survey set-up showing equipment onboard	7
5.	Technical description of navigation set-up	8
6.	Core examination, logging and preservation of samples.	13
7.	Description of Seismic equipment	15
8.	Overview Map of seismic grid and core positions	24
9.	List of core positions	25
10.	List of Crew and GEUS personnel	26
11.	Appendix 1 Activity Log	27
12.	Appendix 2 List of Head Space Gas Samples	30
13.	Appendix 3 List of Geochemical samples	32
14.	Appendix 4 List of Stratigraphical Samples	34
15.	Appendix 5 Shot point location Map	35

1. Introduction

This survey report contains a short description of the field work, concerning acquisition and handling of a shallow seismic survey data and a Vibrocoring programme, carried out by GEUS in the period 15. August to 11. September 2000.

A seismic survey of 182,5 km. has been shoot during the period 18 – 21. of August consisting of a seismic grid of 112 km and 70,5 km of transit lines.

Samples for Head Space Gas analysis and Geochemical analysis have been send to Agip Milano on the 13. of September.

An attempt to collect samples of the uppermost 20 cm. of the Seabed has not been successful. 3 different Seabed samplers have been used with little or no recovery. Max. recovery has been 1 cm.

Instead of these samples, the uppermost 20 cm of each vibrocore has been send to Milano for further stratigraphical analyse. Due to the vibrocore sampling technique these samples may be surface samples but a mixture of the uppermost 0,5m often occurs.

2. Time schedule, seismic and coring

A time schedule for data collection and handling is presented in table 1. The seismic acquisition is listed in table 2 and core number and recovery is listed in table 3. A detailed activity log for the seismic and coring periods is shown in Appendix 1.

Mobilisation and Transfer	
14 – Aug.	Mobilisation Seismic and Vibrocorer
15 – Aug.	Mobilisation Seismic and Coring
16 – Aug.	Mobilisation Test of Vibrocorer
17 – Aug.	Mobilisation and transfer
18 – Aug.	Transfer and test of seismic equipment
Seismic acquisition	
19 – Aug.	Seismic acquisition (failure on Side Scan Sonar)
20 – Aug.	Seismic and waiting on weather
21 – Aug.	Seismic and transfer to Esbjerg
Coring	
30/31 August	Transit and Crane repair
01 – Aug.	Crane repair and Standby
02 – 03 Aug.	Standby
04 – Aug.	Standby (Transit to coring area)
05 – Aug.	Coring area S1, S2 and S3
06-aug	Wait on weather, Transit to Esbjerg
07-aug	Standby
08 – Aug	Standby
09 – Aug	Standby and transit to Area S5
10 – Aug	Coring area S5 and S6
11 – Aug	Coring area S6 and transit to Esbjerg
Demobilisation and Transfe	r
12 – Aug	Transfer and demobilisation
13 – Aug	Demobilisation and transport of cores to Milano
14 – Aug	Demobilisation

Table 1 Timetable

Summery of Seismic survey:	Line no.	Km.
	Agip 02	20
	Agip 01	14,5
	Agip 03	15
	Agip 04	10
	Agip 06	28
	Agip 05	24,5
Total Seismic Lines	1	112
	Agip 02_01 (Line A)	6,5
	Agip 01_03 (Line B)	23,5
	Agip 03_04 (Line C)	24,5
	Agip 04_06 (Line D)	13
	Agip 06_05 (Line E)	3
Total Transfer lines		70,5
Total Seismic		182,5

Table 2 Seismic lines

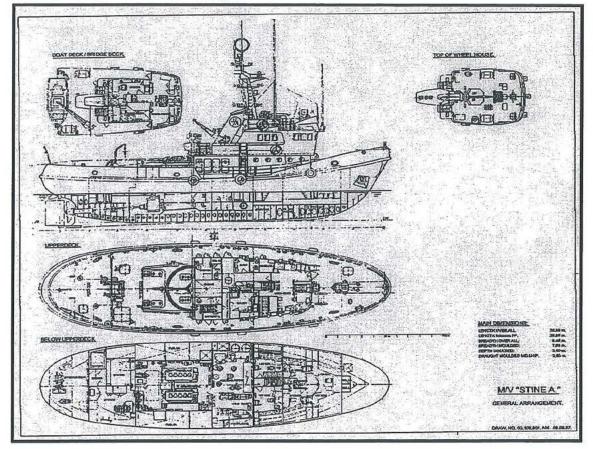
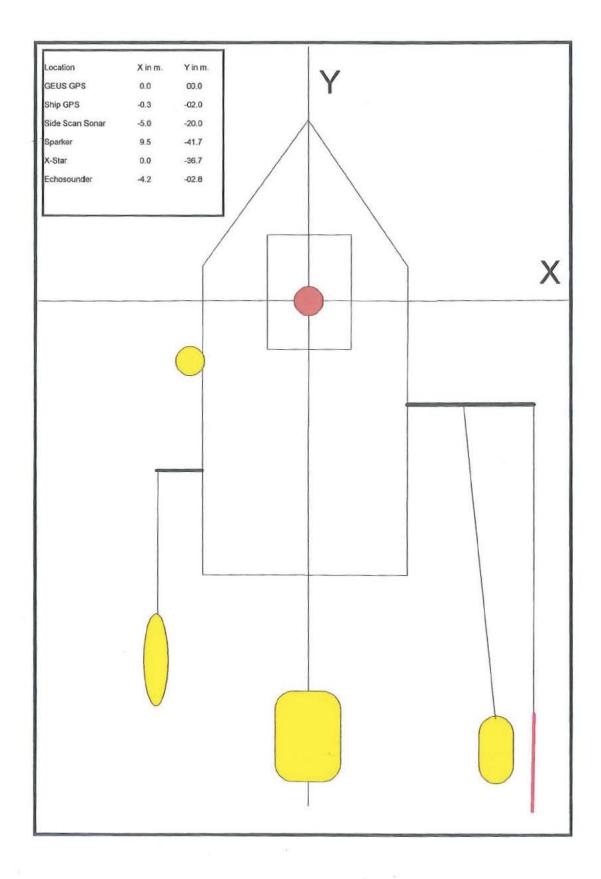

Summery of coring survey :	Core no.	Recovery in m.
	S1-1	5.75
	S1-2	5.35
	S1-3	5.70
	S1-4	5.30
	S1-5	5.88
	S1-6	5.72
l.	S1-7	5.78
	S2-1	5.60
	S3-3	5.72
	S3-4	5.68
	S3-5	5.35
1	S5-1	5.62
	S5-3	5.35
	S5-4	5.72
	S5-5	5.74
I	S5-6A	5.69
	S6-1	4.65
	S6-5	5.25
	S6-5A	5.85

Table 3 Cores

3. Technical details of the survey vessel

The survey vessel is a Tug build in 1975. Its overall length is 30 m and economic speed is 12 knot. The ship has been rebuild with an 11-meter long and 6 m wide deck to handle the Vibrocorer.


