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1 A bstract

Permeabilities in a part of the Maastrichtian reservoir unit on the Southern flank of the 
Dan Field are simulated by the use an annealing cosimulation (ACS) technique. Coredata 
from the 15 available wells within the volume is scarce, so simulation of the permeability 
distribution is conditioned to a combination of only few hard data, an a priori obtained 
spatial porosity description, variogram structures, a histogram and a constructed bivariate 
conditioning distribution. Scarcity of core analysis (hard) data is a problem that is over- 
come by the construction of a conditioning bivariate dataset of porosity and permeability.

2 Introduction

The purpose of this report is to present the application of an annealing cosimulation 
(ACS) technique to derive a spatial permeability description of matrix properties in a 
chalk volume, where porosities are already described. The ACS technique is described in 
more detail by Deutsch and Cockerham (1994), and further information can be obtained 
from Deutsch and Journel (1992).

This report constitutes a continuation of the work carried out by Vejbæk (1995; Ve­
jbæk and Rasmussen, in press) where the porosity in a volume of chalk was simulated by 
the use of a gaussian collocated cosimulation algoritm. These porosities are available a pri­
ori and are used as soft data in this report. The cosimulation of porosities applied seismic 
impedances as secondary (soft) data to constrain the solution. The area of interest is thus 
identical to that of the earlier study (Fig. 1), and the simulation volume is also identical in 
location and size (Fig. 2). The simulated volume comprises only the Maastrichtian and is 
rotated approximately 45° from north because of the orientation of the 3D seismic dataset 
that was used for support in deriving the three-dimensional porosity description (Vejbæk 
1995). The thickness of the simulated volume is 107m, which encompasses Maastrichtian 
units 1 to 6 as defined by Kristensen et al. (1995). The well data base used is the same 
as in the earlier report and comprises fifteen wells which all are in public domain. They 
are: M8x, Mdl, Me3, Me6, Mfa6, Mfa8, Mfbl, Mfb4a, Mfb7, Mfb8, Mfb9, MfblO, M fbll, 
Mfbl2, and Mfbl4b. Although production from the reservoir relies heavily of fractures 
(mainly artificially induced; Jørgensen 1992), this study only deals with matrix properties.
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Figure 1: Top Maastrichtian with depths in feet (Kristensen et al 1995). 
The study area is shown by the box on the northwest side of the main fault.
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Figure 2: Definition of the reservoir characterization grid. The cell size is 
25 ■ 25 • 6m, and the grid contains 54 • 61 • 17 cells.
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There are two fundamental problems with obtaining good descriptions of the perme- 
ability distributions:

1. There are usually only very few permeability measurements because they are ob- 
tained through costly core analysis and require availability of core material. No 
logging tool can provide these data unambiguously.

2. Averaging is bound to produce errors, because extreme values in permeability control 
reservoir flow performance, either as barriers (low values) or by channeling flow (high 
values) depending on spatial continuity.

None of the 15 wells available within the volume have permeability measurements for the 
entire drilled section of the Maastrichian reservoir unit, and some do not have any per­
meability measurements at all. The problem of the few core analysis data is attempted 
to be solved by the application of a constructed bivariate conditioning dataset of porosi- 
ty, permeability pairs in this report. The usually large population of porosity data from 
wells (in this case increased by the a priori porosity simulation) is thus utilized to con- 
st.ra.in permeability description. The porosity/permeability datacannot be utilized directly 
through the construction of a least squared fitted curve, because this would not reproduce 
the spread in permeabilities. This is overcome by constructing a bivariate conditioning 
dataset, which is constraining simulation by defining the spread in permeabilities at all 
levels of porosity. This dataset encompasses all outliers that are accepted as representing 
matrix permabilities.

Results are illustrated by selected cross-sections and maps extracted from the result­
ing simulated permeability volume. In addition diskettes are provided with the porosity 
and permeability grid and the conditioning dataset (see appendix A). Even though a mul- 
titude of equiprobable realizations are possible, only one realization is made. Therefore no 
attempt has been made to investigate possible spread in solutions. Appendix B contains 
the parameter file with the design of the simulation.
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Figure 3: Total core porosity and permeability populations.

