GEUS

Report File no

13225

RIGS-2 RIGS-2A

Conventional Core Analysis - Rigs-2 core 1,2,3,4 Rigs-2A core 1

Christian Høier, Finn Jakobsen

GEUS

Denmark 10/11-1996

Conventional Core Analysis

For Amerada Hess (Denmark) A/S Well: Rigs-2. Core: 1, 2, 3 and 4 Well: Rigs-2A. Core: 1

> GEUS Core Laboratory By Christian Høier and Finn Jacobsen

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND MINISTRY OF ENVIRONMENT AND ENERGY

Conventional Core Analysis

For Amerada Hess (Denmark) A/S Well: Rigs-2. Core: 1, 2, 3 and 4 Well: Rigs-2A. Core: 1

> GEUS Core Laboratory By Christian Høier and Finn Jacobsen

Released 01.10.2001

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND MINISTRY OF ENVIRONMENT AND ENERGY

Contents

1. INTRODUCTION	2
2. SAMPLING AND ANALYTICAL PROCEDURE	
2.1 SPECTRAL CORE GAMMA LOG	J
2.2 PLUGGING	
2.3 PRESERVATION	
2.4 SLABBING AND CORE PHOTOGRAPHY 2.5 "QUICKLOOK" OIL PERMEABILITY	
2.5 "QUICKLOOK" OIL PERMEABILITY	4
2.6 FLUID SATURATION DETERMINATION	4
2.7 CONVENTIONAL CORE ANALYSIS	
2.8 LITHOLOGICAL DESCRIPTION	
2.9 TABLES FOR RIGS-2	
3. FLOW CHART OF THE ANALYTICAL PROCEDURE	
4. ANALYTICAL METHODS	
4.1 SPECTRAL CORE GAMMA LOG	14
4.2 CONVENTIONAL CLEANING AND DRYING	
4.3 GAS DERMEABILITY	
4 4 LIQUID PERMEABILITY	
4.5 HE-POROSITY AND GRAIN DENSITY	
4.6 FULID SATURATION DETERMINATION	
4.7 PRECISION OF ANALYTICAL DATA	
	18
5. RESULTS OF CONVENTIONAL CORE ANALYSIS	
5.1 CORE ANALYSIS TABULATION FROM RIGS-2	
5.1 CORE ANALYSIS TABULATION FROM RIGS-2	
5.1 CORE ANALYSIS TABULATION FROM RIGS-2 5.2 DISTRIBUTION OF GAS PERMEABILITY	
 5.1 CORE ANALYSIS TABULATION FROM RIGS-2 5.2 DISTRIBUTION OF GAS PERMEABILITY 5.3 DISTRIBUTION OF LIQUID PERMEABILITY 5.4 DISTRIBUTION OF POROSITY 	
 5.1 CORE ANALYSIS TABULATION FROM RIGS-2 5.2 DISTRIBUTION OF GAS PERMEABILITY 5.3 DISTRIBUTION OF LIQUID PERMEABILITY 5.4 DISTRIBUTION OF POROSITY 5.5 DISTRIBUTION OF GRAIN DENSITY 	
 5.1 CORE ANALYSIS TABULATION FROM RIGS-2 5.2 DISTRIBUTION OF GAS PERMEABILITY 5.3 DISTRIBUTION OF LIQUID PERMEABILITY 5.4 DISTRIBUTION OF POROSITY 5.5 DISTRIBUTION OF GRAIN DENSITY 5.6 DISTRIBUTION OF WATER SATURATION 	
 5.1 CORE ANALYSIS TABULATION FROM RIGS-2 5.2 DISTRIBUTION OF GAS PERMEABILITY 5.3 DISTRIBUTION OF LIQUID PERMEABILITY 5.4 DISTRIBUTION OF POROSITY 5.5 DISTRIBUTION OF GRAIN DENSITY 5.6 DISTRIBUTION OF WATER SATURATION 5.7 DISTRIBUTION OF OIL SATURATION 	
 5.1 CORE ANALYSIS TABULATION FROM RIGS-2 5.2 DISTRIBUTION OF GAS PERMEABILITY 5.3 DISTRIBUTION OF LIQUID PERMEABILITY 5.4 DISTRIBUTION OF POROSITY 5.5 DISTRIBUTION OF GRAIN DENSITY 5.6 DISTRIBUTION OF WATER SATURATION 5.7 DISTRIBUTION OF OIL SATURATION 5.8 DISTRIBUTION OF GAS SATURATION 	
 5.1 CORE ANALYSIS TABULATION FROM RIGS-2 5.2 DISTRIBUTION OF GAS PERMEABILITY 5.3 DISTRIBUTION OF LIQUID PERMEABILITY 5.4 DISTRIBUTION OF POROSITY 5.5 DISTRIBUTION OF GRAIN DENSITY 5.6 DISTRIBUTION OF WATER SATURATION 5.7 DISTRIBUTION OF OIL SATURATION 5.8 DISTRIBUTION OF GAS SATURATION 5.9 CROSSELOTS OF POROSITY VS. GAS PERMEABILITY 	
 5.1 CORE ANALYSIS TABULATION FROM RIGS-2 5.2 DISTRIBUTION OF GAS PERMEABILITY 5.3 DISTRIBUTION OF LIQUID PERMEABILITY 5.4 DISTRIBUTION OF POROSITY 5.5 DISTRIBUTION OF GRAIN DENSITY 5.6 DISTRIBUTION OF WATER SATURATION 5.7 DISTRIBUTION OF OIL SATURATION 5.8 DISTRIBUTION OF GAS SATURATION 5.9 CROSSPLOTS OF POROSITY VS. GAS PERMEABILITY 	
 5.1 CORE ANALYSIS TABULATION FROM RIGS-2 5.2 DISTRIBUTION OF GAS PERMEABILITY 5.3 DISTRIBUTION OF LIQUID PERMEABILITY 5.4 DISTRIBUTION OF POROSITY 5.5 DISTRIBUTION OF GRAIN DENSITY 5.6 DISTRIBUTION OF WATER SATURATION 5.7 DISTRIBUTION OF OIL SATURATION 5.8 DISTRIBUTION OF GAS SATURATION 5.9 CROSSPLOTS OF POROSITY VS. GAS PERMEABILITY 5.10 CROSSPLOTS OF POROSITY VS. LIQUID PERMEABILITY 5.11 CORE ANALYSIS TABUL ATION FROM RIGS-2A 	19 33 34 35 36 37 38 39 41 45 46
 5.1 CORE ANALYSIS TABULATION FROM RIGS-2 5.2 DISTRIBUTION OF GAS PERMEABILITY 5.3 DISTRIBUTION OF LIQUID PERMEABILITY 5.4 DISTRIBUTION OF POROSITY 5.5 DISTRIBUTION OF GRAIN DENSITY 5.6 DISTRIBUTION OF WATER SATURATION 5.7 DISTRIBUTION OF OIL SATURATION 5.8 DISTRIBUTION OF GAS SATURATION 5.9 CROSSPLOTS OF POROSITY VS. GAS PERMEABILITY 5.10 CROSSPLOTS OF POROSITY VS. LIQUID PERMEABILITY 5.11 CORE ANALYSIS TABULATION FROM RIGS-2A 5.12 DISTRIBUTION OF GAS PERMEABILITY 	
 5.1 CORE ANALYSIS TABULATION FROM RIGS-2 5.2 DISTRIBUTION OF GAS PERMEABILITY 5.3 DISTRIBUTION OF LIQUID PERMEABILITY 5.4 DISTRIBUTION OF POROSITY 5.5 DISTRIBUTION OF GRAIN DENSITY 5.6 DISTRIBUTION OF WATER SATURATION 5.7 DISTRIBUTION OF OIL SATURATION 5.8 DISTRIBUTION OF GAS SATURATION 5.9 CROSSPLOTS OF POROSITY VS. GAS PERMEABILITY 5.10 CROSSPLOTS OF POROSITY VS. LIQUID PERMEABILITY 5.11 CORE ANALYSIS TABULATION FROM RIGS-2A 5.12 DISTRIBUTION OF GAS PERMEABILITY 	
 5.1 CORE ANALYSIS TABULATION FROM RIGS-2 5.2 DISTRIBUTION OF GAS PERMEABILITY 5.3 DISTRIBUTION OF LIQUID PERMEABILITY 5.4 DISTRIBUTION OF POROSITY 5.5 DISTRIBUTION OF GRAIN DENSITY 5.6 DISTRIBUTION OF WATER SATURATION 5.7 DISTRIBUTION OF OIL SATURATION 5.8 DISTRIBUTION OF GAS SATURATION 5.9 CROSSPLOTS OF POROSITY VS. GAS PERMEABILITY 5.10 CROSSPLOTS OF POROSITY VS. LIQUID PERMEABILITY 5.11 CORE ANALYSIS TABULATION FROM RIGS-2A 5.12 DISTRIBUTION OF GAS PERMEABILITY 5.13 DISTRIBUTION OF LIQUID PERMEABILITY 5.13 DISTRIBUTION OF LIQUID PERMEABILITY 	
 5.1 CORE ANALYSIS TABULATION FROM RIGS-2 5.2 DISTRIBUTION OF GAS PERMEABILITY 5.3 DISTRIBUTION OF LIQUID PERMEABILITY 5.4 DISTRIBUTION OF POROSITY 5.5 DISTRIBUTION OF GRAIN DENSITY 5.6 DISTRIBUTION OF WATER SATURATION 5.7 DISTRIBUTION OF OIL SATURATION 5.8 DISTRIBUTION OF GAS SATURATION 5.9 CROSSPLOTS OF POROSITY VS. GAS PERMEABILITY 5.10 CROSSPLOTS OF POROSITY VS. LIQUID PERMEABILITY 5.11 CORE ANALYSIS TABULATION FROM RIGS-2A 5.12 DISTRIBUTION OF GAS PERMEABILITY 5.13 DISTRIBUTION OF LIQUID PERMEABILITY 5.14 DISTRIBUTION OF POROSITY 	
 5.1 CORE ANALYSIS TABULATION FROM RIGS-2 5.2 DISTRIBUTION OF GAS PERMEABILITY 5.3 DISTRIBUTION OF LIQUID PERMEABILITY 5.4 DISTRIBUTION OF POROSITY 5.5 DISTRIBUTION OF GRAIN DENSITY 5.6 DISTRIBUTION OF GRAIN DENSITY 5.7 DISTRIBUTION OF OIL SATURATION 5.8 DISTRIBUTION OF GAS SATURATION 5.9 CROSSPLOTS OF POROSITY VS. GAS PERMEABILITY 5.10 CROSSPLOTS OF POROSITY VS. LIQUID PERMEABILITY 5.11 CORE ANALYSIS TABULATION FROM RIGS-2A 5.12 DISTRIBUTION OF GAS PERMEABILITY 5.13 DISTRIBUTION OF GAS PERMEABILITY 5.14 DISTRIBUTION OF DOROSITY 5.15 DISTRIBUTION OF GRAIN DENSITY 5.15 DISTRIBUTION OF GRAIN DENSITY 5.15 DISTRIBUTION OF GRAIN DENSITY 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
 5.1 CORE ANALYSIS TABULATION FROM RIGS-2 5.2 DISTRIBUTION OF GAS PERMEABILITY 5.3 DISTRIBUTION OF LIQUID PERMEABILITY 5.4 DISTRIBUTION OF POROSITY 5.5 DISTRIBUTION OF GRAIN DENSITY 5.6 DISTRIBUTION OF WATER SATURATION 5.7 DISTRIBUTION OF OIL SATURATION 5.8 DISTRIBUTION OF GAS SATURATION 5.9 CROSSPLOTS OF POROSITY VS. GAS PERMEABILITY 5.10 CROSSPLOTS OF POROSITY VS. LIQUID PERMEABILITY 5.11 CORE ANALYSIS TABULATION FROM RIGS-2A 5.12 DISTRIBUTION OF GAS PERMEABILITY 5.13 DISTRIBUTION OF LIQUID PERMEABILITY 5.14 DISTRIBUTION OF POROSITY 5.15 DISTRIBUTION OF POROSITY 5.16 DISTRIBUTION OF GRAIN DENSITY 	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
 5.1 CORE ANALYSIS TABULATION FROM RIGS-2 5.2 DISTRIBUTION OF GAS PERMEABILITY 5.3 DISTRIBUTION OF LIQUID PERMEABILITY 5.4 DISTRIBUTION OF POROSITY 5.5 DISTRIBUTION OF GRAIN DENSITY 5.6 DISTRIBUTION OF GRAIN DENSITY 5.6 DISTRIBUTION OF OIL SATURATION 5.7 DISTRIBUTION OF GAS SATURATION 5.8 DISTRIBUTION OF GAS SATURATION 5.9 CROSSPLOTS OF POROSITY VS. GAS PERMEABILITY 5.10 CROSSPLOTS OF POROSITY VS. LIQUID PERMEABILITY 5.11 CORE ANALYSIS TABULATION FROM RIGS-2A 5.12 DISTRIBUTION OF GAS PERMEABILITY 5.13 DISTRIBUTION OF LIQUID PERMEABILITY 5.14 DISTRIBUTION OF GRAIN DENSITY 5.15 DISTRIBUTION OF GRAIN DENSITY 5.16 DISTRIBUTION OF GRAIN DENSITY 5.17 DISTRIBUTION OF GAS SATURATION 5.17 DISTRIBUTION OF OIL SATURATION 5.18 DISTRIBUTION OF GAS SATURATION 5.17 DISTRIBUTION OF GAS SATURATION 5.18 DISTRIBUTION OF GRAIN DENSITY 5.15 DISTRIBUTION OF GRAIN DENSITY 5.16 DISTRIBUTION OF GAS SATURATION 5.17 DISTRIBUTION OF OIL SATURATION 5.18 DISTRIBUTION OF OIL SATURATION 5.17 DISTRIBUTION OF OIL SATURATION 5.18 DISTRIBUTION OF OIL SATURATION 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
 5.1 CORE ANALYSIS TABULATION FROM RIGS-2 5.2 DISTRIBUTION OF GAS PERMEABILITY 5.3 DISTRIBUTION OF LIQUID PERMEABILITY 5.4 DISTRIBUTION OF POROSITY 5.5 DISTRIBUTION OF GRAIN DENSITY 5.6 DISTRIBUTION OF GRAIN DENSITY 5.6 DISTRIBUTION OF OIL SATURATION 5.7 DISTRIBUTION OF OIL SATURATION 5.8 DISTRIBUTION OF GAS SATURATION 5.9 CROSSPLOTS OF POROSITY VS. GAS PERMEABILITY 5.10 CROSSPLOTS OF POROSITY VS. LIQUID PERMEABILITY 5.11 CORE ANALYSIS TABULATION FROM RIGS-2A 5.12 DISTRIBUTION OF GAS PERMEABILITY 5.13 DISTRIBUTION OF GRAIN DENSITY 5.14 DISTRIBUTION OF GRAIN DENSITY 5.15 DISTRIBUTION OF GRAIN DENSITY 5.16 DISTRIBUTION OF GRAIN DENSITY 5.17 DISTRIBUTION OF GAS SATURATION 5.18 DISTRIBUTION OF GAS SATURATION 5.19 CROSSPLOTS OF POROSITY VS. GAS PERMEABILITY 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
 5.1 CORE ANALYSIS TABULATION FROM RIGS-2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
 5.1 CORE ANALYSIS TABULATION FROM RIGS-2 5.2 DISTRIBUTION OF GAS PERMEABILITY 5.3 DISTRIBUTION OF LIQUID PERMEABILITY 5.4 DISTRIBUTION OF POROSITY 5.5 DISTRIBUTION OF GRAIN DENSITY 5.6 DISTRIBUTION OF GAS SATURATION 5.7 DISTRIBUTION OF OIL SATURATION 5.8 DISTRIBUTION OF GAS SATURATION 5.9 CROSSPLOTS OF POROSITY VS. GAS PERMEABILITY 5.10 CROSSPLOTS OF POROSITY VS. LIQUID PERMEABILITY 5.11 CORE ANALYSIS TABULATION FROM RIGS-2A 5.12 DISTRIBUTION OF GAS PERMEABILITY 5.13 DISTRIBUTION OF CAS PERMEABILITY 5.14 DISTRIBUTION OF POROSITY 5.15 DISTRIBUTION OF GRAIN DENSITY 5.16 DISTRIBUTION OF GAS NUTRATION 5.17 DISTRIBUTION OF OIL SATURATION 5.18 DISTRIBUTION OF GAS SATURATION 5.19 CROSSPLOTS OF POROSITY VS. GAS PERMEABILITY 5.10 CROSSPLOTS OF POROSITY 5.15 DISTRIBUTION OF GRAIN DENSITY 5.16 DISTRIBUTION OF GAS NUTRATION 5.17 DISTRIBUTION OF GAS SATURATION 5.18 DISTRIBUTION OF GAS SATURATION 5.19 CROSSPLOTS OF POROSITY VS. GAS PERMEABILITY 5.20 CROSSPLOTS OF POROSITY VS. LIQUID PERMEABILITY 5.20 CROSSPLOTS OF POROSITY VS. LIQUID PERMEABILITY 	19 33 34 35 36 37 38 39 41 45 46 50 51 52 53 54 55 56 58 60 61
 5.1 CORE ANALYSIS TABULATION FROM RIGS-2	19 33 34 35 36 37 38 39 41 45 46 50 51 52 53 54 55 56 58 60 61 62