A sketch of Stine A is shown in Figure 1

Technical data: Gross Register Tonnage: 190 Build: 1975 Length overall: 30 meters Beam: 8.5 meters Draught: 3.5 meters Economic speed: 12 knots GPS PC , plotter

Nautical equipment: Differential GPS ARPA Radar. GMDSS radio GSM and Satellite telephone GSM and Satellite fax

4. Survey set-up showing equipment onboard

7

5. Technical description of navigation set-up

To meet the demands of high navigation accuracy use of DGPS is necessary. GEUS holds a complete survey navigation package consisting of a Sercel Nr103 DGPS and a survey navigation software NaviPac. This will be described in the following text.

Sercel NR103 DGPS satellite positioning receiver.

A Sercel NR103 DGPS Receiver working with a network of permanent differential stations on shore, which covers the Danish seawater, gives us an accuracy of a few meters.

Specifications:

Accuracy:	Autonomous position(Observed horizontal accuracy, with PDOP<6 and S/A not activated. Obtainable accu- racy is dependent on the U.S. D.o.D. policy). Differential position <5m/2 DRMS velocity <5cm/s + 1%
Available information:	3D position(WGS 84) and velocity Change of datum's & projection Attitude referred to ellipsoid or MSL
Update rate:	0.6 s
Maximum dynamics:	Acceleration 4g Speed 500 km/h
Output message types:	Position (Lat./Long or XY) Course, ground speed Raw data (pseudo-range and phase) Corrections received from the station GPS message, etc.
Type of corrections:	Pseudo range corrections, received from a RTCM station(1), a Sercel station(2) or a RS 232 C link(3). For (1)&(2), the receiver is fitted with R/F reception, corrections pre-processing (demodulation, parity check, etc.) and will automatically use valid corrections in the positioning solution.
Number of stations:	10 stations stored in permanent memory, 20 stations stored in volatile memory. Automatic selection of best station amongst authorised ones.

Receiver type: S.P.S.(L1)1575.42MHz 10 parallel channels, C/A code & carrier phase Sensivity: -138dB□2DBm Noise figure: 4 dB Dynamic range: 40 dB Differential carrier frequency between 1.6 and 3.5 MHz

Physical specifications

Receiver

Overall dimensions Weight Power voltage range Consumption

143 x 295 x 235 mm 5 kg 10 to 36 VDC floating < 12 watts

GPS Antenna

Height Diameter Weight with integrated preamplifier 136 mm 110 mm 0.4 kg

Diff. Corrections HF Antenna

with integrated preamplifier Whirp antenna housed in a radome Height 510 mm Diameter 50 mm Weight 0.68 kg

NaviPac On-line Navigation and Data Acquisition software

System Environment

The system is based on the following environment Hardware Platform

- Pentium PC (Windows NT)
- TCP/IP Networking

Graphical Environment

Microsoft Windows NT.

All programming is made in C/C++ and the GUI is based on recommendations specified in the Style Guides.

Furthermore, look-and-feel has been implemented following the similar principles as applied in other Eiva software products, resulting in common user interface in all EIVA systems.

System Description

The NaviPac on-line navigation and data acquisition software enables escalation of one or more positions from a variety of sensors.

The system features among other things:

- Easy-to-use windowing techniques allowing multiple displays
- Easy-to-use MMI through the use of mouse or trackball
- Distributed implementation allowing multiple access and presentation using network, allowing combinations of PCs and workstations
- Flexible interface towards NaviBat and NaviLine products
- Integrated control and monitoring of NMEA GPS
- Standard and user defined logging format
- Up to five navigation priority groups simultaneously
- Advanced QC package
- User configurable interface definition
- Client/server based set-up allowing presentation on more PC's (based on TCP/IP network)
- Calculation of tide based on GPS RTK and heave
- Advanced graphical helmsman's display with charts and line planning module.

The system encompasses a number of special features such as:

- Choice of many projections
- Flexible choice of navigation instruments
- Precise time tagging of all sensor data
- Kalman filter for position prediction
- Correction of antenna swing
- On-line transformation of WGS84 co-ordinates
- Advanced simulator for operator training.

The data interfacing in NaviPac is done in separate real-time processes (threads) and consequently not disturbed by user-activated functions.

Geodetic System

The NaviPac system offers an extensive number of projections:

- Transverse Mercator
- U.T.M.
- Mercator
- Polar Stereographic
- Equatorial Stereographic
- Oblique Stereographic
- Lamberts Conical
- Etc.

The major spheroids available are:

- International 1924
- Bessel 1841
- ED 50
- WGS 84

- EUREF 89
- Etc.

Data Handling

Before using a measurement in the position calculation, the following actions are taken:

- For each navigation cycle a line scale factor will be computed for each LOP using Bessel's method
- For each navigation cycle the convergence will be calculated
- Range will be multiplied with the appropriate line scale factor
- Conversion of Lat./Long. data from WGS 84 to the ellipsoid in use
- Bearing will be compensated for convergence if it is a true bearing
- Because the Lops are measured at different instants in time, the Lops are deskewed to the same instant in time.

When a data set is completed, the measurements are checked for blunders by comparison of observed values and predicted values (average square error). The measurement is also corrected for layback, as ranges of direction are usually not measured to the ship's reference point for which primary co-ordinates are required, but to various antenna offsets on the vessel. Thus the relative position of the antenna to the ship's reference point and the roll, pitch and heading of the vessel must be taken into account. In NaviPac a rigorous treatment of this layback is performed and corrections to measured values are avoided.

Automatic Computations

Depending on the processor and number of Lops, the system can achieve a navigation cycle time of 0.1 to 1.0 seconds.

As the navigation sensors are sending data asynchronously, the NaviPac program will deskew the data forward in time so all sensor can be used and compared at the same instant in time.