3 D ata  analysis

The main data here are core analysis derived permeabilities, and a priori simulated porosi- 
ties. For details on the derivation of the porosities, the reader is referred to Vejbæk (1995). 
The simulation exercise in this report is aimed at providing permeability properties for 
cells of the size: 25 • 25 • 6m. Core permeabilities are measured on plugs with sizes on the 
order of inches. Averaging is therefore needed. Averaging is, however, causing reduction 
in number of data, and an undesirable reduction in variance of data. There are only 374 
samples from core analysis derived porosity measurements of which only 343 samples also 
have permeability measurements (Fig. 3). Some of the high permeabilities plot well away 
from the main body of data, and are disregarded as they are probably representing effects 
from fractures in the plugs. The goal of this modelling exercise is only to deal with matrix 
properties as fracture permeability is regarded as having a spatial structure more or less 
unrelated to the matrix structure.

Permeabilities cannot be averaged in a simple way like porosities, because extreme 
values tend to control flow, either as barriers for low values or by channeling flow for high 
values. Depending on whether these extremes are connected or not, they may therefore 
constitute important Controls on flow. The organization of highs and lows with respect 
to flow direction is also of importance. If flow is parallel to bedding in a layered rock, 
an aritmetric average gives the best estimate, whereas if flow is perpendicular to bedding 
harmonic average gives the best estimate. Geometric average gives intermediate values 
corresponding to disorganized permeability distributions and/or flow at arbitrary angles 
to bedding. This is because the harmonic average tends to put emphasis on the low 
values, and the aritmetric average puts emphasis on the high values. The kind of average 
which most correctly describes average flow performance can best be determined from flow 
simulation studies.
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C on  Por. vor out Caro Poem.

Figure 4: Block means of core porosity versus core permeability found by 
simple average, harmonic average and geometric average. The curve is a 
least squares fit to the data.

" msi = ~ Yhn X  Aritmetrics average

— 1—  = k  Y' 4  Harmonic average

log(mgeo.) = £ Yn lo9x  Geometric average
The hard data boils down to 27 samples from the edited 343 samples, when averaged 

over the cells (Fig. 4). The spread in data within each cell mainly produces only minor 
discrepancies in the different types of averaging. The sets of different averaged values that 
relate to the same cell can be seen as three different symbols plotting at the same porosity 
value, but with different permeability value. The spread in these values relates to the 
heterogeneity within the cell, but also relates to the number of samples that went into the 
averaging of that cell.

A simple line fit of the aritmetric average of data to a funetion of the form K  = 
a ■ <f>b, yields a =  4.33 • HT4 and b = 2.507825 as shown on Fig. 4. Using only this 
line implies a very tight link between porosity and permeability, which even the few points 
available show is not present. There is still spread in permeability relative to porosity even 
though only one type of averaging is chosen. This spread is important to reproduce in the 
simulation. The different types of averaging only emphasize the ambiguous relationship 
between porosity and permeability.
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The simulated population of permeabilities is three orders of magnitude greater (58072 
samples), than the hard data population, which makes it highly unlikely that spread and 
variance of the target population (the whole volume) are represented in the sparse hard 
data population. The problem is emphasized by the demand for a correct permeability 
spread, even for small intervals of porosity. Given the small hard data population, the am- 
biguity in averaging technique and spread in data, it is deemed more likely that acceptable 
results will be achieved, if a subjectively constructed bivariate conditional distribution is 
constructed to guide the simulation.

Figure 5: Block aritmetric means of core porosity vs. permeability data.
The dashed curve is the least squares lit to the data, and the lines are 
manually fitted decile lines assuming gaussianity within each treshhold.

The construction of the bivariate conditional population has been controlled by draw- 
ing lines that define permeability decile distributions. These lines have been designed to 
be parallel to the least squares fit and to encompass all porosity/permeability outliers that 
were deemed valid representations of matrix properties. The deciles are designed to define 
a normal score distribution for a given porosity value (Fig. 5). The bivariate conditioning 
distribution is then constructed by drawing values with the a priori simulated porosities 
from within these classes and then assigning permeabilites according to a cumulative prob- 
ability function for each porosity value as defined by the decile lines. It is not necessary 
to honour a normal score distribution for each porosity threshold, but there is too little 
data to indicate more sofisticated details for the relationship.
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Figure 6: Resulting bivariate conditional distribution.
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Figure 7: Histograms of the univariate distributions in the bivariate condi- 
tioning dataset.
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The resulting bivariate population is seen in Fig. 6. The normal score distribution of 
permeability within porosity classes is visible as a more dense zone centrally in the cloud. 
This method also allows circumvention of problems with bias in the hard data population, 
because samples are produced for all cells that are being simulated. Comparison to the 
total data population (Fig. 3) also shows that no serious violation of the spread has been 
made, when outliers that are regarded as related to fractures are disregarded.