1. Introduction

By request of AMERADA HESS Ltd, GEUS Core Laboratory has carried out conventional core analysis on the wells Rigs-2 and Rigs-2A.

The analytical programme was specified by Mr. Mads Sørensen and included the following services:

- Spectral core gamma log
- Preservation of core and plug samples
- Conventional plug analysis
- "Quicklook" oil permeability
- Core photography
- Lithological description of plugs

GEUS Core Laboratory received 4 cores from Rigs-2 on June 3, 1995 and 1 core from Rigs-2A on June 14, 1996. A preliminary spectral core gamma log and several preliminary reports have been forwarded to AMERADA HESS Ltd during June, August and September 1996.

2. Sampling and analytical procedure

The laboratory received four cores from Rigs-2 taken in the interval 2789 - 2868 meter measured depth, and one core from Rigs-2A taken in the interval 2971 - 2980.50 meter measured depth. The 10 cm diameter cores were contained in aluminium sleeves and cut into sections of approximately 1 meter. At every 3 meter a section of 20 cm had been preserved. A list of core boxes is given in table 2.1 and 2.4.

2.1 Spectral core gamma log

A spectral gamma log of the cores was recorded using a scanning speed of 1 cm per minute. The cores were retained in the aluminium sleeves. All data were later adjusted for an average activity from the sleeve and background.

Incomplete filling of the aluminium sleeves occasionally leads to erroneously low gamma activity at the junction between adjacent boxes. This effect has not been corrected on the core gamma log. However the extent of boxes are indicated as bars on the gamma log display to allow for evaluation.

2.2 Plugging

After the gamma scanning the sleeve was removed from the core and the following tasks were performed:

- 1 vertical plug was drilled at every second meter of core (0 cm below top).
- 3 horizontal plugs were drilled at every meter of core (10, 40, 70 cm below top).
- 2 horizontal plugs were preserved at every meter of core (75, 80 cm below top).
- 20 cm full core were preserved at every 3 meters (80 cm below top).

Quicklook oil permeability was determined on the horizontal plug 70 cm below the top at every second meter of core. Fluid saturation was determined on the horizontal plug 10 cm below the top at every meter of core. The preserved plugs and plugs used for fluid saturation determination were drilled using air as coolant, while tap water was used for the rest of the plugs. All plugs were 1.5" diameter plugs. The full core were cut using air as coolant. Figure 2.1 schematically shows the plugging program. A total of 412 plugs were drilled.

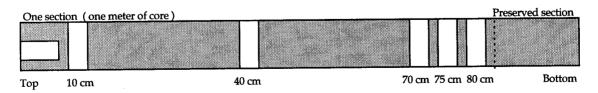


Figure 2.1: Plugging program illustrated on 1 meter of core. The grey areas represent the core and the white areas represent the plugs.

2.3 Preservation

A total of 20 full core sections were preserved by confinement in containers sealed by heatshrinkable rubber. A lists of preserved core sections are given in table 2.1 and table 2.4. A total of 136 1.5" plugs were preserved in a similar way. A lists of preserved 1.5" plugs are given in table 2.2 and table 2.5. The preserved core sections and plugs are stored at GEUS.

2.4 Slabbing and core photography

After plugging the cores were slabbed and photographed in white light as well as UV light. The photographs are attached to this report. During slabbing a slice with a thickness of 1 cm was cut, mounted on metal trays and later stored with the core material at GEUS.

2.5 "Quicklook" oil permeability

Oil permeability was measured on the fresh uncleaned plugs. The fresh plugs were confined in a core holder at 1000 psi and flushed with laboratory oil (Exxon Chemical, Isopar-L). At the point where laboratory oil was produced only, the oil permeability was measured.

2.6 Fluid saturation determination

The water content of the plug was extracted by Dean Stark destillation with toluene and measured. The quantity of oil was calculated as the difference between the original sample weight and the weight after extraction, corrected for the amount of water recovered. For the calculation of fluid saturation a density of 0.85 g/ml for the oil and 1.075 g/ml for the brine was used.

2.7 Conventional core analysis

The plugs were cleaned in Soxhlet extractors and then dried at 110°C. Conventional core analysis including He-porosity, grain density and gas permeability was performed. The permeability was measured using a sleeve pressure of 400 psi.

2.8 Lithological description

The plugs were lithologically described by a geologist, and the descriptions are attached to this report.

2.9 Tables for Rigs-2

Table 2.1 Rigs-2. List of core boxes and preserved intervals.

Core no. 1: 2789 - 2789.5 m.

Box	Depth [m]	Preserved interval
1	2789 - 2789.5	

Core no. 2: 2797 - 2808 m.

Box	Depth [m]	Preserved interval
1	2797 - 2797.7	
2	2797.7 - 2798.7	2798.46 - 2798.63
3	2798.7 - 2799	
4	2799 - 2800	
5	2800 - 2801	2800.80 - 2801
6	2801-2802	
7	2802 - 2803	
8	2803 - 2804	
9	2804 - 2805	2804.80 - 2805
10	2805 - 2806	
11	2806- 2807	
12	2807 - 2807.7	
13	2807.7 - 2808	

Core no. 3: 2809- 2822.6 m.

Box	Depth [m]	Preserved interval
1	2809 - 2810	2809.75 - 2810
2	2810 - 2811	
3	2811 - 2812	
4	2812 -2813	2812.78 - 2813

Core no. 3: 2809- 2822.6 m (continued).

5	2813 - 2813.16	
6	2813.16 - 2814	
7	2814 - 2815	
8	2815 - 2816	
9	2816 - 2817	
10	2817 - 2818	2817.80 - 2818
11	2818 - 2819	
12	2819 - 2820	
13	2820 - 2821	
14	2821 - 2822	2821.80 - 2822
15	2822 - 2822.6	

Core no. 4: 2823 - 2868 m.

Box	Depth [m]	Preserved interval
1	2823 - 2824	
2	2824 - 2825	2824.87 - 2825
3	2825 - 2826	
4	2826 - 2827	
5	2827 - 2828	
6	2828 - 2829	2828.84 - 2829
7	2829 - 2830	
8	2830 -2831	
9	2831 - 2831.30	
10	2831.30 - 2832	
11	2832 - 2833	2832.81 - 2833
12	2833 - 2834	
13	2834 - 2835	
14	2835 - 2836	2835.78 - 2836
15	2836 - 2837	
16	2837 - 2838	

Core no. 4: 2823 - 2868 m (continued).

Box	Depth [m]	Preserved interval
17	2838 - 2839	2838.80 - 2839
18	2839 - 2840	
19	2840 - 2840.40	
20	2840.40 - 2841	
21	2841 - 2842	2841.87 - 2842
22	2842 - 2843	
23	2843 - 2844	
24	2844 - 2845	2844.80 - 2845
25	2845 - 2846	
26	2846 - 2847	
27	2847 - 2848	2847.81 - 2848
28	2848 - 2849	
29	2849 - 2849.50	
30	2849.50 - 2850	
31	2850 - 2851	
32	2851 - 2852	2851.87 - 2852
33	2852 - 2853	
34	2853 - 2854	
35	2854 - 2855	2854.77 - 2855
36	2855 - 2856	
37	2856 - 2857	
38	2857 - 2858	2857.81 - 2858
39	2858 - 2858.60	
40	2858.60 - 2859	
41	2859 - 2860	2859.75 - 2860
42	2860 - 2861	
43	2861 - 2862	
44	2862 - 2863	
45	2863 - 2864	

Core no. 4: 2823 - 2868 m (continued).

46	2864 - 2865	2864.85 - 2865
47	2865 - 2866	
48	2866 - 2867	
49	2867 - 2868	

Table 2.2 Rigs-2. List of preserved 1.5 inch plugs.

Plug	Core	Box	Depth		Plug	Core	Box	Depth
501	2	1	2797.45		524	3	2	2810.75
502		1	2797.55	ŝ	525		3	2811.80
503		2	2798.25		526		3	2811.85
504		2	2798.30		527		4	2812.70
505		3	2799.05		528		6	2813.86
506		4	2799.60		529		6	2813.91
507		4	2799.70		530		7	2814.80
508		5	2800.68		531		7	2814.90
509		5	2800.73		532		8	2815.65
510		6	2801.90		533		8	2815.75
511		6	2801.94		534		9	2816.65
512		7	2802.85		535		9	2816.75
513		7	2802.97		536		10	2817.60
514		8	2803.78		537	2	10	2817.60
515		8	2803.83		538		11	2818.75
516		9	2804.70		539		11	2818.80
517		9	2804.75		540		12	2819.75
518		10	2805.79		541		12	2819.80
519		10	2805.83		542		13	2820.60
520		11	2806.79		543		13	2820.65
521		11	2806.80		544		14	2821.66
522		12	2807.30		545		14	2821.75
523	3	2	2810.70		546	4	1	2823.75

Plug	Core	Box	Depth		Plug	Core	Box	Depth
547	4	1	2823.80		576	4	18	2839.75
548		2	2824.75		577		18	2839.80
549		2	2824.80		578		20	2840.75
550		3	2825.78		579		20	2840.80
551		3	2825.82		580		21	2841.75
552		4	2826.80		581		21	2841.80
553		4	2826.90		582		22	2842.75
554		5	2827.80		583		22	2842.80
555		5	2827.85		584		23	2843.85
556		6	2828.70		585		23	2843.90
557		6	2828.80		586		24	2844.43
558		7	2829.75		587		24	2844.75
559		7	2829.80		588		25	2845.90
560		8	2830.70		589		25	2845.95
561		8	2830.75		590		26	2846.75
562		11	2832.64		591		26	2846.93
563		11	2832.74		592		27	2847.70
564		12	2833.75		593		27	2847.75
565		12	2833.80		594		28	2848.79
566		13	2834.74		595		28	2848.85
567		13	2834.85	1	596		30	2849.85
568		14	2835.65		597		30	2849.90
569		14	2835.73	2	598		31	2850.85
570		15	2836.75		599		31	2850.94
571		15	2836.80		600		32	2851.78
572		16	2837.80		601		32	2851.83
573		16	2837.85		602		33	2852.75
574		17	2838.70		603		33	2852.80
575		17	2838.75		604		34	2853.76

Table 2.2 (continued) Rigs-2. List of preserved 1.5 inch plugs.

Plug	Core	Box	Depth	Plug	Core	Box	Depth
605	4	34	2853.95	617	4	41	2859.70
606		35	2854.65	618		42	2860.75
607		35	2854.70	619		42	2860.80
608		36	2855.75	620		43	2861.70
609		36	2855.85	621		44	2862.70
610		37	2856.75	622		44	2862.93
611		37	2856.85	623		45	2863.75
612		38	2857.62	624		45	2863.85
613		38	2857.67	625		46	2864.70
614		40	2858.73	626		46	2864.80
615		40	2858.80	627		47	2865.75
616		41	2859.65	628		47	2865.80

Table 2.2 (continued) Rigs-2. List of preserved 1.5 inch plugs.

Table 2.3 Rigs-2. List of plugs used for mercy injection.

Plug	Core	Box	Depth
7	2	2	2798.40
11		4	2799.04
24		7	2802.40
38		8	2803.21
53	3	4	2812.10
78		12	2819.15
102	4	4	2826.40

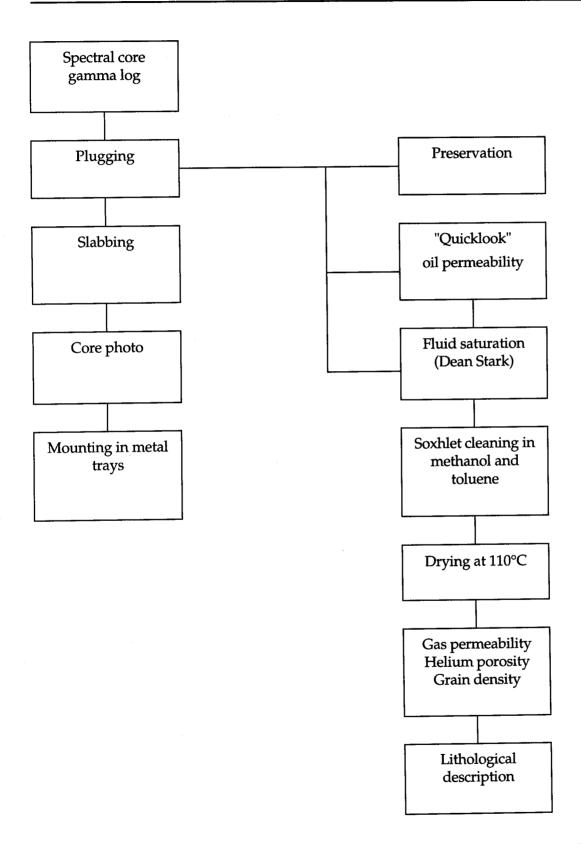
Plug	Core	Box	Depth
116	4	8	2830.60
133		14	2835.10
145		17	2838.40
172		26	2846.70
188		31	2850.44
203		35	2854.60
223		42	2860.35

2.10 Tables for Rigs-2A

Table 2.3 Rigs-2A. List of core boxes and preserved intervals.

Core no. 1: 2971 - 2980.50 m.