If motion sensor is available, the navigation data will be corrected for antenna swing. Again, because the measurements are done asynchronously it is important to use the correct roll and pitch with respect to age. The NaviPac system will collect and time tag all roll and pitch data available so the correct inclination value can be used for the correction. If more than one navigation sensor is available, the NaviPac software can integrate many systems into one position or calculate many positions for comparison between systems.

When many systems are integrated into one position, the influence of each system can be controlled by the operator by inputting the weight of each LOP. Weight settings of each LOP can be stored on files for use next time the system is switched on.

Data Bases

When configuring the system, all parameters are stored on files. The files will automatically be read, the next time the system is started. The following parameters are stored on files:

The following parameters are stored in files:

- Station co-ordinates with antenna offsets and corrections (delay, calibration, etc.)
- Relative positions of echo sounders, transducers, etc.
- Geodetic parameters
- Vessel figures
- Interface definitions
- Run-lines/way-points
- Contour curves and coastlines

Calibration Features

Range calibration:

Calibration of Range/Range instruments using a laser range meter. Standard deviation and average values will be calculated and printed.

Position calibration:

This requires that the vessel is stationary. The operator must input the reference position. Standard deviation and average position is calculated.

USBL calibration:

The connected USBL System (Track point II, HPR or similar) can be calibrated using builtin Box-In and Spin routines.

Background Charts

ECDIS:

The NaviPac system features integrated support of ECDIS charts based on C-MAP products.

DXF:

NaviPac supports most CAD entries from e.g. DXF or DWG. Compatibility is secured through EIVA membership of the Open DWG association.

HP-Plot:

Simple vector charts can be defined using ordinary HP plotter commands.

Data Acquisition and Logging

NaviPac includes two high-level modules DataAcq for graphical presentation of data and LogData for control of data logging.

6. Core examination, logging and preservation of samples.

At each core position anchoring was done with three anchors, coring was made in the selected position, the core device was brought onboard the ship and the core processing procedure was carried out.

Core processing procedure

The core was processed from the bottom and Geochemical and archive samples (20cm core sections) were collected from bottom(typically 6m), Mid-bottom (typically 4,5/5m) and middle portion (typically 3/4m) of the stored core liner.

Three 5-cm core sections were sampled from the approximately same core depths in vials for headspace gas analysis provided by Norsk Agip. The vials were poisoned with NaCl (sodium chloride) solution (100 g/l) before sealing. A parallel set of samples were collected and stored at GEUS as a backup sample. The rest of the material was sampled in a ½ litre tin can and stored at GEUS.

All the headspace samples were stored onboard in a transportable freezer at a temperature of -20° C.

The remaining part of each core was cut into 1m pieces and transported to GEUS after the survey was completed.

At GEUS the 1m core pieces were described according to the standards for sedimentological log descriptions defined in the ZEUS/JUPITER geodatabase system and stored in the GEUS core-store as confidential cores.

Vibrocoring equipment

The VKG-6 is a German vibrocorer constructed for coring in water depths up to 100m. The core length is maximum 6m and the core diameter is 100mm with optional core storage in plastic liners or a plastic hose.

Technical specifications for VKG-6:

Height of equipment	7430mm
Foot diameter	4600mm
Total weight	1000kg
Core inner diameter	100mm
Core max. length	6000mm

Vibration power 30kN

Frequency of vibration 28Hz

Core transportation

At return to harbour at the end of the cruise the core samples were moved to a truck and transported to:

ENI-Division AGIP-GEOC Laboratories Via Maritano 26 20097 San Donato Milanese (MI) Italy

During the transport the samples were kept at a temperature of -20° C.

7. Description of Seismic equipment

The seismic survey set-up consisted of Sparker, X-Star, Side Scan Sonar and an echosounder but due to software breakdown the Side Scan Sonar did not come in function. A shot point location Map of the seismic survey is shown in Appendix 3, and location of the different instruments is shown in appendix 2.

GEUS holds all these types of seismic equipment and in the following description the technical specifications of the seismic equipment and digital seismic Acquisition software will be described.

Sparker

The Sparker is used for high resolution subbottom profiling in shallow water surveys.

GEUS uses a surface towed Geo-Spark - High Resolution Multi-Tip Sparker. It uses a separate source and receiver with an operating speed up to six knots. Depending on conditions, the Sparker gives a penetration to 100m and a resolution of 0.5 - 1m.

The system uses an 8-hydrophone streamer. Which enhances the signal to noise ratio.

For data acquisition TEL Delph Seismic software is used.

Specifications:

The system allows the control of all essential source parameters: electrode spacing, source geometry, towing depth and energy per tip. Geo-Spark[™] produces a very short stable pulse signature with a centre frequency ranging from 800 to 1200Hz (depending upon the energy selected)

Standard systems cover the entire 100 to 1000J range through a combination of different electrode types.

Technical Specification.	Length	1050 mm
	Width	1030 mm
	Height	380 mm
	Weight	37 kg
	Material	316 marine grade polished
		stainless steel.
Power Supply Require- ments	Input Voltage	115/230Vac, 50/60Hz
	Output Voltage	3750Vdc (nominal)
	Output Energy	Switch selectable up to 1000J
Towcable	Length	50 m complete with high voltage connectors.

Overall Diameter Cores Strength Member Breaking Load 22 mm 3 high voltage, 6 mm Kevlar 500 kg

System Performance General 0.5 - 1m **Resolution:** Penetration: (Depending on seafloor material) Shallow water: to 50 meters Operating speed: to 6 knots Surface tow Tow Depth: Unicom Source: Frequency Spectrum: 400 Hz to 14 KHz Input energy: 300 joules **Repetition Rate:** 2 pulses per second

Stealtharray Single Channel Hydrophone Array Serial No. 009610

Array:

Туре	Solid Flotation cable with Trout hydrodynamic housings		
Elements	sosens single hydrophones		
Hydrophone:			
Type Isose	ns - single (s) piezo polymer type with amplifier; US Patent 5,361,240		
Voltage Sensit	vity -198db		
Bandwith 6Hz	- 7.4Hz		
Elements 10	Elements 10		
Element Spaci	ng 0.5m		
Active Length	4.5m		
Depth, operati	on 1-100m		
Depth, maxim	m 1000m		

Sensitive Change versus depth <1 db. over operation depth

Acceleration Sensitivity -70 db. re: 1v/g

Temperature Range

operating	-2 – 60° C
Storage	-40 - 60° C
Amplifier	Low noise differential Power required;

- Quantity; one per
- Housing Trout hydrodynamic noise reduction type, maximum outside diameter (1.8"), length 27cm (10.5")

9-12vdc; 1 milliamp.