The resulting univariate distributions can be seen in Fig. 7. The variance is equal 
to the sili value of a variogram (in stationary populations). The variance of the hard 
data is probably not representative of the target population due to the very few samples. 
The variance from the histogram of the constructed conditioning permeability distribution 
(equals the squared standard deviation) is therefore regarded as a much better measure of 
what the sili value of the variograms should be than the variance of the 27 hard data points. 
The variance to guide the sili is therefore taken from the calculated bivariate conditional 
distribution. This has a standard deviation of 0.7684 corresponding to a variance of 0.549.

W ith only 27 hard data points, it is not possible to construct well defined variograms. 
Instead the variography obtained from the porosity simulation (Vejbæk 1995) is used with 
the sili value adjusted to equal the variance of the target population. This subjectively 
chosen variography may produce errors relating to the creation of too high or too low 
connectivity. With the relatively high correlation to porosity (0.877) it is considered that 
variogram ranges for permeability cannot be very different from those for the porosity. 
The ideal variograms are, however, unlikely to be exactly like the porosity variograms, 
because the correlation coefficient in not equal to 1 .

The model variograms can be seen in Fig. 8 and siils and ranges are listed in Table
1.
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Model va ri og ram, vartical Model variogram , horizontal

Figure 8: Model variograms used to constrain the spatial continuity of the 
simulated permeabilities.

Structure Vertical Horizontal Siil value
ranges ranges Hard data

Spherical 30m 300m 0.220
Exponential 1.5m 30m 0.082
Gaussian 20m 650/1250m 0.247

Table 1: Silis and ranges of the model variograms. Sili values add up to 0.549, which is 
equal to the variance of the constructed permeability distribution.

4 T he ACS technique

The virtue of the ACS technique is to make use of a wider range of data and constraints 
than more conventional techniques allow (Deutsch and Journel 1992; Deutsch and Cock- 
erham 1994). In the present study both hard data (core permeabilities) and soft data 
(a priori simulated porosities) are utilized via variograms and via constructed bivariate 
distributions.

The underlying annealing procedure is standard: initially the conditioning data is 
relocated to the nearest grid nodes and all remaining grid nodes are assigned values ran- 
domly chosen from the user specified histogram. This initial image is sequentially improved 
by swapping pairs of grid nodes that are not occupied by conditioning data. Swaps are 
accepted if the objective function is lowered, which is equivalent to improving the image. 
Swaps that increase the objective function are not all rejected, but accepted according to 
the so-called Boltzman distribution, which assigns a decreasing probability with decreasing 
Temperature’; hence the similarity to freezing of a fluid.
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The Boltzman distribution is given by the acceptance probability:

Prob{accept} =
if Onew ^  Oold
otherwise

new

As the temperature (t ) is lowered, the probability for the second alternative decreases. 
This ensures that the optimization does not only find a local minimum and increases the

sufficient swaps to allow convergence. It has been found though, that for the purpose of 
cosimulation the seerne can be reduced to just rejecting all bad swaps and accepting all 
good swaps (Deutsch and Cockerham 1994).

The objective funetion is in the simplest case, a measure of the match between the 
variogram for the population (7 *(h)) and a model variogram (7 (h)) given by the squared

where 7 *(h) is the semivariogram for the population, 7 (h) is the prespecified variogram, 
and h are lag distances. The summation is taken over a prespecified number of lag dis­
tances. The denominator, which ensures a dimensionless value is not strickly necessary 
and is omitted in the seerne used here.