Box	Depth [m]	Preserved interval
1	2971 - 2972	
2	2972 - 2973	
3	2973 - 2974	2973.86 - 2974
4	2974 - 2975	
5	2975 - 2976	
6	2976 - 2977	2976.88 - 2977
7	2977 - 2978	2977.92 - 2978
8	2978 - 2979	
9	2979 - 2980	
10	2980 - 2980.50	


Table 2.4 Rigs-2A. List of preserved 1.5 inch plugs.

Plug	Core	Box	Depth
629	1	1	2971.80
630		2	2972.80
631		2	2972.85
632		3	2973.65
633	1	3	2973.77
634		4	2974.75
635		4	2974.80
636		5	2976.70

Plug	Core	Box	Depth
276	1	3	2973.40
285		5	2975.53
291		7	2977.28
297		9	2979.40

Table 2.6 Rigs-2A. List of plugs used for mercy injection.

3. Flow chart of the analytical procedure

4. Analytical methods

The following is a short description of the methods used by the GEUS Core Laboratory. For a more detailed description of methods, instrumentation and principles of calculation the reader is referred to API recommended practice for core analysis procedure (API RP 40, 1960).

4.1 Spectral core gamma log

The natural gamma radiation of a core is recorded within an energy window of 0.5 - 3.0 MeV, using Tl activated NaI scintillation detectors (Bicron), connected to a multichannel analyzer (Canberra).

The core is passed through a lead shielded tunnel at constant speed, with the gamma activity being continuously recorded. Refer to chapter 2 for the scanning speed used. The integrated gamma activity is recorded at regular intervals, either every 10 cm or every 3". The gamma activity represents the mean activity over a 10 cm or 3" interval, the assigned depth being the middle of the interval. The measured gamma activity is corrected for background activity, and in the case of sleeved core, also for activity of the sleeve. Gamma activity is reported in counts per minute (cpm). The following empirical relationship between cpm and GAPI has been established.

cpm = 18.2*GAPI

The relationship should be used as a guideline only. Radiation from decay of potassium and the uranium and thorium decay series are recorded in separate energy windows. Concentrations are calculated using synthetical standards of concrete doped with radioactive minerals in decay equilibrium. Concentrations of K, U and Th are reported as % K, ppm U and ppm Th, respectively. Relevant ratios are given.

4.2 Conventional cleaning and drying

The plugs are drilled and trimmed to a size of 1.5" diameter and 2.5" length. The samples are then placed in a Soxhlet extractor, which continuously soaks and washes the samples with methanol. This process removes water and dissolves salt precipitated in the pore space of the rock. Extraction is terminated when no chloride ions are present in the methanol. Samples containing hydrocarbons are then cleaned in toluene until a clear solution is obtained. Samples are vacuum dried at 90°C or 110°C, or they are humidity dried at 60°C and 40% relative humidity until constant weight occurs, depending on the requirements of the client.

4.3 Gas permeability

The plug is mounted in a Hassler core holder, and a confining pressure of 400 psi applied to the sleeve. The specific permeability to gas is measured by flowing nitrogen gas through a plug of known dimensions at differential pressures between 0 and 1 bar. No back pressure is applied. The readings of the digital gas permeameter are checked regularly by routine measurement of permeable steel reference plugs.

4.4 Liquid permeability

The "quicklook" oil permeability is measured by flowing liquid through the sample at a differential pressure between 0 and 20 bar. The measurement is performed at room temperature with no back pressure applied. The confining pressure is applied by the requirements of the client, see section 2.5. The liquid permeability rig is controlled by a PC based data acquisition program that monitors the differential pressure, the liquid flow rate and the temperature of the liquid. The measurement continues until the measured permeability is approximately constant with time. The reported liquid permeability is the mean value of several determinations performed over a period of minutes to a few hours, depending on the permeability of the sample.

4.5 He-porosity and grain density

The porosity is measured on cleaned and dried samples. The porosity is determined by subtraction of the measured grain volume and the measured bulk volume. The Helium technique, employing Boyle's Law, is used for grain volume determination, applying a double chambered Helium porosimeter with digital readout, whereas bulk volume is measured by submersion of the plug in a mercury bath using Archimedes principle. Grain density is calculated from the grain volume measurement and the weight of the cleaned and dried sample.

4.6 Fluid saturation determination

The water content of a plug is extracted by Dean Stark destillation with toluene. The water is retained by a condenser, and the amount is directly measured in a calibrated trap. The oil content of the plug is dissolved in the toluene. The quantity of oil is calculated as the difference between the original sample weight and the weight after extraction, corrected for the amount of water recovered. The plug is finally Soxhlet cleaned to remove salt precipitated in the pore space. The porosity is then measured as decribed above.

The calculation of fluid saturation presumes that the oil gravity is known. If it is unknown, a value is assumed in the final calculation, usually 1.0 g/ml for the brine and 0.85 g/ml for the oil. The percentage of the plug pore volume which is not occupied by either water or oil is the gas saturation.

4.7 Precision of analytical data

The table below gives the precision (= reproducibility) at the 68% level of confidence (+/- 1 standard deviation) for routine core analysis measurements performed at the GEUS Core Laboratory.

Measurement	Range, mD	Precision		
Grain density		0.003 g/cc		
Porosity		0.1 porosity-%		
Gas Permeability	0.001-0.01 0.01-0.1 > 0.1	25% 15% 4%		

The precision of the fluid saturation determination depends on the pore volume of the plug. The greater the plug and the greater the porosity of the plug, the better precision is obtained. The following table gives the precision in absolute percent-point.

Porosity	1" x 1.5" plugs	1.5" x 3" plugs		
> 20%	5%	1%		
10-20%	10%	2%		
5-10%	20%	5%		
< 5%	> 20%	> 5%		

Certain factors might alter the stated precision of the fluid saturation determination. Loss of material during handling of the plug will result in an increase in the calculated oil saturation, and a similar decrease in the calculated gas saturation. This may occur for fragile for loosely consolidated rocks or if the rock contains dissolvable matters like halite. As the lost material usually has a greater density than oil, it may happen that the estimated volume of oil and the measured volume of water all together take up more space than the actual pore volume after cleaning.

The reproducibility (precision) of the total gamma activity analysis is calculated from counting statistics. The following list shows the dependency of reproducibility on count rate at the 2 standard deviation level.

Count rate (cpm)	Reproducibility (cpm)
125	7.1
250	10.0
500	14.2
1000	20.1
2000	28.4
4000	40.2

Reproducibility (precision) of the amount af uranium, thorium and potassium from gamma radiation is dependent on concentration. Two values for reproducibility are given, one for normal to high concentration range, and one for low concentration range. The latter also defines the detection limit (LLD). The reproducibility values are applicable to total gamma activity above and below 800 cpm, respectively.

	K(%)	U(ppm)	Th(ppm)
Reproducibility			
Normal to high range	0.07	0.60	1.14
Low range (LLD)	0.02	0.45	0.48
Accuracy	0.02	0.45	0.48

Accuracy is calculated as mean deviation from the accepted concentration of one internal standard. This value is only applicable to low concentrations. For high concentrations the high range reproducibility may serve as an approximation to accuracy. Accuracy is reported as an arithmetic mean.

5. Results of conventional core analysis

The results are presented firstly by a listing of measured values and secondly by frequency plots of:

- Gas permeability
- Liquid permeability
- Porosity
- Grain density
- Water saturation
- Oil saturation
- Gas saturation

Based on the lithological description of the plugs and wireline log readings, the core has been divided into four formations:

Rigs -2	Measured depth	Plug nos.		
Formation	(meter)			
Ekofisk porous	2798.0 - 2821.5	1 - 86		
Ekofisk tight	2821.5 - 2829.5	87 - 112		
Tor	2829.5 - 2861.5	113 - 229		
Lower Cretaceous	2861.5 - 2868.0	230 - 246		
Rigs -2A	Measured depth (meter)	Plug nos.		
Formation	(inecci)			
Tor	2971.0 - 2980.5	268 - 297		

Crossplots of porosity vs. gas permeability for each formation are included (p. 41-44 and 58), and crossplots of porosity vs. liquid permeability are included as well (p. 45 and 60).

Attached to this report are:

- A core log 1 plotting Depth vs. Gas Permeability, Estimated Oil permeability, Grain Density, Porosity.

- A core log 2 plotting Depth vs. Water saturation , Oil saturation , Gas saturation , Porosity.

- A gamma log plotting Depth vs. Thorium, Uranium, Potassium, Total gamma concentration.

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

GEUS CORE LABORATORY

CORE ANALYSIS TABULATION Final report Compiled by Christian Høier

> WELL : Rigs-2 CORE : 2,3 and 4

Printed : 17-OCT-96

WELL	:	Rigs-2	PAGE
CORE	:	2,3 and 4	

:20

------ GENERAL INFORMATION ON THE ANALYSIS -------

COMPANY: Amerada HessLOCATION: Syd ArneDEPTH INTERVAL: 2789.00 - 2868.00CORE NO.'S: 2, 3 and 4DEPTHS ARE MEASURED FROM KBANALYSTS: GG, HJL, MJ, LBDEPTHS ARE IN METRESDATE: 171096FILE: RIGSTMP

1 ! ! REMARKS : ! I 1 I ł ł Į I ļ 1 ŧ I ļ I I T 1 ļ l Į ŧ l I 1 1 I I 1 1 ! ł 1 1 ! 1 ! 1

> THE GEOLOGICAL SURVEY OF DENMARK AND GREENLAND IS FULLY RESPONSIBLE FOR THE ANALYTICAL RESULTS IN THE PRESENT REPORT. THE SURVEY, HOMEVER, BEARS NO RESPONSIBILITY OF DECIS-IONS AND INTERPRETATIONS BASED ON THE DATA PRESENTED.

Sample No.	depth Meter		GAS PERM mD	LIQUID PERM mD	POROSITY %	GRAIN DENS. G/COM	Water Satur. %	0il Satur. %	GAS SATUR. %	COMMENT
1	2797.00	VERT	0.268		29.04	2.695				
2	2797.13	HOR	0.398		28.10	2.697	33	29	38	
3	2797.42	HOR	1.33		36.25	2.692				
4	2797.62	HOR	0.473	0.075	28.68	2.688				
5	2797.77	HOR	0.475		29.30	2.694	29	33	39	
6	2798.10	HOR	0.441		29.65	2.697				
7	2798.40	HOR	0.459		30.71	2.684				
8	2798.70	VERT	2.20		43.67	2.687				
9	2798.80	HOR	2.30		41.05	2.683	18	41	40	
10	2799.00	HOR	2.98	1.13	43.86	2.705				
11	2799.04	HOR			42.37	2.690	27	51	22	Fractured
12	2799.20	HOR	4.13		42.06	2.698				
13	2799.50	HOR	0.792		30.01	2.700				
14	2799.55	HOR	1.36		36.02	2.694				
15	2800.00	VERT	1.90		41.33	2.685				
16	2800.20	HOR	1.99		40.84	2.685	19	50	31	
17	2800.35	HOR	1.96		40.71	2.691				
18	2800.63	HOR	1.15	0.324	36.61	2.697				
19	2801.05	HOR	1.48		38.22	2.680	22	46	32	
20	2801.50	HOR	0.975		35.23	2.684				
21	2801.71	HOR	1.19		36.32	2.685				
22	2802.00	VERT	0.127		23.90	2.697			,	

Sample No.	depth Meter		GAS PERM mD	LIQUID PERM mD	POROSITY %	GRAIN DENS. G/COM	WATER SATUR. %	oil Satur. %	GAS SATUR. %	COMMENT
23	2802.10	HOR	0.533		29.93	2.691	30	38	32	
24	2802.40	HOR	0.274		25.78	2.693				
25	2802.68	HOR	1.21	0.193	31.90	2.703				
26	2803.15	HOR	0.894		28.61	2.679	26	58	15	
27	2803.40	HOR	0.979		33.25	2.692				
28	2803.73	HOR	1.01		33.89	2.692				
29	2804.00	VERT	1.40		37.37	2.690				
30	2804.10	HOR	3.10		41.72	2.680	15	48	37	
31	2804.45	HOR	0.592		30.70	2.684				
32	2804.65	HOR	0.327	0.034	28.43	2.693				
33	2805.10	HOR	1.68		40.14	2.732				
34	2805.30	HOR	2.52		43.55	2.731	15	45	40	
35	2805.42	HOR	1.88		40.89	2.695				
36	2805.70	HOR	1.44		38.29	2.691				
37	2806.00	VERT	1.27		38.90	2.698				
38	2806.21	HOR	1.96		39.78	2.689	20	50	30	
39	2806.40	HOR	1.60		38.80	2.694				
40	2806.70	HOR	1.83	0.501	38.89	2.710				
41	2807.10	HOR	1.64		36.40	2.702				
42	2809.00	VERT			39.91	2.702				Fractured
43	2809.10	HOR			38.37	2.686	65	26	8	Fractured
45	2809.15	HOR	3.54	0.481	38.81	2.706				

SAMPLE NO.	depth Meter	plug Type	GAS PERM mD	LIQUID PERM mD	POROSITY %	GRAIN DENS G/COM	WATER SATUR. %	OIL SATUR. %	GAS SATUR. %	COMMENT
	2809.20	HOR	2.31		38.13	2.695				
46	2810.30	HOR			39.20	2.695	54	38	8	Fractured
47	2810.35	HOR			39.20	2.698				Fractured
48	2810.65	HOR	2.00		39.31	2.696				
49	2811.01	HOR			40.56	2.697				Fractured
50	2811.20	VERT	8.46		38.12	2.702				
51	2811.40	HOR			37.64	2.709				Fractured
52	2811.75	HOR	2.72	0.595	37.46	2.712				
53	2812.10	HOR	3.00		34.94	2.698	32	52	16	
54	2812.40	HOR	5.04		39.81	2.699				
55	2812.50	HOR	2.67		40.81	2.700				
56	2813.00	VERT			36.53	2.704				Fractured
57	2813.05	HOR			37.61	2.706				Fractured
58	2813.26	HOR	2.03		38.47	2.694	28	54	18	
59	2813.56	HOR	2.51		36.71	2.712				
60	2813.76	HOR	2.94		39.29	2.700)			
61	2814.03	HOR			44.52	2.723	ŕ			Fractured
62	2814.15	VERT	1.44		38.79	2.701				
63	2814.35	HOR	2.70	0.539	40.47	2.698	3			
64	2814.65	HOR	1.63		36.85	2.702	2			
65	2815.18	B HOR			43.75	2.704	ļ			Fractured
66	2815.45	5 HOR			42.37	2.717	1			Fractured