TEI Delph Seismic Acquisition software

TEI Delph Seismic completes the transition between shallow and deep seismic imaging by providing greater understanding of the subsurface and by optimising sediment characterisation. The efficiency of the Windows 95/NT system gives maximum performance in marine geotechnical work and offshore mining investigation. Delph Seismic offers digital acquisition and online processing for up to 24 channels.

Delph Seismic offers unmatched spatial and temporal resolution, giving the user up to 24 channels, each with a sampling interval of up to 0.02 ms and user-defined shot rate. Delph Seismic offers real-time processing and quality control on this PC based menu-driven system. All channels of collected data can be displayed raw or processed in real-time on a high resolution screen.

The asynchronous mode in Delph Seismic allows the acquisition of two independent seismic channels without cross-interference. Delph Seismic allows versatile programming of the trigger timing for each channel and can generate up to two asynchronous triggers at user-definable shot rates based on time or distance. Two channels of data can be acquired and processed asynchronously according to two independent sets of parameters:

Distinct sampling rates (while respecting certain constraints)

Independent synchronisation of two sources (while respecting some operational constraints)

Key Features	Specifications
Real-time quality control and on-site processing	Optimises the use of survey time
Asynchronous mode	Allows survey optimisation
Interactive Horizon	Makes Delph Seismic ideal for interpretation of digital data

Delph Seismic Features

Picking	
User-defined Shot Rate	Can be set based on time or distance
Band pass filter	Allows the attenuation of spectral components between the user-defined upper and lower band limits
Swell filter	Carries out static corrections on each trace to attenuate the effect of the swell. A Seabed detector determines travel time of the first Seabed return echo for each shot
Automatic gain con- trol	AGC allows improved visualisation of seismic signals to compensate for variations in the signal envelope
Special analysis (FFT)	Can be applied to a portion of the trace at the end of the processing se- quence
Signature deconvo- lution	Used to improve the quality of seismic images by increasing the vertical resolution and stabilising the signature from one shot to another
Predictive deconvo- lution	Allows Seabed multiple echoes to be attenuated
Time varying filter (TVF)	Allows a band pass filter with characteristics varying over time to be applied to the digitised signal between the signal from the Seabed and the end of the recording time
Common depth point	Common depth point (CDP) processing is available when at least 6 chan- nels are used, improving signal to noise ratio

Software

Key Fea- tures	Specifications
Input Channels	Offset correction system linked to the amplifier 70 dB programmable amplifier (1 mV increment) 16-bit delta-sigma analogue/digital converter
System	Sampling frequency - 250 Hz to 48 KHz
Perform-	Recording length - Up to 15s (15,000 samples)
ance	Shot control Interface - TTL level (external or internal)
	Navigation Interface - RS232 serial port
Sensor	Maximum input level - 5 V eff.
Interface	Minimum input level - 1 mV eff. (full scale)
	Input impedance - 1 mOhm.
	Programmable gain - 0 to 70 dB
	Noise level at full scale - 3 microvolts (-110dB)
	Cross-talk - 81 dB at full scale

Delph seismic system

Key Features	Specifications
Host Processor	350 MHz Pentium II, 128 MB RAM; 10 serial ports, 1 parallel port
Graphics Processor	128-bit 16 MB SDRAM
Digital Signal Proces-	TI TMS320C31 (60 MHz); 30 MIPS/60 MFLOPS; 32-bit hardware floating

sor	point DSP	
the second se		

Mass storage

Key Features	Specifications
LS-120 Floppy Drive	Standard 3.5" 1.44 MB/120 MB LS-120 diskette
Hard disk drive	Standard 9 GB or optional 18 GB
Multi-function drive	Optional re-writable magneto-optical drive for data storage on 5.2 GB rewritable disk
Exabyte tape drive	Optional 8 mm SCSI tape drive, storage capacity up to 40 GB per tape

X-Star full spectrum sub-bottom profiler

Features

6 cm or better resolution Matched filter correlation Real time sediment classification/navigation maps 20-30 dB improved SNR using swept FM pulse No spatial side-lobes Direct path deconvolution improves SNR 40 dB

Frequency Range 400 HZ-8kHz

Pulse Bandwidth 400-2400Hz 400-3500Hz 750-4500Hz 1-6 KHz 2-8 KHz

Vertical Resolution : 80cm 400Hz - 2400kHz 60cm 500Hx - 3500kHz 30cm 1kHz - 6kHz 20cm 2kHz-8kHz

Penetration (typical):

Coarse calcareous sand : 40m Clay : 300m

Beam Width (depends on center freq.) 10º - 30º

Transmitters :2Receive Arrays:8Output Power 2KWSize (cm)249L x 214W x 91HWeight (kg)364Cable Requirements3 Shielded twisted pairs (all used)

Notes

300 m. maximum water depth Requires dual channel X-STAR topside processor Long cable amplifier

EG&G DF-1000 Digital Side Scan Sonar System

General Specifications

DF-1000 Digital Tow- fish		
Frequencies	Standard Resolution 100kHz ±10kHz	
	High resolution 400kHz ±20kHz	
	(referred to as 500kHz)	
Pulse Length	100kHz - 0.1msec, 500kHz - 0.01msec	
Peak Output	228dB reference one m Pascal at 1 meter	
Horizontal Beam Width	100kHz - 1.2°, 500kHz - 0.5	
Vertical Beam Width	50° tilted down 20°	
TVG Range	100kHz - 60dB to 300msec	
426/51	500kHz - 43dB to 120 msec	
Processors	8031 controllers in a master/slave configuration	
A/D Resolution	12bits/sample	
High Speed Digital Up	Mbits/sec, 4 channels of side scan data, magnetometer and user chan-	
Link	nels	
Sampling Rate 24kHz/channel		
Heading Built-in flux gate compass to 0.5° accuracy		
User Ports	Serial - RS-232C, 9600 Baud	
	(1)Parallel - 8 bit centronics	
	Analogue - 25kHz	
Optional Attachments	Magnetometer (interfaces to Geometrics 876), Sub-Bottom Profiler,	
	Acoustic Responder, Custom Sensors	
Operating Voltage	40 to 60 VDC	
Operating Depth	1000 meters (3300ft.)	
Tow Speed knots maximum (for fully corrected data)		
Operating Tempera-	0°C to 45°C (32°F to 113°F)	
ture	Vida	
Storage Temperature	-30°C to 60°C (-22°F to 140°F)	
Size 11.4cm dia. X 158cm length (4.5" dia. X 5.2ft.)		