As stated previously, the annealing technique allows simultaneous honouring of a 
wide variety of data. This is done by extending the objective funetion to contain more 
components (c):

where O is the total objective funetion defined as a sum of all components, Oc is a com- 
ponent objective funetion, nc is the number of components and wc is a weight applied to 
that component.

chances for finding an optimal global solution to the objective funetion. The trick is then 
to find a sufficiently slow ’cooling’ rate, and for each reduction in ’temperature’ to have

difference:

o  = X > c - o c
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In the present case there are also soft data in the form of presimulated porosity (Ve­
jbæk 1995), and the bivariate distribution defining the link between porosity and simulated 
permeability (see below). These are honoured by discretizing the bivariate conditioning 
dataset into a set of cumulative distribution functions for permeability within each poros­
ity class. The bivariate conditioning dataset in Fig. 6 is divided into porosity classes 
and for each porosity class a cumulative distribution function is build such that an equal 
number of permeability data points are found in each permeability class (Deutsch and 
Cockerham 1994). An element of the probability function can be written:

F(ki,j,<f>j) = Prob [K < khJ, <j>j < $ < <t>j+1]

i —  1 , —  0 ,

where nk and riø are the number of permeability and porosity thresholds, K  is permeability, 
and <f> is porosity. Thus the objective function component which takes care of the soft data 
and the conditional bivariate distribution is:

o Biv. = E  E -  F * (h v  <h)f
n k

where F  is the reference function, and F* is the model (simulated) function. In the 
present case we use ten classes corresponding to nine thresholds for porosity classes, and 
for permeability classes within each porosity class (appendix B).

5 R esu lts

The quality of the simulation result is depending on the ability of the simulator to re- 
produce the statistical characteristics specified in the design of the simulation (appendix 
B ) .

The histogram of the simulated permeabilities (upper left on Fig. 10) should be 
compared with the histogram of the conditioning univariate distribution (Fig. 7), which 
seems to be nicely reproduced both in terms of spread and shape. This is also the case with 
the conditional bivariate distributions, where the correlation coefficient is almost exactly 
reproduced (compare Fig. 10 middle left and Fig.6). The slight tendency for a step-like 
edge of the point cloud is because the bivariate conditional distribution is discretized into 
porosity intervals. It is interesting to see that the relative paucity of data (few data points) 
in both extremes of the plot of the simulated bivariate distribution is a reproduction of 
the conditional bivariate distributions (compare Fig. 10 middle left and Fig.6).
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F igure 9. Map slices through the simulation volume at 3 m above base 
-  depicting permeabilities (left) and the a priori simulated porosities (right) 

that acted as soft data constraint in this report.

The reproduced correlation to porosity can also be seen by visual inspection of the 
maps and cross-sections shown in Figs 9, 11, 12, 13, and 14. The triangles shown on 
the cross sections are the conditioning hard data, where the colour inside the triangles 
corresponds to the hard data values. On the map sections the triangles merely shows the 
well location, not the conditioning data value. As porosities derived from logs were used 
to condition the porosity simulation, the triangles extend for the entire length of the well 
on the cross sections. The scarcity of core data is obvious from the permeability cross 
sections, where only few triangles are seen, and are even missing on Fig. 13.

The worst match in the realization relates to the variography as shown on the middle 
right, and the bottom plots on Fig. 10 (compare Fig. 8). Even though the selected 
model variograms are badly constrained by data and are subjectively chosen, they should 
theoretically be honoured by the simulation.

The sill values should be 0.549 as defined by the variance of the target population 
(see above) and specified in the simulation design (see appendix B). However, there is a 
strong vertical trend in the porosity data, which is visible in the porosity cross sections 
(Figs. 13 and 14) as discussed in Vejbæk (1995). The strong correlation between porosity 
and permeability (0.877; Fig. 6) causes the influence of the soft data to also produce a 
strong trend in the vertical output variogram. This is seen to be affected by the trend by 
having points plotting well above the sill value of 0.549 (Fig. 10 lower right). The long 
horizontal ranges specified in table 1, which also keeps the variogram below the sill within 
the displayed ranges are, however, honoured satisfactorily (compare Figs. 10 middle right 
and lower left and 8).



Figure 10: Summary statistics of the simulated permeabillty volume. See 
text for details
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Figure 11: Map slices through the simulation volume at 63 m above base 
depicting permeabilities (left) and the a priori simulated porosities (right) 
that acted as soft data constraint in this report.