SAMPLE NO.		Pl.Ug Type	GAS PERM mD	LIQUID PERM mD	POROSITY	GRAIN DENS. G/CCM	Water Satur. %	OIL SATUR. ⅔	GAS SATUR. %	COMMENT
67	2815.82	HOR	2.27		41.15	2.691				t de decentra de la primera de la presenta de la p
68	2816.20	VERT			36.63	2.699				Fractured
69	2816.25	HOR			43.19	2.686				Fractured
70	2816.60	HOR	1.30	0.260	36.11	2.697				
71	2817.10	HOR			40.89	2.689	20	53	27	Fractured
72	2817.30	HOR	3.28		42.72	2.706				
73	2817.55	HOR	1.13		36.17	2.709				
74	2818.04	VERT	3.23		44.73	2.724				
75	2818.10	HOR	1.25		34.56	2.693	29	42	29	
76	2818.40	HOR	2.13		38.33	2.711				
77	2818.70	HOR			41.03	2.716				Fractured
78	2819.15	HOR	2.15		37.84	2.692	23	60	17	
79	2819.40	HOR		0.341	35.84	2.713				Fractured
80	2819.70	HOR			34.55	2.720				Fractured
81	2820.00	VERT	1.28		36.77	2.706				
82	2820.10	HOR	2.13		39.20	2.703	27	62	11	
83	2820.35	HOR	1.33		34.25	2.709				
84	2820.56	HOR	1.65		36.83	2.707				
85	2821.35	HOR	1.35		34.76	2.714				
86	2821.40	HOR	1.26		34.02	2.696				
87	2821.70	HOR	241	77.9	25.46	2.711				
88	2822.00	VERT			26.35	2.699				Fractured

Sample NO.	depth Meter		GAS PERM mD	LIQUID PERM mD	POROSITY %	GRAIN DENS. G/COM	WATER SATUR. %	oil Satur. %	GAS SATUR. %	Comment
89	2822.30	HOR	5.27		28.94	2.703	39	41	20	
90	2823.05	HOR			27.49	2.691	64	25	11	Fractured
91	2823.58	HOR	0.193		18.12	2.714				
92	2823.70	HOR	0.233	0.007	22.83	2.688				
93	2824.00	VERT	0.170		25.20	2.683				
94	2824.10	HOR	0.692		28.10	2.688	33	39	28	
95	2824.42	HOR	0.531		29.06	2.679				
96	2824.70	HOR	0.842		26.45	2.689				
97	2825.10	HOR	0.191		18.60	2.689	43	31	27	
98	2825.30	HOR	1.84		33.94	2.685				
99	2825.72	HOR	0.544	0.127	24.26	2.709				
100	2826.00	VERT	0.230		19.75	2.692				
101	2826.10	HOR	0.418		12.38	2.702	34	35	31	
102	2826.40	HOR	2.22		21.35	2.706				
103	2826.70	HOR			23.74	2.703				Fractured
104	2827.11	HOR	2.79		28.49	2.704	22	60	18	
105	2827.55	HOR	3.59		27.45	2.712				
106	2827.70	HOR	4.09	0.517	25.20	2.722				
107	2828.10	HOR	15.5		26.83	2.713	24	54	23	
108	2828.40	HOR	5.11		31.27	2.704				
109	2828.65	HOR	5.14		30.99	2.708				
110	2829.03	VERT			21.70	2.710				Fractured

	SAMPLE NO.	depth Meter		GAS PERM mD	LIQUID PERM mD	POROSITY %	GRAIN DENS G/CCM	WATER SATUR. %	oil Satur. %	GAS SATUR. %	COMMENT
-	111	2829.10	HOR	1.12		17.87	2.718	9	57	35	
	112	2829.45	HOR	0.813		30.01	2.696				
	113	2829.70	HOR	3.88	1.57	40.27	2.728				
	114	2830.05	HOR	4.27		40.29	2.708	11	55	35	
	115	2830.40	HOR	1.72		32.86	2.700				
	116	2830.60	HOR	5.70		42.09	2.700				
	117	2831.03	HOR	8.21		41.60	2.708				
	118	2831.12	HOR	3.57		37.91	2.705	12	53	35	
	119	2831.42	HOR			43.54	2.709	5	54	41	Fractured
	120	2831.50	HOR		2.48	41.60	2.698				Fractured
	121	2832.00	VERT	8.36		42.53	2.707				
	122	2832.20	HOR	8.36		45.03	2.710	9	49	42	
	123	2832.40	HOR	7.62		43.82	2.707				
	124	2832.60	HOR	5.69		41.88	2.704				
	125	2833.10	HOR	8.91		45.36	2.710	6	55	40	
	126	2833.40	HOR	8.13		44.62	2.706				
	127	2833.65	HOR	5.14	2.18	41.68	2.705				
	128	2834.00	VERT	7.17		42.65	2.707				
	129	2834.10	HOR	6.14		41.85	2.704				
	130	2834.15	HOR	7.16		42.18	2.706	7	49	44	
	131	2834.40	HOR	6.77		43.82	2.707	,			
	132	2834.70	HOR	6.99		43.83	2.705	i			

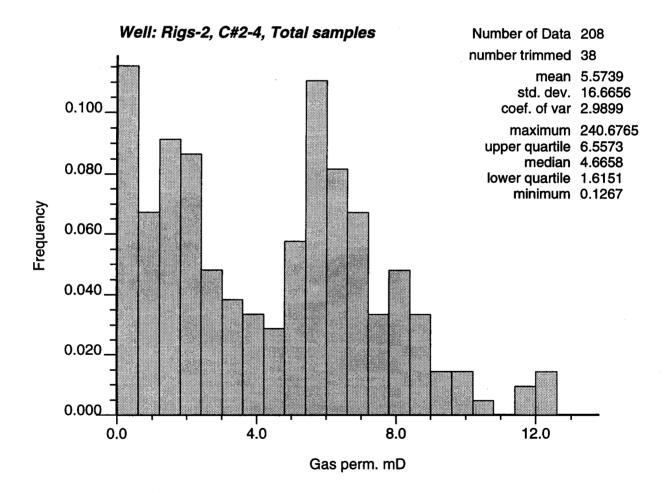
Sample NO.		plug Type	GAS PERM mD	LIQUID PERM mD	POROSITY %	GRAIN DENS G/CCM	WATER SATUR. %	oil Satur. %	GAS SATUR. %	Comment
133	2835.10	HOR	5.65		42.51	2.703	6	43	50	
134	2835.40	HOR	5.80		43.18	2.723				
135	2835.60	HOR	5.78	2.42	42.84	2.724				
136	2836.00	VERT	5.76		41.35	2.706				
137	2836.10	HOR	5.49		40.99	2.701	7	47	45	
138	2836.40	HOR	6.46		42.69	2.709				
139	2836.65	HOR	5.67		42.48	2.709				
140	2837.10	HOR	9.01		44.96	2.680	4	53	43	
141	2837.40	HOR	8.43		45.81	2.709				
142	2837.65	HOR	10.1	2.74	43.72	2.716	Ì			
143	2838.00	VERT			44.89	2.711				Fractured
144	2838.10	HOR	8.14		44.53	2.682	2 8	54	38	
145	2838.40	HOR	5.90		42.63	2.708	3			
146	2838.65	HOR	6.74		45.14	2.712	2			
147	2839.10	HOR	3.42		36.83	2.68	Ð			
148	2839.15	HOR	3.62		36.47	2.69	1 12	50	38	
149	2839.40) HOR	4.13		40.35	2.71	4			
150	2839.70) HOR	6.79	2.08	44.23	2.71	9			
151	2840.12	2 VERT	7.40		43.66	2.71	7			
152	2840.2	B. HOR	6.38	6	41.64	2.69	11 12	47	40	
153	2840.2	B HOR	4.88	5	40.88	2.71	.3			
154	2841.0	0 vert	<u></u>		41.55	2.71				Fractured

Sample No.	depth Meter		GAS PERM mD	LIQUID PERM mD	POROSITY %	GRAIN DENS G/COM	WATER SATUR. %	oil Satur. %	GAS SATUR. %	Comment
155	2841.10	HOR			41.42	2.687	17	61	22	Fractured
156	2841.35	HOR	7.19		44.65	2.711				
157	2841.70	HOR	5.53	1.97	41.41	2.682				
158	2842.07	HOR	9.82		44.21	2.681	12	62	26	
159	2842.30	HOR	7.76		44.22	2.700				
160	2842.70	HOR	5.05		40.88	2.701				
161	2843.04	HOR	4.03		35.07	2.688				
162	2843.12	VERT	8.87		43.15	2.700				
163	2843.20	HOR	9.34		43.78	2.720	14	57	29	
164	2843.40	HOR	6.57		41.64	2.712				
165	2843.60	HOR	8.91	1.44	30.52	2.698				
166	2844.05	HOR	5.07		38.88	2.700	25	62	13	
167	2844.25	HOR	6.88		42.98	2.722				
168	2844.27	HOR	6.63		43.21	2.738				
169	2845.00	VERT	5.93		42.83	2.715				
170	2845.08	HOR	7.33		44.53	2.709	14	57	29	
171	2845.40	HOR	6.40		43.93	2.715				
172	2845.70	HOR		2.44	44.08	2.722				Fractured
173	2846.10	HOR	6.02		43.10	2.700	15	58	27	
174	2846.40	HOR	6.29		43.38	2.700				
175	2846.70	HOR	7.73		44.02	2.695				
176	2847.00	VERT	4.78		39.53	2.723				11 March 1991

Sample No.	depth Meter	plug Type	GAS PERM mD	LIQUID PERM mD	POROSITY %	GRAIN DENS G/COM	WATER SATUR. %	OIL SATUR. %	GAS SATUR. %	COMMENT
177	2847.10	HOR	5.87		44.20	2.721	14	55	31	
178	2847.40	HOR	4.56		40.60	2.719				
179	2847.65	HOR	5.04	1.58	39.86	2.700				
180	2848.10	HOR	7.21		43.73	2.726	14	50	35	
181	2848.40	HOR	4.77		40.66	2.699				
182	2848.72	HOR	5.92		41.86	2.714				
183	2849.00	VERT	5.06		41.36	2.711				
184	2849.10	HOR	5.30		41.50	2.694	26	46	28	
185	2849.35	HOR	6.21		43.60	2 .72 4				
186	2849.73	HOR	7.59	2.03	42.06	2.722				
187	2850.00	VERT			34.37	2.714				Fractured
188	2850.44	HOR	8.02		42.67	2.700	17	51	31	
189	2850.78	HOR	6.97		41.16	2.688	I			
190	2851.10	HOR	7.02		43.09	2.707	14	49	37	
191	2851.45	HOR	5.59		43.18	2.730)			
192	2851.63	HOR	5.98	1.85	41.94	2.680)			
193	2852.00	VERT			42.72	2.680)			Fractured
194	2852.15	5 HOR	5.51		41.40	2.709) 13	50	37	
195	2852.40) HOR	8.18		43.55	2.698	3			
196	2852.65	5 HOR	8.25		43.25	2.68	5			
197	2853.10) HOR	9.04		45.07	2.71	5 11	51	38	
198	2853.4() HOR	5.79		40.66	2.72	4			

WELL : Rigs-2 CORE : 2,3 and 4 PAGE :30

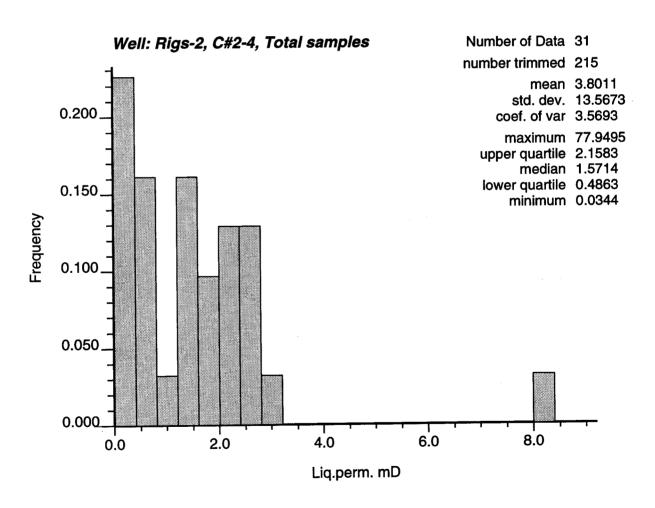
SAMPLE NO.	depth Meter		GAS PERM mD	LIQUID PERM mD	POROSITY %	GRAIN DENS. G/CCM	WATER SATUR. %	0il Satur. %	GAS SATUR. %	COMMENT
199	2853.72	HOR	9.64	3.04	43.48	2.684				
200	2854.00	VERT	8.60		45.04	2.673				
201	2854.15	HOR	6.99		42.82	2.711	13	55	32	
202	2854.40	HOR	5.83		40.30	2.682				
203	2854.60	HOR	8.03		42.41	2.687				
204	2855.00	VERT	5.93		41.33	2.689				
205	2855.10	HOR	6.58		42.19	2.718				
206	2855.16	HOR	6.16		41.41	2.700	20	38	42	
207	2855.40	HOR	6.86		40.08	2.689				
208	2855.70	HOR		2.40	42.11	2.714				Fractured
209	2856.10	HOR	4.18		37.32	2.705	19	54	27	
210	2856.40	HOR	4.34		38.41	2.695				
211	2856.70	HOR	4.52		38.58	2.701				
212	2857.00	VERT	6.29		42.67	2.697				
213	2857.10	HOR	6.35		42.43	2.699	15	47	38	
214	2857.40	HOR	6.17		41.27	2.702				
215	2857.57	HOR	5.44	1.27	41.11	2.715				
216	2858.10	HOR	6.50		42.80	2.701	19	55	26	
217	2858.26	HOR	5.55		40.26	2.680				
218	2858.31	HOR	8.88		42.22	2.689				
219	2859.00	Vert	6.03		41.14	2.681				
220	2859.35	HOR	5.83		41.43	2.712	26	56	18	


SAMPLE NO.	depth Meter		GAS PERM mD	LIQUID PERM mD	POROSITY %	GRAIN DENS G/CCM	WATER SATUR. %	oil Satur. %	GAS SATUR. %	COMMENT
221	2859.45	HOR	6.68		41.06	2.695				
222	2859.60	HOR		1.67	42.10	2.712				Fractured
223	2860.35	HOR	6.06		39.98	2.688	17	64	19	
224	2860.40	HOR	11.8		28.65	2.698				
225	2860.70	HOR	5.88		39.78	2.693				
226	2861.00	VERT	8.05		40.94	2.704				
227	2861.13	HOR	10.5		39.74	2.715	13	68.	18	
228	2861.35	HOR	6.54		38.01	2.708				
229	2861.60	HOR	5.11	1.59	37.09	2.722				
230	2862.36	HOR	24.5		33.26	2.715	26	58	16	
231	2862.55	HOR			26.76	2.713				Fractured
232	2863.00	VERT			19.31	2.688				Fractured
233	2863.16	HOR	0.893		19.70	2.715	39	44	17	
234	2863.35	HOR	0.276		9.09	2.719)			
235	2863.65	HOR	1.87	0.007	12.21	2.726	i			
236	2864.10	HOR	2.48	`	12.14	2.752	95	-4	10	
237	2864.40	HOR	11.5		12.47	2.734	ł			
238	2864.65	5 HOR			11.67	2.768	3			Fractured
239	2865.00) vert	0.306	Ì	13.41	2.74	5			
240	2865.11	HOR	0.162	2	15.11	2.70	5 92	-2	10	
241	2865.40) hor			16.83	2.72	4			Fractured
242	2865.70) HOR		0.00	7 17.84	2.75	2			

SAMPLE NO.	depth Meter		GAS PERM mD	LIQUID PERM mD	POROSITY %	GRAIN DENS. G/CCM	WATER SATUR. %	OIL SATUR. %	GAS SATUR. %	COMMENT
243	2866.10	HOR	0.137		18.43	2.744	81	7	12	
244	2867.28	HOR	0.141		15.52	2.746	92	-1	9	
245	2867.35	HOR	3.18		14.02	2.747				
246	2867.55	HOR			16.62	2.760				Fractured