Weight	30kgs. (67lbs)
Digital Control Unit	
Main Processor	Intel 8031
Operator Controls	Select 100/500kHz
	Select Port/Starboard
	Select Data Fusion
	Data Fusion Start
	Balance Port/Starboard
	Gain 100/500kHz for Equalisation
	Responder period
	Select range
LED Display	Towfish Heading
	Towfish Voltage
	Range
	Model 260 Recorder Status
	Magnetic Data
	Error Messages
Optional Interfaces	Magnetometer Processor, Acoustic Navigation
Data Outputs	Analogue
	DSP compatible serial
	DMA compatible parallel
Humidity	0-95% non-condensing
Model 260 Interface	Includes: I/O Board, Cables, EPROM's
Tow Cables	3000 meters (9900ft.) Rochester (A301241)
	1000 meters (3300ft.) Rochester (A220499)
	50m to 200m (150ft. to 650ft.) Kevlar coax
General Specifications	300dB maximum attenuation at 1 MHz
	50ohms characteristic (nominal) impedance
	Total resistance 20 ohms
Size of Table Top	498mm W x 159mm H x 457mm D
	(19.6" W x 6.3" H 18" D)
Size of Rack Mount	483mm W x 135mm H x 457mm D
	(19" W x 5.3" H x 17.3" D)
Weight of Table Top	28kgs (60lbs)
Weight of Rack Mount	14kgs (30lbs)

TEI Isis Sonar

TEI Isis Sonar digitises, stores and processes side scan sonar signals and combines the sonar imagery with navigation inputs to geocode the data in real-time. Isis Sonar interfaces with most conventional analogue and digital side scan sonar's. It runs under the Microsoft Windows operating system. Isis Sonar is flexible and user friendly. TEI training maximises full use of system features.

Applications for Isis Sonar include:

Seafloor Search and Survey Pipeline Inspection Q-route Surveillance Seafloor Classification Small Object Detection/Site Clearance Cable/Pipeline Route Survey

Software

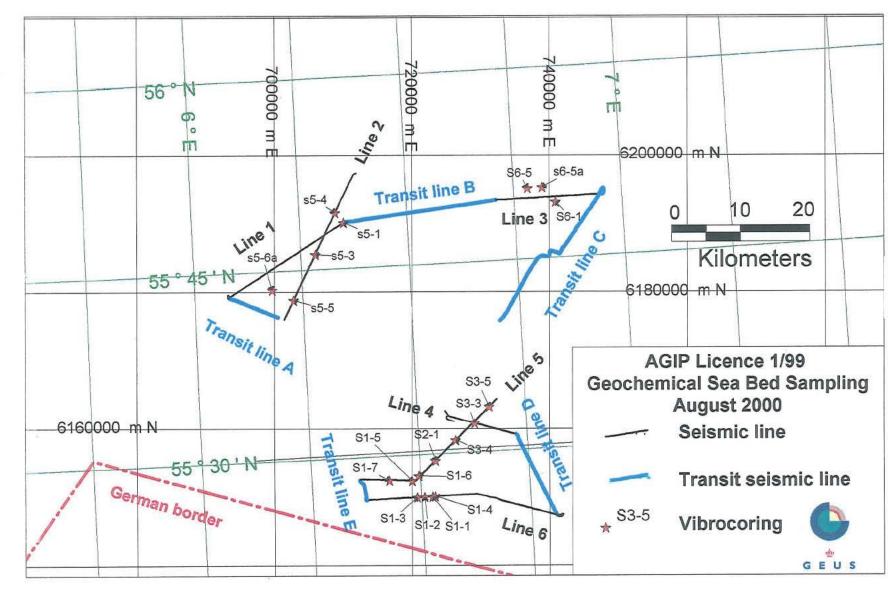
Key Features	Specifications	
Operating System	MS Windows Microsoft Windows 95 or Windows NT	
Image/signal	Slant-range correction and water column removal	
processing	Selectable downsampling methods to fit application	
	Automatic, manual or telemetry-based bottom tracking	
	Fixed/variable range scale settings	
	Contrast stretching	
	Beam and Grazing Angle Compensation	
	Spatial filters (pre-defined and User-configurable)	
Data Log-	Q-MIPS, XTF, SEG-Y data formats	
ging	Any number of samples per channel per ping (or shot) saved	
	Data saved at either 8 or 16 bits/sample	
Geocoding	Each pixel in the scan is given a geographic position according to the position of the	
	scan's central pixel, the vessel (transducer) heading and the across-track resolution	
Display	Multiple pre-defined colour look-up tables (LUT)	
Control	Interactive Target/object detection	
	Virtual resolution up to 2016 x 2016 pixels	
	Waterfall, wiggle, oscilloscope, graphical and alphanumeric displays based on data	
	type	
	Individual windows for display parameters	
	User-definable scale lines Image annotation	
Image	Measurement of object width, length, height and altitude	
analysis	Object geographical position from cursor location	
5725	On-screen digitisation and interpretation	

Interface

Key Features	Specifications	
	10M Baud synchronous serial port	
Digital Inputs	2 x 230K Baud RS-232 serial ports	
	2 x 8-bit parallel & 1 DSP-link port	
Analogue Inputs	Up to 8 channels per DSP board	
	Bipolar input signal, +/- 5V range	
	Input impedance: 1 mOhm	
Dynamic Range	96 dB (16 bit)	
	Sampling rate 400 KHz aggregate	

PC/AT serial ports	Up to 16
Printers	All standard Windows printers plus Alden, EPC, TDU and Waverly models

ISIS sonar system


Key Features	Specifications	
Host Processor	350 MHz Pentium II, 128 MB RAM; 2 serial ports, 1 parallel port	
Graphics Processor	128-bit 16 MB SDRAM	
Digital Signal Processor	TI TMS320C31 (40 MHz); 20 MIPS/40 MFLOPS; 32-bit hardware floating point DSP	
Standard Configuration	Host CPU, Graphics and Digital Signal Processors, SCSI Controller, SIU and A/D board	
Display Resolution	1280 x 1024	
Display Size	Standard 17" or optional 20"	

Mass storage

Key Features	Specifications
LS-120 Floppy Drive	Standard 3.5" 1.44 MB diskette/LS-120 120 MB diskette
Hard disk drive	Standard 9 GB or optional 18 GB
Multi-function drive	Optional rewritable Magneto-optical drive for data storage on 5.2 GB rewri- table disk
Exabyte tape drive	Optional 8 mm SCSI tape drive, storage capacity up to 40 GB per tape

Echosounder:

Simrad EA300P echosounder Frequency 200kHz Depth interval: 0,6 m to 200m. Print: HP PaintJet model 3630A. Storage: Digital storage in 3 times pr. second in the survey programme; NaviPac.