SGCOSMI SIMULATIONS: Poro««ty

Figure 12: Map slices through the simulation volume at 99 m above base 
depicting permeabilities (left) and the a priori simulated porosities (right) 
that acted as soft data constraint in this report.
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SGCOSIM SIMULATIONS: Paro si ty

l

Figure 13: Cross section slices through the simulation volume at x = 500 
depicting permeabilities (top two) and the a priori simulated porosities 
(below) that acted as soft data constraint in this report.
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SASIM Raalizations: Parmaablllty

1 4 . 1 -  4.3 
l a . t - 4 . 1  
l s . r - s . 9

1 3 . 5 -  3.7 

I  3 .3-3.5
3.1 -3 .3  
29 -3 .1  

I  2 7 - 2 9  
1 2 5 - 2 7  

1 2 3 - 2 5  
1 2 1 - 2 311.5- 21 
1 1.7-1.3
1 1.5- 1.7 

1 1.3-1.5

1 1 .1 -  14  
I  0.9-1.1 
I  0.7-0.9
I  9 4 0 * 2 7

v  Pr m — bllty (mD)

SGCOSIM SIMULATIONS: Poroaity

Figure 14: Cross section slices through the simulation volume at x = 1200 
depicting permeabilities (top two) and the a priori simulated porosities 
(below) that acted as soft data constraint in this report.
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6 C onclusion

The quality of a geostatistical model is directly related to how well it honours the available 
data. The ACS technique allows the simultaneous integration of many types of data. Even 
in ideal situations, where a multitude of high quality data are available, they are rarely 
adequate for unique determinations of reservoir properties. In the present case, however, 
data scarcity prevails. If we were to rely only on the available data, we would get results 
that would not satisfy our prejudice on how porosity and permeability covariate in space. 
The ACS method allows any such prejudice to be honoured through the possibility for 
specifying an expected bivariate behaviour. We thereby get permeability estimates also 
in wells, where only porosity data are available, and in a way that is consistent with 
these data, the neighbouring wells, and even with seismic impedances, which were used as 
support for deriving the porosity field.
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8 A P P E N D IX  A
The attached diskette is a DOS formattet 1.44 MB diskette containing one realization of 
the porosity permeability distribution in the volume shown in Fig. 1. The file is com- 
pressed from app. 4.7 MByte using the ARJ software to app. 0.9 MByte. The file format 
of the inflated file is the GSLIB format as described in Deutsch and Journel (1992). The 
format is basically free format ASCII files (first 20 lines):

SASIM Realizations 
9

X-UTM
Y-UTM
Depth
Neg. Depth
X
Y
Z_to_bot 
Sim. Perm.
Sim. poro.
632132.19 6149605.00 2016.7 -2016.7 12.5 12.5 3.0 1.5300 25.333
632149.88 6149587.00 2016.6 -2016.6 37.5 12.5 3.0 1.4850 26.526
632167.63 6149569.00 2016.4 -2016.4 62.5 12.5 3.0 1.5100 27.052
632185.31 6149552.00 2016.1 -2016.1 87.5 12.5 3.0 1.4200 27.314
632202.88 6149534.00 2016.1 -2016.1 112.5 12.5 3.0 1.6300 27.755
632220.63 6149516.00 2016.0 -2016.0 137.5 12.5 3.0 2.1900 29.728
632238.31 6149499.00 2015.8 -2015.8 162.5 12.5 3.0 1.9000 29.688
632255.88 6149481.00 2015.4 -2015.4 187.5 12.5 3.0 2.0300 27.394
632273.63 6149463.00 2015.1 -2015.1 212.5 12.5 3.0 1.0900 28.746

The two first parameters (X-UTM and Y-UTM) are UTM coordinates referring to UTM 
zone 31 (meridian 3°) using Heyford 1909 spheroid. The depth coordinates (Depth and 
Neg. Depth) are true vertical depths in meters below mean sealevel. The coordinate 
parameters (X, Y and Z_to_bot) are coordinates that refer to the carthesian grid system 
in which simulation took place. They refer to distance from the lower western corner of the 
volume: Z_to_bot is height above the base of the volume, X is increasing in a southeastern 
direction, and Y is increasing towards the northeast. The data are ordered according to 
this coordinate system counting first along the x-axis, then row by row along the y-axis, 
then layer by layer along the z-axis. The parameters Sim. Perm. and Sim. poro . are 
the simulated permeabilities in milli Darcy as described in this report and the best case 
porosities in pct. according to Vejbæk (1995).