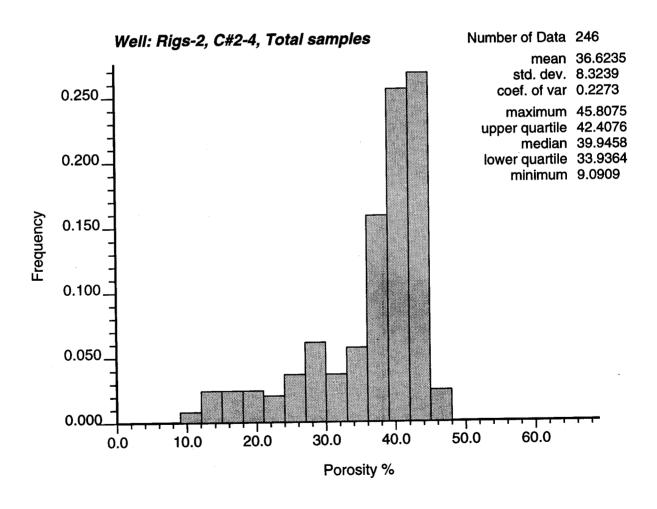
PAGE :33

% OF SAMPLES


DISTRIBUTION OF GAS PERMEABILITY N = 208

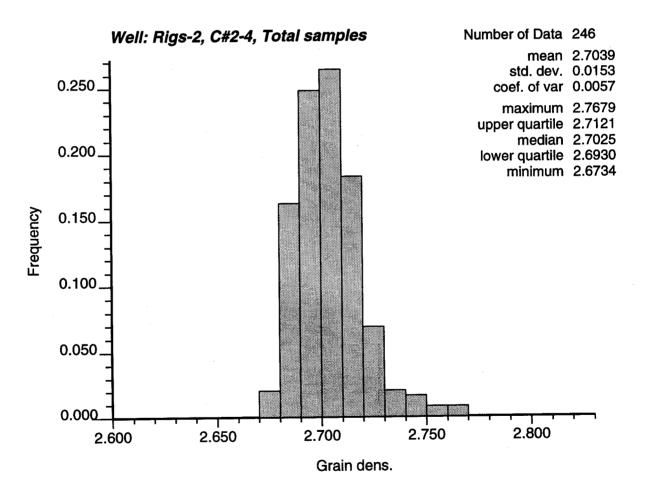
CORE : 2,3 a

% OF SAMPLES


DISTRIBUTION OF LIQUID PERMEABILITY N = 34

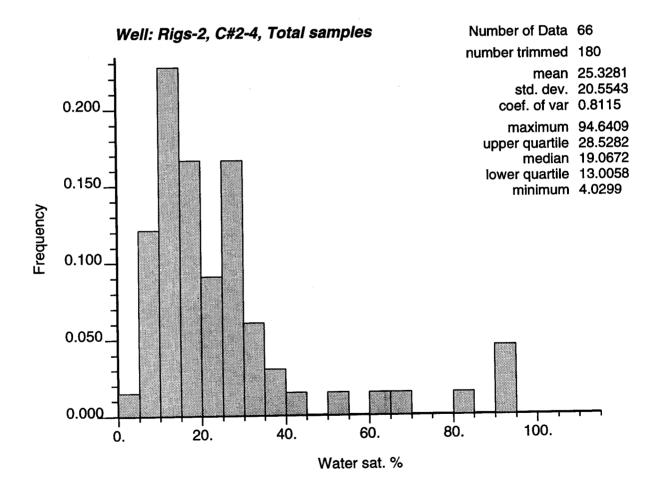
WELL : Rigs-2 CORE : 2,3 and 4 PAGE :35

% OF SAMPLES

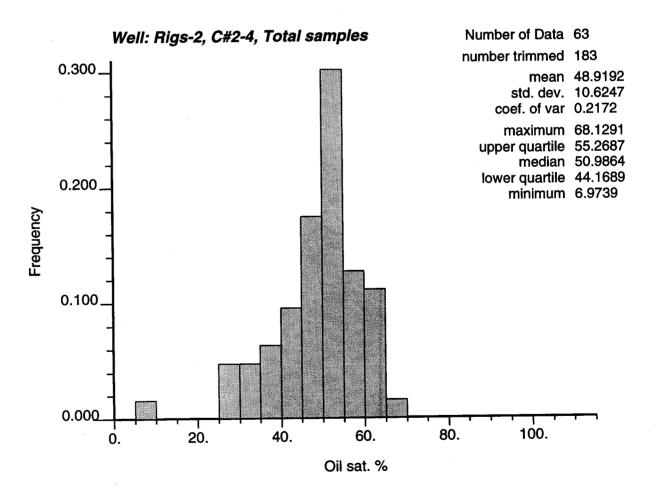

DISTRIBUTION OF POROSITY N = 246

CORE :

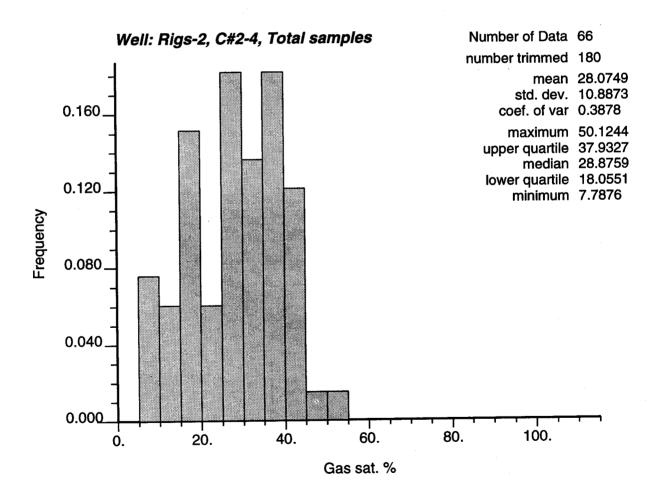
% OF SAMPLES


DISTRIBUTION OF GRAIN DENSITY N = 246

CORE: 2,3 and 4


% OF SAMPLES

DISTRIBUTION OF WATER SATURATION N = 66


% OF SAMPLES

DISTRIBUTION OF OIL SATURATION N = 66

% OF SAMPLES

DISTRIBUTION OF GAS SATURATION N = 66

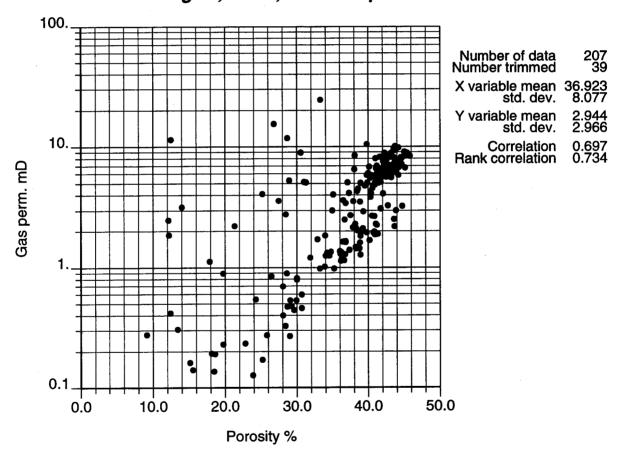
STATISTICAL INFORMATION ON THE POROSITY - GAS PERMEABILITY RELATIONSHIP CALCULATED ONLY FROM SAMPLES WITH NON-ZERO PERMEABILITY.

NUMBER OF SAMPLES

: 208

SINGLE-SAMPLE STATISTICS:

POROSITY: MEAN POROSITY VARIANCE ON POROSITY	:	36.87 65.87	
PERMEABILITY: GEOMETRIC AVERAGE ARITHMETRIC AVERAGE HARMONIC AVERAGE	: :	3.01 5.57 1.36	

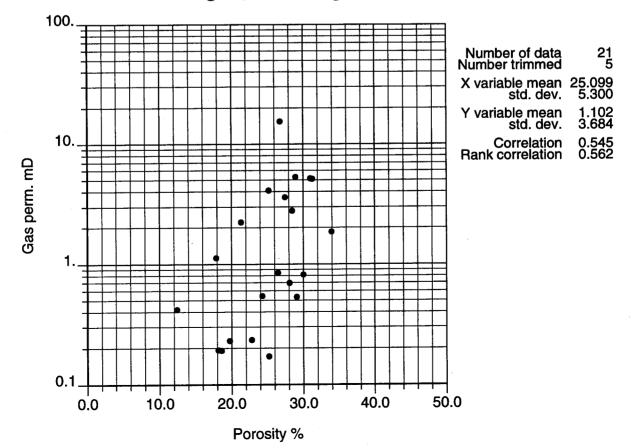

STATISTICS CALCULATED FROM LINEAR REGRESSION OF PERMEABILITY ON POROSITY:

MODEL: LOG10(PERMEABILITY) = INTERCEPT + SLOPE*POROSITY + RESIDUAL

DEGREES OF FREEDOM	:	206	
COEFFICIENT OF DETERMINATION	:	0.411	
STANDARD ERROR ON THE REGRESSION	:	0.377	log(mD) log(mD)
ESTIMATED INTERCEPT	:	-0.950	log(mD)
ESTIMATED STANDARD ERROR ON INTERCEPT	:	0.122	log(mD)
ESTIMATED SLOPE	:	0.03874	log(mD)/% log(mD)/%
ESTIMATED STANDARD ERROR ON SLOPE	:	0.00323	log(mD)/%

PLEASE REMARK THAT THE REGRESSION STATISTICS PERTAIN TO LOG PERMEABILITY VALUES. THE COEFFICIENT OF DETERMINATION GIVES THE FRACTION AF THE TOTAL VARIATION SQUARED WHICH IS EXPLAINED BY THE MODEL. THE STANDARD ERROR ON THE REGRESSION GIVES THE MEAN 1 SIGMA ERROR ON THE LOG PERMEABILITY ESTIMATES. GAS PERMEABILITY mD (Log)

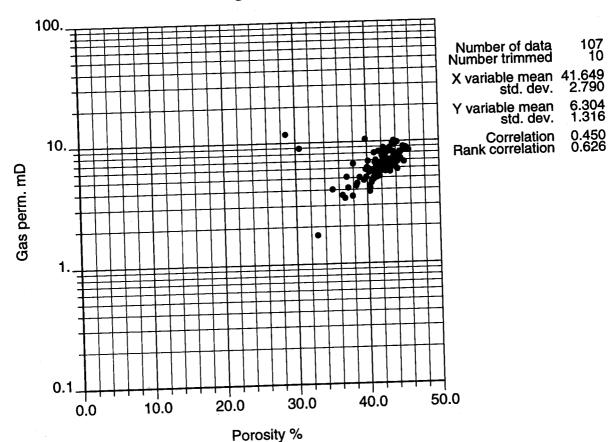
Well: Rigs-2, C#2-4, Total samples


WELL : Rigs-2 CORE : 2,3 and 4 CROSSPLOT OF POROSITY VS. GAS PERMEABILITY

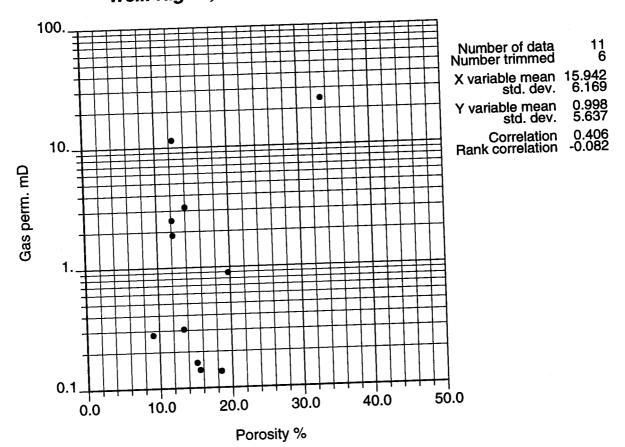
GAS PERMEABILITY mD (Log)

> 100. Number of data Number trimmed 68 18 X variable mean 36.532 std. dev. 4.672 Y variable mean std. dev. 2.103 10. Correlation Rank correlation 0.868 0.836 Gas perm. mD 1. . 0.1 0.0 10.0 20.0 30.0 40.0 50.0

> > Porosity %


Well: Rigs-2, Ekofisk porous Fm

WELL : Rigs-2 CORE : 2,3 and 4 CROSSPLOT OF POROSITY VS. GAS PERMEABILITY


WELL : Rigs-2 CORE : 2,3 and 4

GAS PERMEABILITY mD (Log)

Well: Rigs-2, Tor Fm

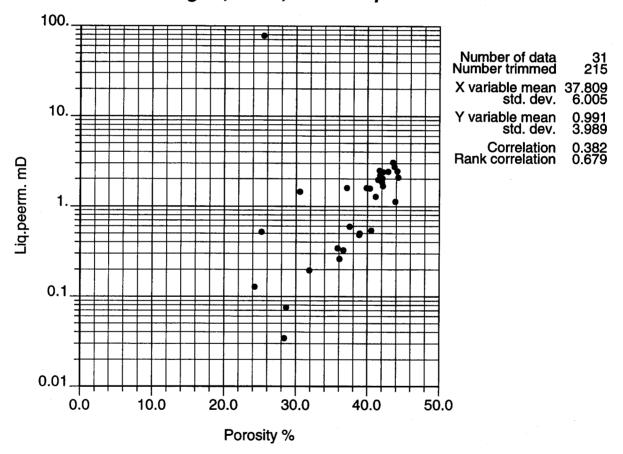
STATISTICAL INFORMATION ON THE POROSITY - LIQUID PERMEABIL. RELATIONSHIP CALCULATED ONLY FROM SAMPLES WITH NON-ZERO PERMEABILITY.