GEUS

24

9. List of core positions

AGIP Licence 1/99 - Geochemical Sea Bed Sampling CORE POSITIONS

	Well name	Latitude	Longitude
		geographical ED50	geographical ED50
1	S1-1	55 26,7306'	06 31,5722'
2	S1-2	55 26,7339'	06 30,4682
3	S1-3	55 26,7317'	06 29,4773'
4	S1-4	55 26,7257'	06 31,9802'
5	S1-5	55 28,0707'	06 28,9303'
6	S1-6	55 28,4126'	06 29,8733'
7	S1-7	55 28,1797'	06 25,7394'
8	S2-1	55 29,5537'	06 32,2531'
9	S3-3	55 32,3415'	06 37,9393'
10	S3-4	55 31,0814'	06 35,1983'
11	S3-5	55 33,6153'	06 40,0943'
12	S5-1	55 48,6920'	06 21,2343'
13	S5-3	55 46,2952'	06 17,0603'
14	S5-4	55 49,5081'	06 20,0824'
15	S5-5	55 42,1544'	06 13,7463'
16	S5-6A	55 43,6437'	06 10,8794'
17	S6-1	55 49,4392'	06 50,7461'
18	S6-5	55 50,4525'	06 46,9228'
19	S6-5A	55 50,4927'	06 48,9397'

10. List of Crew and GEUS personnel

Crew and GEUS-personal were at a given time in total 11 persons. During the survey the following persons participated.

Shipping Company: Jens Alfatsen Rederiet

Captain :	
	Anders Jørgensen
	Ove poulsen
	Henning Iversen
Mate :	
	Michael Mikkelsen
	Henning Iversen
	Jesper Hansen
Crew :	
	John Petersen
	Rolf Jakobsen
	Frants Mortensen
	Bettina Westergård
	Kim Alfatsen
	Tom Larsen
	Søren Pedersen
	Preben Svendsen
GEUS	
Geologist :	
	Steen Lomholt
	Jørn Bo Jensen
Technician:	
	Peter Trøst Jørgensen
	John Boserup
	Sune Westh
	Steffen Andersen
JBJ Dykker o	g Transport Service

Drilling Technician: Johnny B Jørgensen Dan Ottesen Jan Frederiksen Flemming Holst

11. Appendix 1 Activity Log

AGIP Licence 1/99 - Geochemical Sea Bed Sampling Activity log

Date	Time		
18/8	22.00	Transit to survey area	
19/8	06.00	Start on line Agip 02	
19/8	06.15	Stop on line Agip 02 Side scan sonar out of function	
19/8	08.00	Malfunction of echosounder	
19/8	16.00	Restart on line Agip 02	
19/8	19.50	End of line Agip 02	
19/8	20.20	Start on line 02_01 (A)	
19/8	21.30	End of line 02_01 (A)	
19/8	21.40	Start on line 01	
19/8	21.47	End of line 01	
19/8	21.48	Start on line 01_03 (B)	
20/8	00.13	End of line 01_03 (B)	
20/8	00.14	Start on line 03	
20/8	02.00	End of line 03	
20/8	02.03	Start on line 03_04 (C)	
20/8	06.20	Stop surveying line 03_04 (C) Weather: Wind: 15 m/s Wave	
		height: 4m.	
20/8	14.03	Break rope to x-star. Secure x-star in sea.	
20/8	20.00	Repair equipment, x- star out of sea.	
20/8	20.40	X-Star in sea again.	
20/8	21.00	Start on line 04	
20/8	21.36	Restart on line 04	
20/8	23.08	End of line 04	
20/8	23.09	Star on line 04_06 (D)	
21/8	00.34	End of line 04_06 (D)	
21/8	00.35	Start on line 06	
21/8	02.33	End of line 06	
21/8	02.34	Start on line 06a	
21/8	04.35	End of line 06a	
21/8	04.40	Start on line 06_05 (E)	
21/8	05.00	End of line 06_05 (E)	
21/8	05.03	Start on line 05	
21/8	06.02	End of line 05	
21/8	06.03	Start on line 05a	

21/8	08.30	End of line 05a
21/8	08.40	Secure seismic instruments
21/8	10.00	Transit to Esbjerg
21/8	18.00	Hand over ship for other activities to GEUS
30/8	20.00	Took over ship from GEUS
30/8	21.00	Transit to area S1
31/8	06.30	Arrival area S1
31/8	07.00	Arrival position S 1-4
31/8	07.45	Start coring S 1-4
31/8	07.50	Crane failure
31/8	07.55	Repair on crane, no function. Vibrocorer still at Seabed
31/8	11.45	Vibrocorer recovered with material in core-liner
		(aborted coring programme 9.00)
31/8	12.00	Return to harbour to repair crane.
31/8	21.00	Arrival Esbjerg harbour
01/9		Repair Crane
02/9	08.00	Ship ready to resume core operation
02/9	08.00	Core operation aborted due to weather conditions. Wait on
		weather. Standby
03/9	00.00	Wait on weather. Standby
03/9	21.00	Transit to area S1
04/9	05.00	Arrival area S1
04/9	06.45	Arrival position S 1-4
04/9	07.15	Start coring S 1-4, Technical problems with equipment
05/9	02.55	Restart core no. S 1-4
05/9	03.05	Recover core no. S 1-4
05/9	05.30	Recover core no. S 1-1
05/9	07.45	Recover core no. S 1-2
05/9	10.00	Recover core no. S 1-3
05/9	11.40	Recover core no. S 1-7
05/9	13.30	Recover core no. S 1-5
05/9	14.50	Recover core no. S 1-6
05/9	16.45	Recover core no. S 2-1
05/9	18.35	Recover core no. S 3-4
05/9	20.05	Recover core no. S 3-3
05/9	22.25	Recover core no. S 3-5
05/9	24.00	Wait on weather
06/9	10.00	Transit to Esbjerg harbour
06/9	17.00	Arrival Esbjerg harbour
06/9	17.00	Standby
07/9	00.00	Ship transfer to local job near Esbjerg, while waiting on weather.
. Auto		(Coring aborted at 00.00)
09/9	00.00	Ship back from local job. Standby