The number of grid cells are 57 in the X direction, 61 in the Y direction, and 17 in 
the z direction. The cell size is 25 • 25 ■ 6m with the points referring to the center of the 
cells. The lower left point in fig. 2 is thus at location: x = 12.5m, y = 12.5m, z = 3m. 
Grid dimensions are accordingly: 1400m • 1525m • 102m.

The conditioning data file is called hardper3 . da t and is also of the GSLIB formatted 
type. The header below is explained in the right column:
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Blokaverage of ../tomaal-6.dat 
15

X-coor
Y-coor
Trace
Line
ZtoBot
-ZtoBot
TVD
-TVD
CorePorosity 
Saturation 
Porosity Log 
Core Perm.
Harm. Perm.
Geom. Perm.
Simulated Porosity 

ue defining missing values is -999. The 
organized in the G SLIB format:

Header
Number of variables 
X-coordinate in model 
Y-coordinate in model 
Seismic trace nr.
Seismic Line nr.
Height above base of volume 
Height above base of volume 
Depth below mean sea level 
Depth below mean sea level 
Core porosity 
Water saturation 
Porosity from log data 
Aritmetric average permeability 
Harmonic average permeability 
Geometric average permeability 
Simulated porosity 

total dataset in the file tomaal-€

Transf= flat ZtoTOP-Maastr. Header
13 Number of variables

X-coor X-coordinate in model
Y-coor Y-coordinate in model
Trace Seismic trace nr.
Line Seismic Line nr.
ZtoTop -  m Height above base of volume
ZtoTop - ft Height above base of volume
ZtoMaa -  m Height above base of volume
Z TVD - ft Depth below mean sea level
CorePorosity Core porosity
Core Perm. Core permeabilty
Log Porosity Porosity from log data
Saturation Water saturation
impedance Seismic inversion impedance

//[4mm] The val-

. dat is similarly
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9 A P P E N D IX  B
The parameter file used for SASIM is shown below.

Simulated Annealing Based Simulation 
************************************

START OF PARAMETERS: 
0 1 0  1 1
0 3 0 1 1
0
1
56 12.5 25.0
61 12.5 25.0
17 3.0 6.0
260357 
4
dbg.sasim 
sasim.out
1
1.0 0.1 75 8 3 0.00001
200.0
0.1
1
hardper3.dat 
1 2 5 12
-90 1.0e21
0
.,/data/cluster.dat 
3 5
99 
1
2.78
.,/bestsim/sgcosim.out 
1 
0
0.877
edpope.out 
2 1 0
0.01 5.0
9 
9
60
0
3 0.00
2 0.0824 0.0 0.0 0.0

30.0 30.0 2.0
1 0.21976 0.0 0.0 0.0

300.0 300.0 30.0
0.24723 90.0 0.0 0.0

1250.0 650.0 20.0

\components: hist,varg,ivar,corr,bivh 
\weight: hist,varg,ivar,corr,bivh
\0=no transform, l=log transform 
\number of realizations 
\grid definition: nx,xmn,xsiz 
\ ny,ymn,ysiz
\ nz,zmn,zsiz
\random number seed 
\debugging level 
\file for debugging output 
\file for simulation output 
\schedule (0=automatic,l=set below)
\ Schedule: t0,redfac,ka,k,nura,0 
\ maximum number of perturbations 10.0 
\ reporting interval 
\conditioning data:(0=no, l=yes)
\ file with data
\ columns: x,y,z,attribute
\ trimming limits
\file with histogram:(0=no, i=yes)
\ file with histogram 
\ column for value and weight 
\ number of quantiles for obj. func. 
\number of indicator variograms 
\ indicator thresholds 
\file with gridded secondary data 
\ column number 
\ vertical average (0=no, l=yes) 
\correlation coefficient 
\file with bivariate data 
\ columns for primary, secondary, wt 
\ minimum and maximum 
\ number of primary thresholds 
\ number of secondary thresholds 
Wariograms: number of lags 
\ standardize siil (0=no,l=yes)
\ nst, nugget effeet 
\ it,cc,ang1,ang2,ang3 
\ a_hmax, a_hmin, a_vert 
\ it,cc,angl,ang2,ang3 
\ a_hmax, a_hmin, a_vert 
\ it,cc,angl,ang2,ang3 
\ a_hmax, a_hmin, a_vert
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