NUMBER OF SAMPLES

: 34

SINGLE-SAMPLE STATISTICS:

POROSITY: MEAN POROSITY VARIANCE ON POROSITY	:	36.03 69.34	% %**2
PERMEABILITY: GEOMETRIC AVERAGE ARITHMETRIC AVERAGE HARMONIC AVERAGE	:	0.64 3.47 0.07	mD mD mD


STATISTICS CALCULATED FROM LINEAR REGRESSION OF PERMEABILITY ON POROSITY:

MODEL: LOG10(PERMEABILITY) = INTERCEPT + SLOPE*POROSITY + RESIDUAL

DEGREES OF FREEDOM	:	32	
COEFFICIENT OF DETERMINATION	:	0.475	
STANDARD ERROR ON THE REGRESSION	:	0.622	loq(mD)
ESTIMATED INTERCEPT		-2.713	log(mD) log(mD)
ESTIMATED STANDARD ERROR ON INTERCEPT	:	0.480	log(mD)
ESTIMATED SLOPE	:	0.06999	10g(mD)/%
ESTIMATED STANDARD ERROR ON SLOPE	:	0.01300	log(mD)/%

PLEASE REMARK THAT THE REGRESSION STATISTICS PERTAIN TO LOG PERMEABILITY VALUES. THE COEFFICIENT OF DETERMINATION GIVES THE FRACTION AF THE TOTAL VARIATION SQUARED WHICH IS EXPLAINED BY THE MODEL. THE STANDARD ERROR ON THE REGRESSION GIVES THE MEAN 1 SIGMA ERROR ON THE LOG PERMEABILITY ESTIMATES. LIQUID PERMEABIL. mD (Log)

Well: Rigs-2, C#2-4, Total sample

WELL : Rigs-2 CORE : 2,3 and 4

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

GEUS CORE LABORATORY

CORE ANALYSIS TABULATION

Final report

Compiled by Christian Høier

WELL : Rigs 2A CORE : 1

Printed : 17-OCT-96

WELL : Rigs 2A PAGE :47 CORE: 1

----- GENERAL INFORMATION ON THE ANALYSIS -------COMPANY : Amerada Hess LOCATION : Syd Arne DEPTH INTERVAL : 2971.00 - 2980.50 CORE NO.'S : 1 DEPTHS ARE MEASURED FROM KB ANALYSTS : MJ, HJL, GG

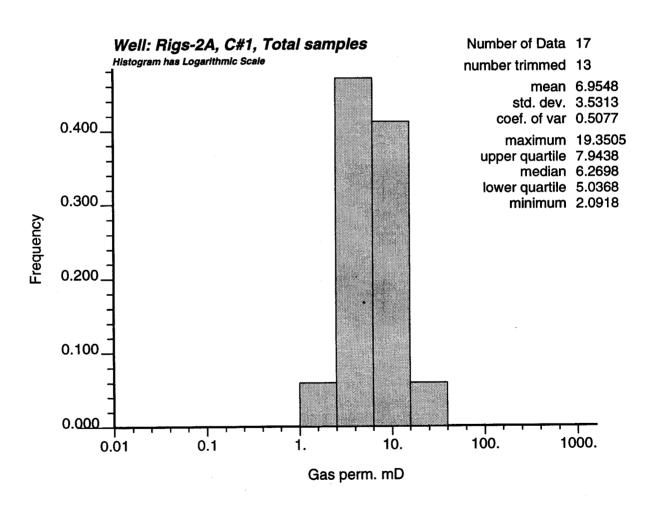
DEPTHS ARE IN METRES DATE : 171096 FILE : RIGS2A1

ţ I ! REMARKS : ! 1 I ! t ļ I 1 ţ I ł ł 1 ł I 1 1 1 1 1 ! 1 1 I 1 I 1 ! ļ 1 1 1 1 1 1 ! 1 ! !

> THE GEOLOGICAL SURVEY OF DENMARK AND GREENLAND IS FULLY RESPONSIBLE FOR THE ANALYTICAL RESULTS IN THE PRESENT REPORT. THE SURVEY, HOWEVER, BEARS NO RESPONSIBILITY OF DECIS-IONS AND INTERPRETATIONS BASED ON THE DATA PRESENTED.

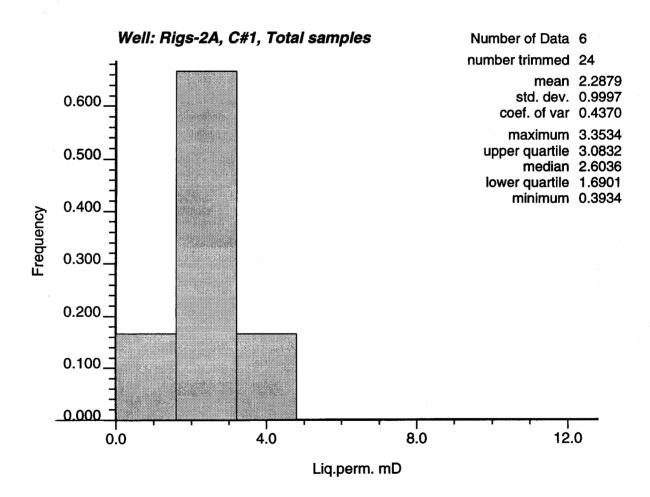
WELL : Rigs 2A PAGE :48 CORE : 1

Sample NO.	depth Meter	plug Type	GAS PERM mD	LIQUID PERM mD	POROSITY %	GRAIN DENS. G/CCM	WATER SATUR. %	0il Satur. %	GAS SATUR. %	COMMENT
268	2971.10	HOR			41.29	2.636	28	52	20	Fractured
269	2971.30	HOR	19.4		40.79	2.705				
270	2971.63	HOR	7.74	2.81	43.96	2.723				
271	2972.00	VERT	7.58		36.89	2.706				
272	2972.10	HOR			34.03	2.713	23	51	26	Fractured
273	2972.38	HOR	4.80		38.66	2.705				
274	2972.70	HOR	4.91	0.393	27.39	2.709				
275	2973.10	HOR	5.69		41.10	2.718	9	50	41	
276	2973.40	HOR	6.27		41.59	2.706				
277	2973.70	HOR	5.28	2.40	41.82	2.707				
278	2974.00	VERT								Not measured
279	2974.15	HOR	5.09		41.51	2.681	11	46	43	
280	2974.60	HOR	4.73		40.81	2.715				
281	2974.70	HOR	5.08	1.69	41.18	2.719				
282	2975.00	VERT								Not measured
283	2975.07	HOR			42.42	2.737	12	48	40	
284	2975.45	HOR		3.35	45.01	2.723				Fractured
285	2975.53	HOR	8.56		44.58	2.709				
286	2976.00	VERT	6.37		41.52	2.704				
287	2976.10	HOR			39.44	2.683	20	59	21	Fractured
288	2976.16	HOR								Not measured
289	2977.10	HOR			43.54	2.687	23	49	28	Fractured


WELL : Rigs 2A PAGE :49 CORE : 1

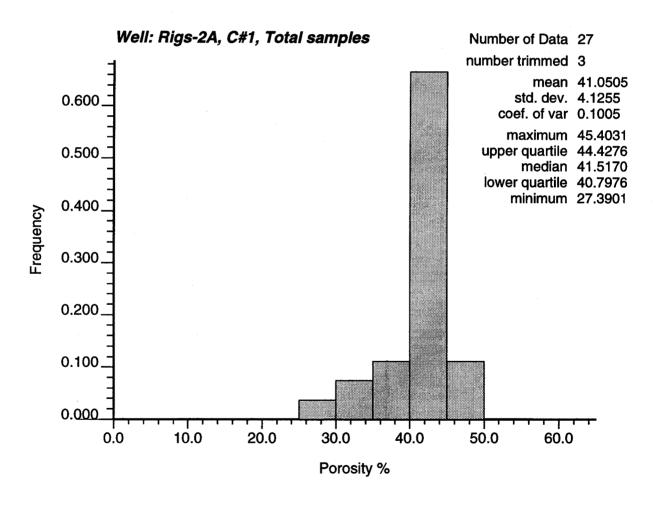
-

Sample No.	depth Meter		GAS PERM mD	LIQUID PERM mD	POROSITY %	GRAIN DENS. G/COM	Water Satur. %	OIL SATUR. %	GAS SATUR. %	Comment
290	2977.19	HOR	7.79	3.08	44.84	2.706				
291	2977.28	HOR	8.49		45.13	2.703				
292	2977.60	HOR	2.09		32.56	2.704				
293	2978.10	HOR			41.40	2.680	29	66	5	
294	2978.78	VERT			44.75	2.697				
295	2979.02	HOR	8.39		44.99	2.714				
296	2979.08	HOR			45.40	2.697	15	87	-2	
297	2979.40	HOR			41.73	2.696				

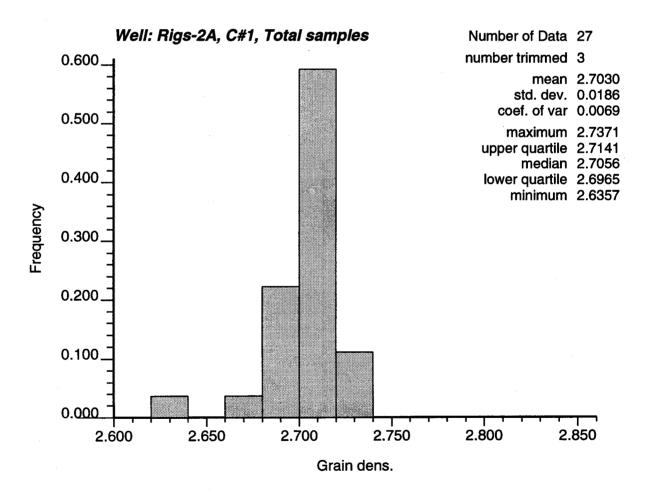

% OF SAMPLES

DISTRIBUTION OF GAS PERMEABILITY N = 17

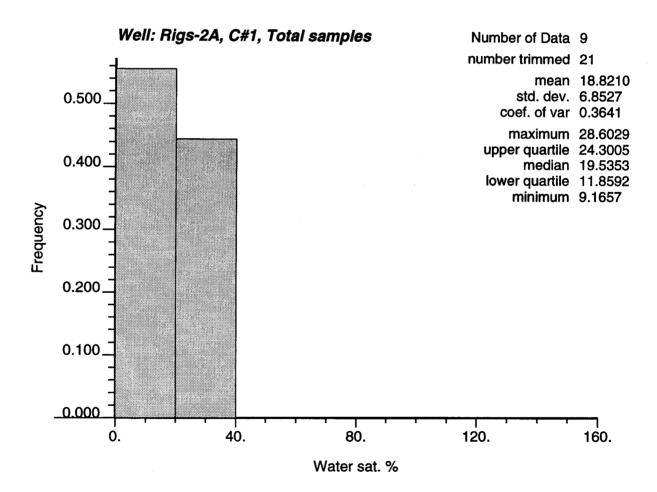
% OF SAMPLES


DISTRIBUTION OF LIQUID PERMEABILITY N = 6

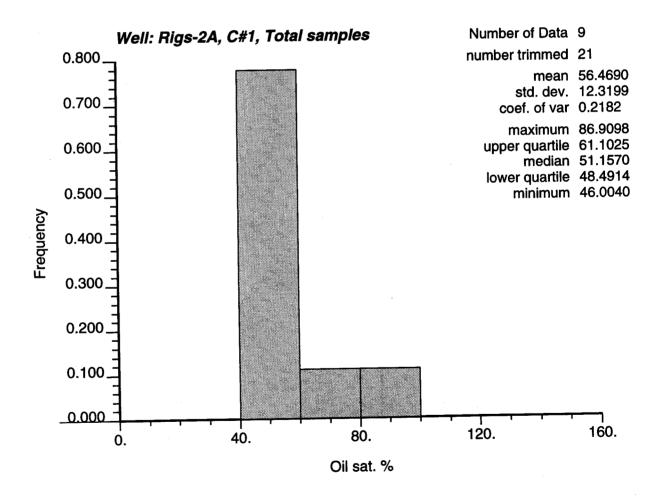
WELL : Rigs 2A CORE : 1 PAGE :52


% OF SAMPLES

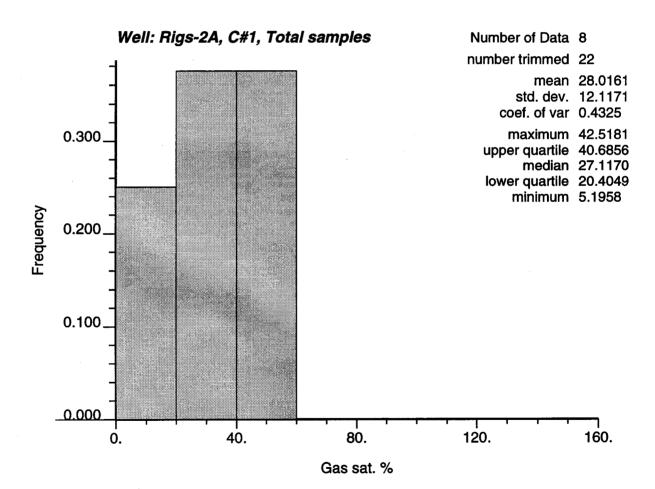
DISTRIBUTION OF POROSITY N = 27


% OF SAMPLES

DISTRIBUTION OF GRAIN DENSITY N = 27


% OF SAMPLES

DISTRIBUTION OF WATER SATURATION N = 9


% OF SAMPLES

DISTRIBUTION OF OIL SATURATION N = 9

% OF SAMPLES

DISTRIBUTION OF GAS SATURATION N = 9

STATISTICAL INFORMATION ON THE POROSITY - GAS PERMEABILITY RELATIONSHIP CALCULATED ONLY FROM SAMPLES WITH NON-ZERO PERMEABILITY.

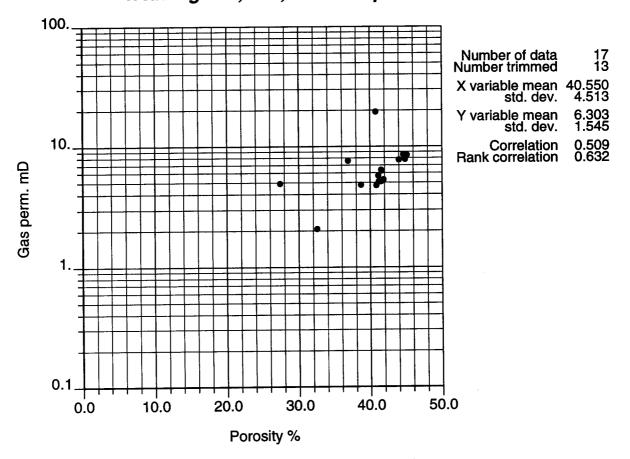
NUMBER OF SAMPLES

: 17

SINGLE-SAMPLE STATISTICS:

POROSITY:		
MEAN POROSITY	:	40.55 %
VARIANCE ON POROSITY	:	21.64 %**2
PERMEABILITY:		
GEOMETRIC AVERAGE	:	6.30 mD
ARITHMETRIC AVERAGE	:	6.95 mD
HARMONIC AVERAGE	:	5.72 mD

STATISTICS CALCULATED FROM LINEAR REGRESSION OF PERMEABILITY ON POROSITY:


MODEL: LOG10(PERMEABILITY) = INTERCEPT + SLOPE*POROSITY + RESIDUAL

DEGREES OF FREEDOM	:	15	
COEFFICIENT OF DETERMINATION	:	0.260	
STANDARD ERROR ON THE REGRESSION	:	0.173	log(mD)
ESTIMATED INTERCEPT	:	-0.065	log(mD) log(mD)
ESTIMATED STANDARD ERROR ON INTERCEPT	:	0.379	log(mD)
ESTIMATED SLOPE	:	0.02131	log(mD)/%
ESTIMATED STANDARD ERROR ON SLOPE	:	0.00929	log(mD)/%

PLEASE REMARK THAT THE REGRESSION STATISTICS PERTAIN TO LOG PERMEABILITY VALUES. THE COEFFICIENT OF DETERMINATION GIVES THE FRACTION AF THE TOTAL VARIATION SQUARED WHICH IS EXPLAINED BY THE MODEL. THE STANDARD ERROR ON THE REGRESSION GIVES THE MEAN 1 SIGMA ERROR ON THE LOG PERMEABILITY ESTIMATES.

GAS PERMEABILITY mD (Log)

Well: Rigs-2A, C#1, Total sample

WELL : Rigs 2A CORE : 1 STATISTICAL INFORMATION ON THE POROSITY - LIQUID PERMEABIL. RELATIONSHIP CALCULATED ONLY FROM SAMPLES WITH NON-ZERO PERMEABILITY.