09/9	21.00	Departure Esbjerg harbour.	
10/9	07.00	Arrival area S 5	
10/9	08.45	Arrival core position S 5-6a	
10/9	09.20	Recover core no. S 5-6a	
10/9	11.15	Recover core no. S 5-5	
10/9	13.20	Recover core no. S 5-3	
10/9	15.30	Recover core no. S 5-4	
10/9	16.50	Recover core no. S 5-1	
10/9	19.40	Recover core no. S 6-5	
10/9	20.45	Recover core no. S 6-5a	
10/9	22.10	Recover core no. S 6-1	
10/9	23.00	Transit to Esbjerg Harbour	
11/9	09.00	Arrival Esbjerg Harbour. Unloading core material	
11/9	10.00	Ship hand over for transfer to Juelsminde for demobilisation	

12. Appendix 2 List of Head Space Gas Samples

AGIP Licence 1/99 - Geochemical Sea Bed Sampling Mini Head space samples

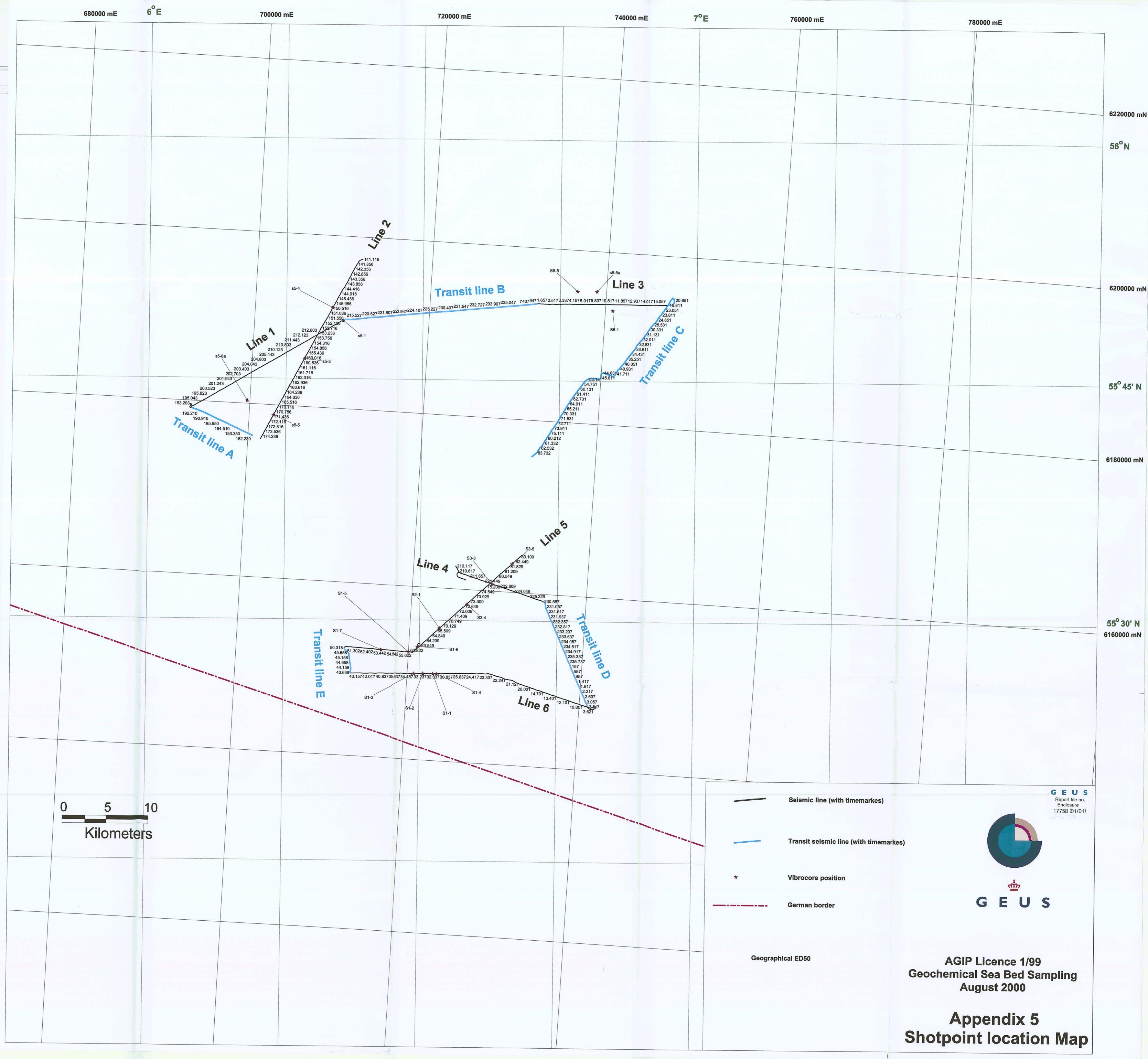
1	Well name	Depths m
1	S1-1 GAS I	5,70 - 5,75
2	S1-1 GAS II	4,70 - 4,75
3	S1-1 GAS III	3,70 - 3,75
4	S1-2 GAS I	5,30 - 5,35
5	S1-2 GAS II	4,30 - 4,35
6	S1-2 GAS III	3,30 - 3,35
7	S1-3 GAS I	5,65 - 5,70
8	S1-3 GAS II	4.65 - 4,70
9	S1-3 GAS III	3,65 - 3,70
10	S1-4 GAS I	5,25 - 5,30
11	S1-4 GAS II	4,25 - 4,30
12	S1 - 4 GAS III	3,25 - 3,30
13	S1 - 5 GAS I	5,83 - 5,88
14	S1 - 5 GAS II	4,83 - 4,88
15	S1 - 5 GAS III	3,83 - 3,88
16	S1-6 GAS I	5,67 - 5,72
17	S1 - 6 GAS II	4,67 - 4,72
18	S1 - 6 GAS III	3,67 - 3,72
19	S1 - 7 GAS I	5,73 - 5,78
20	S1 - 7 GAS II	4,73 - 4,78
21	S1 - 7 GAS III	3,73 - 3,78
22	S2 - 1 GAS I	5,55 - 5,60
23	S2 - 1 GAS II	4,55 - 4,60
24	S2 - 1 GAS III	3,55 - 3,60
25	S3 - 3 GAS I	5,67 - 5,72
26	S3 - 3 GAS II	4,67 - 4,72
27	S3 - 3 GAS III	3,67 - 3,72
28	S3 - 4 GAS I	5,63 - 5,68
29	S3 - 4 GAS II	4,63 - 4,68
30	S3 - 4 GAS III	3,63 - 3,68
31	S3 - 5 GAS I	5,30 - 5,35
32	S3 - 5 GAS II	4,30 - 4,35
33	S3 - 5 GAS III	3,30 - 3,35
34	S5 - 1 GAS I	5,57 - 5,62
35	S5 - 1 GAS II	4,57 - 4,62
36	S5 - 1 GAS III	3,57 - 3,62

37	S5-3 GAS I	5,30 - 5,35
38	S5 - 3 GAS II	4,30 - 4,35
39	S5-3 GAS III	3,30 - 3,35
40	S5-4 GASI	5,67 - 5,72
41	S5-4 GAS II	4,67 - 4,72
42	S5-4 GAS III	3,67 - 3,72
43	S5 - 5 GAS I	5,69 - 5,74
44	S5 - 5 GAS II	4,69 - 4,74
45	S5 - 5 GAS III	3,69 - 3,74
46	S5-6A GASI	5,64 - 5,69
47	S5 - 6A GAS II	4,64 - 4,69
48	S5 - 6A GAS III	3,64 - 3,69
49	S6-1 GASI	4,60 - 4,65
50	S6-1 GAS II	3,60 - 3,65
51	S6-1 GAS III	2,60 - 2,65
52	S6-5 GAS I	5,20 - 5,25
53	S6-5 GAS II	4,20 - 4,25
54	S6-5 GAS III	3,20 - 3,25
55	S6-5A GASI	5,80 - 5,85
56	S6-5A GAS II	4,80 - 4,85
57	S6-5A GAS III	3,80 - 3,85

13. Appendix 3 List of Geochemical samples

AGIP Licence 1/99 - Geochemical Sea Bed Sampling Geochemical and Archive samples

	Well name	Depths below bottom in meters
1	S1 - 1 KEM I	5,50 - 5,70
2	S1 - 1 KEM II	4,50 - 4,70
3	S1 - 1 KEM III	3,50 - 3,70
4	S1 - 2 KEM I	5,10 - 5,30
5	S1 - 2 KEM II	4,10 - 4,30
6	S1 - 2 KEM III	3,10 - 3,30
7	S1 - 3 KEM I	5,45 - 5,65
8	S1 - 3 KEM II	4,45 - 4,65
9	S1 - 3 KEM III	3,45 - 3,65
10	S1 - 4 KEM I	5,05 - 5,25
11	S1 - 4 KEM II	4,05 - 4,25
12	S1 - 4 KEM III	3,05 - 3,25
13	S1 - 5 KEM I	5,63 - 5,83
14	S1 - 5 KEM II	4,63 - 4,83
15	S1 - 5 KEM III	3,63 - 3,83
16	S1 - 6 KEM I	5,47 - 5,67
17	S1 - 6 KEM II	4,47 - 4,67
18	S1 - 6 KEM III	3,47 - 3,67
19	S1 - 7 KEM I	5,53 - 5,73
20	S1 - 7 KEM II	4,53 - 4,73
21	S1 - 7 KEM III	3,53 - 3,73
22	S2 - 1 KEM I	5,35 - 5,55
23	S2 - 1 KEM II	4,35 - 4,55
24	S2 - 1 KEM III	3,35 - 3,55
25	S3 - 3 KEM I	5,47 - 5,67
26	S3 - 3 KEM II	4,47 - 4,67
27	S3 - 3 KEM III	3,47 - 3,67
28	S3 - 4 KEM I	5,43 - 5,63
29	S3 - 4 KEM II	4,43 - 4,63
30	S3 - 4 KEM III	3,43 - 3,63
31	S3 - 5 KEM I	5,10 - 5,30
32	S3 - 5 KEM II	4,10 - 4,30
33	S3 - 5 KEM III	3,10 - 3,30
34	S5 - 1 KEM I	5,37 - 5,57
35	S5 - 1 KEM II	4,37 - 4,57
36	S5 - 1 KEM III	3,37 - 3,57


37	S5 - 3 KEM I	5,10 - 5,30
38	S5 - 3 KEM II	4,10 - 4,30
39	S5 - 3 KEM III	3,10 - 3,30
40	S5 - 4 KEM I	5,47 - 5,67
41	S5 - 4 KEM II	4,47 - 4,67
42	S5 - 4 KEM III	3,47 - 3,67
43	S5 - 5 KEM I	5,49 - 5,69
44	S5 - 5 KEM II	4,49 - 4,69
45	S5 - 5 KEM III	3,49 - 3,69
46	S5 - 6A KEM I	5,44 - 5,64
47	S5 - 6A KEM II	4,44 - 4,64
48	S5 - 6A KEM III	3,44 - 3,64
49	S6 - 1 KEM I	4,40 - 4,60
50	S6 - 1 KEM II	3,40 - 3,60
51	S6 - 1 KEM III	2,40 - 2,60
52	S6 - 5 KEM I	5,00 - 5,20
53	S6 - 5 KEM II	4,00 - 4,20
54	S6 - 5 KEM III	3,00 - 3,20
55	S6 - 5A KEM I	5,60 - 5,80
56	S6 - 5A KEM II	4,60 - 4,80
57	S6 - 5A KEM III	3,60 - 3,80

14. Appendix 4 List of Stratigraphical Samples

AGIP Licence 1/99 - Geochemical Sea Bed Sampling Stratigraphical Surface samples

	Well name	Depths below bottom in meters
1	S1-1	0,00 - 0,20
2	S1-2	0,00 - 0,20
3	S1-3	0,00 - 0,20
4	S1-4	0,00 - 0,20
5	S1-5	0,00 - 0,20
6	S1-6	0,00 - 0,20
7	S1-7	0,00 - 0,20
8	S2-1	0,00 - 0,20
9	S3-3	0,00 - 0,20
10	S3-4	0,00 - 0,20
11	S3-5	0,00 - 0,20
12	S5-1	0,00 - 0,20
13	S5-3	0,00 - 0,20
14	S5-4	0,00 - 0,20
15	S5-5	0,00 - 0,20
16	S5-6A	0,00 - 0,20
17	S6-1	0,00 - 0,20
18	S6-5	0,00 - 0,20
19	S6-5A	0,00 - 0,20

15. Appendix 5 Shot point location Map