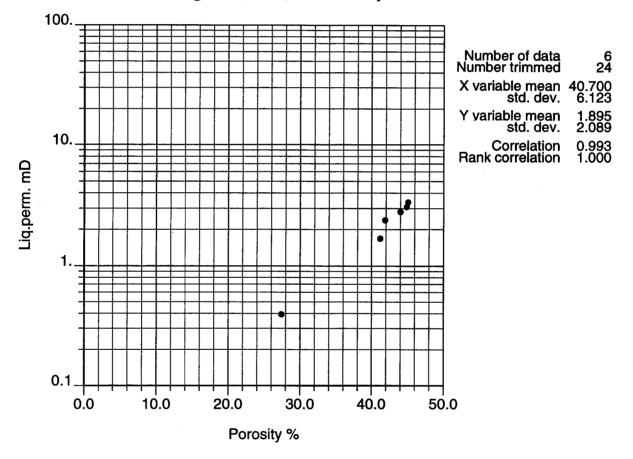
NUMBER OF SAMPLES

: 6

SINGLE-SAMPLE STATISTICS:

POROSITY:		
MEAN POROSITY	:	40.70 %
VARIANCE ON POROSITY	:	45.00 %**2
PERMEABILITY:		
GEOMETRIC AVERAGE	:	1.90 mD
ARITHMETRIC AVERAGE	:	2.29 mD
HARMONIC AVERAGE	:	1.32 mD

STATISTICS CALCULATED FROM LINEAR REGRESSION OF PERMEABILITY ON POROSITY:


MODEL: LOG10(PERMEABILITY) = INTERCEPT + SLOPE*POROSITY + RESIDUAL

DEGREES OF FREEDOM	:	4	
COEFFICIENT OF DETERMINATION	:	0.987	
STANDARD ERROR ON THE REGRESSION	:	0.045	log(mD)
ESTIMATED INTERCEPT	:	-1.835	log(mD)
ESTIMATED STANDARD ERROR ON INTERCEPT	:	0.125	log(mD)
ESTIMATED SLOPE	:	0.05191	log(mD)/%
ESTIMATED STANDARD ERROR ON SLOPE	:	0.00303	log(mD)/%

PLEASE REMARK THAT THE REGRESSION STATISTICS PERTAIN TO LOG PERMEABILITY VALUES. THE COEFFICIENT OF DETERMINATION GIVES THE FRACTION AF THE TOTAL VARIATION SQUARED WHICH IS EXPLAINED BY THE MODEL. THE STANDARD ERROR ON THE REGRESSION GIVES THE MEAN 1 SIGMA ERROR ON THE LOG PERMEABILITY ESTIMATES.

LIQUID PERMEABIL. mD (Log)

Well: Rigs-2A, C#1, Total sample

6. Core and gamma log data

Well: Rigs-2 Core 1-4

Well: R Depth meter	igs-2 Core Total counts/min	ц-4 К %	U ppm	Th ppm	Ratio Th/K *10**4	Ratio Th/U	Ratio U/K *10**4
2797.19	210.72	0.43	0.01	1.03	2.36	86.91	0.03
2797.29	179.66	0.32	0.36	0.92	2.91	2.59	1.12
2797.40	170.39	0.24	0.32	1.23	5.11	3.85	1.33
2797.50	170.99	0.20	0.45	1.27	6.32	2.84	2.23
2797.60	159.90	0.21	0.33	1.14	5.32	3.43	1.55
2797.71	150.12	0.22	0.14	1.41	6.47	9.80	0.66
2797.81	149.21	0.22	0.16	1.29	5.85	7.99	0.73
2797.92	166.86	0.20	0.21	1.91	9.48	9.22	1.03
2798.03	164.34	0.22	0.10	1.91	8.49	18.43	0.46
2798.13	164.64	0.22	0.32	1.27	5.88	3.98	1.48
2798.24	179.56	0.25	-0.05	1.96	8.00	-38.30	-0.21
2798.35	193.88	0.31	-0.02	1.60		-103.05	-0.05
2798.45	181.28	0.33	0.14	1.14	3.51	7.96	0.44
2798.56	132.67	0.24	0.10	0.95	3.89	9.53	0.41
2798.67	99.90	0.21	0.06	0.54	2.57	9.32	0.28
2798.75 2798.81	94.15 140.57	0.21	0.10	0.21	1.02	2.09	0.49
2798.81	179.16	0.33 0.40	0.01 0.07	0.56 0.77	1.72	81.74	0.02
2798.94	188.34	0.40	0.19	0.89	$1.94 \\ 2.26$	$\begin{array}{c} 11.11 \\ 4.70 \end{array}$	0.17
2798.94	196.60	0.40	0.19	0.16	0.35	4.70 0.59	0.48 0.59
2799.10	261.75	0.40	0.07	1.39	2.50	19.73	0.13
2799.19	320.74	0.72	0.42	0.99	1.38	2.39	0.58
2799.29	367.33	0.83	0.05	1.64	1.98	34.17	0.06
2799.39	368.03	0.74	0.55	1.52	2.05	2.77	0.74
2799.48	344.34	0.59	0.58	2.07	3.52	3.56	0.99
2799.58	330.02	0.53	0.54	1.99	3.76	3.69	1.02
2799.67	357.95	0.70	0.45	1.92	2.74	4.27	0.64
2799.77	392.94	0.80	0.46	1.52	1.91	3.31	0.58
2799.86	397.48	0.85	0.31	1.66	1.95	5.42	0.36
2799.96	317.11	0.70	-0.03	1.72	2.44	-49.28	-0.05
2800.06	275.66	0.51	0.37	1.62	3.15	4.39	0.72
2800.16	265.18	0.46	0.62	1.12	2.44	1.82	1.34
2800.25	247.43	0.40	0.20	1.84	4.57	9.11	0.50
2800.35	262.76		0.64		4.33		
2800.45	261.65		0.43	1.60	3.78		1.01
2800.55	267.70		0.48		3.30		1.08
2800.65	278.69		0.37		3.33		
2800.75	282.32		0.19		3.05		0.36
2800.85	260.23		0.13		3.42		0.27
2800.95	281.31		0.34		3.52	5.37	0.66
2801.05	261.55		0.36			4.80	0.84
2801.14 2801.24	245.92		0.35 0.40		6.56 4.66		$\begin{array}{c} \texttt{1.11} \\ \texttt{1.16} \end{array}$
2801.24	240.07 214.76				4.88		1.18
2801.33							
2801.43	195.50		0.02		4.62		0.05
				±.05			

Well: Rigs-2 Core 1-4

Depth meter	Total counts/min	т-4 К %	U mqq	Th ppm	Ratio Th/K *10**4	Ratio Th/U	Ratio U/K *10**4
Depth meter 2801.61 2801.71 2801.80 2802.09 2802.09 2802.29 2802.29 2802.39 2802.49 2802.58 2802.68 2802.68 2802.68 2802.68 2802.68 2802.78 2803.07 2803.17 2803.27 2803.27 2803.37 2803.47 2803.57 2803.66 2803.66 2803.66 2803.66 2803.76 2803.66 2803.76 2803.66 2803.76 2803.66 2803.96 2804.06 2804.15 2804.25 2804.35 2804.45 2804.64 2804.64 2804.94	Total counts/min 204.67 219.09 239.66 217.68 242.39 241.48 269.11 305.51 298.76 318.72 345.65 331.93 303.39 327.70 323.36 342.02 288.17 255.50 243.19 260.54 267.39 261.44 280.91 267.70 225.95 219.50 211.93 224.74 215.56 193.08 193.58 224.94 218.89 165.14 125.21	K % 0.40 0.42 0.44 0.32 0.43 0.41 0.38 0.49 0.66 0.53 0.44 0.68 0.56 0.47 0.45 0.41 0.38 0.45 0.41 0.38 0.49 0.66 0.53 0.44 0.64 0.56 0.47 0.41 0.38 0.42 0.43 0.43 0.49 0.66 0.53 0.44 0.68 0.45 0.44 0.68 0.45 0.41 0.38 0.42 0.43 0.43 0.49 0.66 0.53 0.44 0.68 0.45 0.41 0.38 0.42 0.43 0.49 0.66 0.53 0.44 0.64 0.33 0.33 0.33 0.37 0.40 0.39 0.26 0.27 0.28 0.22 0.19	ppm 0.20 0.18 0.35 0.40 0.41 0.19 0.59 0.40 0.38 0.52 0.50 0.71 0.06 0.30 0.22 0.18 0.23 0.26 0.25 0.17 0.45 0.18 0.25 0.17 0.45 0.18 0.25 0.17 0.45 0.57 0.36 0.17 0.33 0.29 0.57 0.53 0.54 0.53 0.54 0.36	ppm 1.04 1.27 1.06 1.63 1.29 1.58 1.88 1.55 2.45 1.66 2.12 1.29 2.33 2.11 1.97 1.54 1.29 2.32 1.23 2.52 1.23 1.24 1.30 1.29 1.58 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.55 1.66 2.12 1.97 1.54 1.97 1.54 1.29 2.32 1.97 1.54 1.29 1.55 1.66 2.12 1.97 1.54 1.97 1.54 1.29 2.32 1.23 1.29 1.55 1.66 2.12 1.97 1.54 1.97 1.54 1.29 1.55 1.66 2.12 1.97 1.54 1.29 1.55 1.66 2.12 1.97 1.54 1.29 1.55 1.66 2.12 1.97 1.54 1.97 1.54 1.29 1.24 1.29 1.24 1.97 1.54 1.20 1.24 1.29 1.24 1.29 1.25 1.66 2.52 1.23 1.24 1.29 1.24 1.29 1.24 1.29 1.24 1.29 1.24 1.29 1.24 1.26 1.29 1.24 1.26 1.29 1.24 1.29 1.24 1.29 1.24 1.29 1.24 1.29 1.24 1.29 1.24 1.29 1.24 1.29 1.24 1.29 1.24 1.29 1.24 1.29 1.24 1.29 1.24 1.29 1.24 1.29 1.24 1.30 1.37 1.45 1.97 1.57 1.62 1.37 1.45 1.97 1.57 1.62 1.27 1.29 1.27 1.29 1.27 1.29 1.27 1.39 1.26 1.39 1.27 1.29 1.27 1.29 1.27 1.29 1.27 1.29 1.27 1.29 1.27 1.29 1.27 1.29 1.27 1.29 1.27 1.29 1.27 1.29 1.27 1.29 1.27 1.29 1.27 1.29 1.27 1.29 1.27 1.29 1.27 1.29 1.27 1	Th/K *10**4 2.60 2.99 2.37 5.18 3.00 3.87 4.94 3.92 5.36 3.84 2.34 4.62 3.80 3.29 1.90 4.18 4.62 3.80 3.29 1.90 4.18 4.34 3.77 5.12 5.20 7.11 8.03 6.81 2.97 3.14 3.29 3.19 3.47 4.41 5.29 7.30 5.81 5.05 4.13	Th/U 5.10 7.17 3.02 4.08 3.11 8.35 3.18 4.65 6.04 3.23 2.96 4.88 2.35 35.35 4.24 10.79 11.85 10.98 6.61 7.48 8.36 13.42 5.82 13.45 7.83 3.45 7.83 3.45 7.83 3.45 7.83 3.45 7.83 3.45 2.96 4.91 3.45 7.83 3.67 2.98 2.35 3.18 4.91 3.45 2.42 3.67 2.98 2.35 3.13 4.91 3.45 2.42 3.67 2.98 2.33 2.13	U/K *10**4 0.51 0.42 0.79 1.27 0.97 0.46 1.55 0.84 0.89 1.19 0.79 0.95 1.62 0.09 0.45 0.39 0.38 0.39 0.57 0.68 0.62 0.53 1.38 0.49 0.61 0.91 0.42 0.91 0.42 0.91 0.42 0.53 1.38 0.49 0.61 0.91 0.42 0.51 0.95 1.62 0.29 0.39 0.57 0.45 0.39 0.57 0.45 0.39 0.57 0.45 0.39 0.57 0.45 0.39 0.57 0.45 0.39 0.57 0.45 0.39 0.57 0.45 0.39 0.57 0.45 0.39 0.57 0.45 0.39 0.57 0.45 0.39 0.57 0.45 0.39 0.57 0.45 0.39 0.57 0.45 0.39 0.57 0.45 0.39 0.57 0.45 0.39 0.57 0.57 0.57 0.45 0.39 0.57 0.45 0.39 0.57 0.57 0.45 0.39 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57
2805.04 2805.13 2805.23 2805.33 2805.43 2805.53 2805.63	126.92 158.08 184.71 199.73 212.13 210.52 228.77	0.19 0.24 0.30 0.31 0.42 0.39 0.40 0.33 0.33	0.36 0.17 0.21 0.19 0.14 0.41 0.21 0.63 0.21	0.77 0.81 0.82 1.30 0.95 0.82 1.07 1.26 1.92	4.13 3.37 2.76 4.16 2.24 2.10 2.69 3.80 5.75	2.13 4.67 3.94 7.00 7.01 2.01 5.11 1.99 9.29	1.93 0.72 0.70 0.59 0.32 1.05 0.53 1.91 0.62
2805.73 2805.83 2805.93 2806.03	227.16 238.25 226.66 194.08	0.33 0.38 0.36 0.35	0.21 0.34 0.51 0.38	1.92 1.42 1.49 0.92	3.78 3.78 4.11 2.64	9.29 4.12 2.92 2.46	0.82 0.92 1.40 1.08

Well: Rigs-2 Core 1-4

Well: R	igs-2 Core	1-4					
Deveth	m ., 1			•	Ratio	· ·	Ratio
Depth	Total	K	U	\mathtt{Th}	Th/K	Ratio	U/K
meter	counts/min	010	ppm	ppm	*10**4	Th/U	*10**4
2806.13		0.41	0.24	1.49	3.66	6.31	0.58
2806.23		0.39	0.43	1.31	3.38	3.06	1.10
2806.33		0.43	0.06	1.71	3.97	29.94	0.13
2806.42		0.43	0.60	1.48	3.41	2.48	1.38
2806.52		0.43	0.55	1.68	3.86	3.02	1.28
2806.61		0.52	0.05	2.66	5.12	49.18	0.10
2806.71		0.49	0.17	2.15	4.44	12.54	0.35
2806.80 2806.90		0.43	0.55	2.08	4.79	3.79	1.26
2808.90		0.40	0.33	1.99	4.91	6.08	0.81
2807.00		0.41 0.42	0.09 0.27	0.92	2.21	10.16 1.67	0.22
2807.09		0.42	0.03	0.45	$1.07 \\ 1.79$		0.64
2807.18		0.52	0.03	0.52	0.79	30.38 0.74	0.06 1.07
2807.27		0.00	0.31	1.10	1.39	3.56	0.39
2807.30		0.85	0.51	0.76	0.90	1.30	0.59
2807.54		0.85	0.50	0.66	0.79	1.30	0.59
2807.63		0.64	0.49	1.17	1.82	2.37	0.77
2807.73		0.39	0.44	0.59	1.51	1.36	1.11
2807.83		0.30	0.07	0.80	2.64	10.92	0.24
2807.93		0.32	0.32	0.78	2.46	2.47	1.00
2809.03		0.59	0.37	0.92	1.56	2.48	0.63
2809.14		0.89	0.46	0.83	0.93	1.80	0.52
2809.24		0.99	0.60	0.20	0.20	0.34	0.60
2809.34		1.01	0.44	0.29	0.29	0.67	0.43
2809.44		0.87	0.59	0.32	0.36	0.53	0.68
2809.54		0.89	-0.13	0.66	0.74	-5.30	-0.14
2809.65		0.73	0.52	0.51	0.70	0.97	0.72
2809.75		0.77	0.32	0.42	0.54	1.33	0.41
2809.85		0.68	0.23	0.49	0.72	2.18	0.33
2809.95	252.57	0.60	0.28	0.92	1.52	3.21	0.47
2810.05	311.87	0.80	0.28	0.36	0.45	1.27	0.35
2810.15	359.06	0.96	0.14	0.60	0.63	4.23	0.15
2810.25	345.75	0.89	-0.09	0.60	0.67	-6.76	-0.10
2810.35	339.70	0.83	0.05	0.99	1.20	20.24	0.06
2810.45	309.95	0.75	0.33	0.63	0.84	1.92	0.44
2810.55	295.93	0.68	0.59	0.63	0.94	1.08	0.87
2810.64	308.54	0.68	0.79	0.53	0.78	0.67	1.16
2810.74	300.77	0.72	0.44	0.45	0.63	1.04	0.60
2810.84		0.76	0.15	0.77	1.01	5.12	0.20
2810.94		0.76	-0.01	0.49	0.64	-63.96	-0.01
2811.04		0.83	0.42	0.52	0.62	1.23	0.51
2811.14		1.00	0.17	0.92	0.92	5.48	0.17
2811.24		0.82	0.62	1.33	1.62	2.14	0.76
2011 24	226 07	0 74	0 20	1 2 2	1 70	6 6 5	0 27

1.32

0.80

0.59

0.74

0.71

0.78

336.87

304.10

321.34

2811.34

2811.43

2811.53

0.20

0.09

0.54

1.79

1.13

0.75

6.65

8.83

1.08

0.27

0.13

0.70

Well: Rigs-2 Core 1-4

Depth meter Total K U Th meter Th meter<	WELL. R.	195-2 COLE	T-4			Ratio		Dotio
metercounts/min ${\mathbf{\hat{k}}$ ppmppm ${\mathbf{\hat{k}}_{10} + {\mathbf{\hat{k}}_4}$ ${\mathbf{Th}/U}$ ${\mathbf{\hat{k}}_{10} + {\mathbf{\hat{k}}_4}$ 2811.63341.110.840.260.660.782.590.302811.73315.190.740.460.320.430.700.612811.83354.520.750.421.321.753.160.552811.93297.240.660.280.931.413.300.432812.13242.990.500.341.042.083.030.692812.23226.350.540.000.891.67-256.72-0.012812.33239.060.530.650.390.740.601.242812.43243.090.590.340.430.741.270.582812.62270.370.590.620.550.940.881.062812.72257.410.590.330.530.891.580.562812.82255.090.560.470.631.111.330.842813.18270.920.640.090.902.019.820.212813.10294.130.580.560.470.631.111.381.642813.28287.660.620.580.681.101.180.942813.34270.670.570.181.172.076.670.312813.18270.920.640.641.66	Depth	Total	К	ŢŢ	Тh		Patio	Ratio
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Г.Т	P.P		111/0	TOWA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							· · · · · · · · · · · · · · · · · · ·	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.84	0.26	0.66	0.78	2.59	0.30
2811.83 354.52 0.75 0.42 1.32 1.75 3.16 0.55 2812.03 260.54 0.58 0.43 0.74 1.29 1.74 0.74 2812.13 242.99 0.50 0.34 1.04 2.08 3.03 0.69 2812.23 226.35 0.54 0.00 0.89 1.67 -256.72 -0.01 2812.33 239.06 0.53 0.65 0.39 0.74 0.60 1.24 2812.42 253.38 0.52 0.43 0.46 1.65 2.00 0.83 2812.62 270.37 0.59 0.33 0.53 0.89 1.58 0.56 2812.91 232.20 0.45 0.39 1.14 2.55 2.89 0.82 2813.10 240.77 0.56 0.47 0.63 1.11 1.33 0.84 2813.28 270.64 0.04 1.16 1.82 31.64 0.28 2813.37 315.50 0.59 0.84 1.16 1.81 1.43 2813.46 271	2811.73	315.19	0.74	0.46	0.32			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		354.52	0.75	0.42	1.32	1.75		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		297.24	0.66	0.28	0.93	1.41		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.58	0.43	0.74	1.29	1.74	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.34	1.04	2.08	3.03	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.00	0.89	1.67	-256.72	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0.39	0.74	0.60	1.24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						0.74	1.27	0.58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								0.83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
2815.09239.160.580.230.550.952.450.392815.18259.730.670.140.580.874.180.212815.27279.290.660.200.921.394.560.302815.37300.970.730.180.570.773.110.252815.46314.180.810.150.720.904.910.182815.56315.900.78-0.051.261.62-25.40-0.062815.65321.950.780.360.540.681.510.452815.74336.570.890.270.400.451.510.302815.84347.660.920.130.760.825.720.14								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
2815.27279.290.660.200.921.394.560.302815.37300.970.730.180.570.773.110.252815.46314.180.810.150.720.904.910.182815.56315.900.78-0.051.261.62-25.40-0.062815.65321.950.780.360.540.681.510.452815.74336.570.890.270.400.451.510.302815.84347.660.920.130.760.825.720.14								
2815.37300.970.730.180.570.773.110.252815.46314.180.810.150.720.904.910.182815.56315.900.78-0.051.261.62-25.40-0.062815.65321.950.780.360.540.681.510.452815.74336.570.890.270.400.451.510.302815.84347.660.920.130.760.825.720.14								
2815.46314.180.810.150.720.904.910.182815.56315.900.78-0.051.261.62-25.40-0.062815.65321.950.780.360.540.681.510.452815.74336.570.890.270.400.451.510.302815.84347.660.920.130.760.825.720.14								
2815.56315.900.78-0.051.261.62-25.40-0.062815.65321.950.780.360.540.681.510.452815.74336.570.890.270.400.451.510.302815.84347.660.920.130.760.825.720.14								
2815.65321.950.780.360.540.681.510.452815.74336.570.890.270.400.451.510.302815.84347.660.920.130.760.825.720.14								
2815.74336.570.890.270.400.451.510.302815.84347.660.920.130.760.825.720.14								0.45
			0.89	0.27	0.40	0.45	1.51	0.30
2815.93 308.54 0.75 0.39 0.72 0.95 1.86 0.51	2815.84	347.66	0.92	0.13	0.76	0.82	5.72	0.14
	2815.93	308.54	0.75	0.39	0.72	0.95	1.86	0.51

Well: Rigs-2 Core 1-4

Depth meter	Total counts/min	K %	U ppm	Th ppm	Ratio Th/K *10**4	Ratio Th/U	Ratio U/K *10**4
2816.03	292.40	0.70	0.54	0.39	0.55	0.71	0.78
2816.12	382.25	1.00	0.00	0.83	0.83	256.95	0.00
2816.22	377.82	0.92	0.21	0.85	0.93		0.23
2816.32	328.10	0.69	0.61	1.03	1.50	1.68	0.89
2816.41	246.92	0.53	0.27		1.51	3.00	0.50
2816.51	219.09	0.43	0.24		3.05	5.56	0.55
2816.60	207.29	0.44	0.30	0.53	1.22	1.79	0.69
2816.70 2816.80	196.10 187.23	0.38 0.44	0.29		2.79		0.77
2816.80	141.75	0.44	0.41 0.25	0.38	0.87 1.14	$0.94 \\ 1.46$	0.93 0.78
2816.99	130.35	0.32	0.25	0.29	0.93	0.75	1.24
2817.09	165.24	0.35	0.24		1.24	1.84	0.68
2817.19	156.97	0.39	0.05	0.22	0.56	4.73	0.12
2817.29	161.41	0.30	0.59	0.45	1.51	0.76	1.99
2817.38	141.95	0.25	0.16	0.88	3.47	5.52	0.63
2817.48	159.80	0.23	0.28	1.29	5.67	4.58	1.24
2817.58	185.81	0.36	0.33	0.68	1.86	2.07	0.90
2817.68	190.35	0.45	0.34	0.41	0.91	1.21	0.75
2817.78	203.46	0.40	0.67		1.07	0.64	1.67
2817.88	206.49	0.45	0.26	0.47	1.04	1.81	0.58
2817.98	183.60	0.36	0.17	0.82	2.27	4.68	0.48
2818.08	216.07 182.39	0.40	0.55	0.75 0.98	1.85	1.35	1.37
2818.18 2818.28	190.96	0.38 0.37	0.09 0.33	0.98	2.62 2.27	11.20 2.58	0.23 0.88
2818.38	180.37	0.40	-0.12	1.09	2.71	-8.79	-0.31
2818.48	200.13	0.37	0.42	0.90	2.46	2.15	1.14
2818.58	201.95	0.41	0.63	0.35	0.84	0.55	1.52
2818.68	198.42	0.40	0.51	0.32	0.80	0.63	1.27
2818.78	184.71	0.37	0.66	0.40	1.07	0.60	1.79
2818.88	171.90	0.32	0.49	0.83	2.60	1.71	1.52
2818.98	165.65	0.30	0.40	0.89	2.95	2.22	1.33
2819.08	156.57	0.30	0.43	0.62	2.05	1.43	1.43
2819.18	205.88	0.46	0.51	0.19	0.43	0.38	1.12
2819.28	230.29	0.49	0.75	0.37	0.75	0.49	1.53
2819.38 2819.48	237.34 239.76	0.56 0.59	0.14 0.21	0.87	1.54 0.80	6.08 2.22	0.25 0.36
2819.48	248.94	0.61	0.39	0.10	0.17	0.26	0.50
2819.68	259.83	0.58	0.28	0.83	1.42	2.92	0.49
2819.78	255.19	0.52	0.41	0.99	1.91	2.42	0.79
2819.88	242.39	0.52	0.39	0.86	1.65	2.21	0.75
2819.98	231.50	0.50	0.36	0.60	1.18	1.67	0.71
2820.08	244.50	0.53	0.29	0.87	1.65	3.05	0.54
2820.18	241.07	0.55	0.11	0.67	1.23	6.27	0.20
2820.28	222.22	0.47	0.21	1.00	2.14	4.78	0.45
2820.38	237.14	0.42	0.46	1.18	2.83	2.58	1.10
2820.47	255.09	0.52	0.28	0.98	1.90	3.54	0.54

Well: Rigs-2 Core 1-4

Depth meterTotal counts/minK *U ppmTh ppmTh/K ppmRatio to Th/UU/K th)**42820.57241.980.420.641.192.831.871.522820.67232.910.490.321.042.103.280.642820.87241.180.490.690.581.180.841.402820.97181.780.360.260.762.122.960.722821.06206.890.420.710.521.230.741.672821.16239.260.470.680.661.410.981.442821.25255.800.570.380.601.001.570.682821.45278.290.630.360.691.091.910.572821.65258.720.430.901.894.3821.750.202821.65258.730.430.621.694.872.721.792821.44226.150.320.401.584.883.901.242821.74239.660.350.621.694.872.721.792821.84226.150.320.401.584.883.911.252822.12279.390.310.892.257.322.542.842822.30274.350.400.661.513.792.301.652822.41240.070.490.521.24 <td< th=""><th>Well: R</th><th>igs-2 Core</th><th>1-4</th><th></th><th></th><th></th><th></th><th></th></td<>	Well: R	igs-2 Core	1-4					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1	Ratio		Ratio
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	meter	counts/min	10	ppm	ppm	*10**4	Th/U	*10**4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2820 57	2/1 98	0 1 2	0 64	1 10		1 07	1 50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
2824.34492.980.452.852.285.060.806.312824.43463.430.382.662.125.510.796.932824.53391.630.421.841.694.040.924.392824.63329.610.371.062.035.451.912.862824.73283.230.281.491.435.100.965.302824.83252.370.331.381.083.280.794.172824.93237.140.331.051.053.141.003.152825.02242.080.261.590.833.210.526.152825.12332.240.262.401.023.930.429.282825.22442.960.333.420.621.900.1810.432825.32480.870.383.621.493.960.419.61								
2824.43463.430.382.662.125.510.796.932824.53391.630.421.841.694.040.924.392824.63329.610.371.062.035.451.912.862824.73283.230.281.491.435.100.965.302824.83252.370.331.381.083.280.794.172824.93237.140.331.051.053.141.003.152825.02242.080.261.590.833.210.526.152825.12332.240.262.401.023.930.429.282825.22442.960.333.420.621.900.1810.432825.32480.870.383.621.493.960.419.61								
2824.53391.630.421.841.694.040.924.392824.63329.610.371.062.035.451.912.862824.73283.230.281.491.435.100.965.302824.83252.370.331.381.083.280.794.172824.93237.140.331.051.053.141.003.152825.02242.080.261.590.833.210.526.152825.12332.240.262.401.023.930.429.282825.22442.960.333.420.621.900.1810.432825.32480.870.383.621.493.960.419.61								
2824.63329.610.371.062.035.451.912.862824.73283.230.281.491.435.100.965.302824.83252.370.331.381.083.280.794.172824.93237.140.331.051.053.141.003.152825.02242.080.261.590.833.210.526.152825.12332.240.262.401.023.930.429.282825.22442.960.333.420.621.900.1810.432825.32480.870.383.621.493.960.419.61								
2824.73283.230.281.491.435.100.965.302824.83252.370.331.381.083.280.794.172824.93237.140.331.051.053.141.003.152825.02242.080.261.590.833.210.526.152825.12332.240.262.401.023.930.429.282825.22442.960.333.420.621.900.1810.432825.32480.870.383.621.493.960.419.61								
2824.83252.370.331.381.083.280.794.172824.93237.140.331.051.053.141.003.152825.02242.080.261.590.833.210.526.152825.12332.240.262.401.023.930.429.282825.22442.960.333.420.621.900.1810.432825.32480.870.383.621.493.960.419.61								
2824.93237.140.331.051.053.141.003.152825.02242.080.261.590.833.210.526.152825.12332.240.262.401.023.930.429.282825.22442.960.333.420.621.900.1810.432825.32480.870.383.621.493.960.419.61								
2825.02242.080.261.590.833.210.526.152825.12332.240.262.401.023.930.429.282825.22442.960.333.420.621.900.1810.432825.32480.870.383.621.493.960.419.61								
2825.12332.240.262.401.023.930.429.282825.22442.960.333.420.621.900.1810.432825.32480.870.383.621.493.960.419.61								
2825.22442.960.333.420.621.900.1810.432825.32480.870.383.621.493.960.419.61								
2825.32 480.87 0.38 3.62 1.49 3.96 0.41 9.61								

Well: Rigs-2 Core 1-4

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Well: R	igs-2 core	L-4			—		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Denth	Total	V	TT	Th	Ratio		Ratio
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	meter	counce/ min	6	ppiii	ppiii	^LU**4	Th/U	*10**4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2825.52	1020.77	0 43	9 23	2 07	1 79	0 22	21 26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
2829.27378.720.462.061.142.470.554.482829.37634.760.414.362.255.440.5210.562829.47509.410.354.101.353.910.3311.872829.57276.570.381.650.350.910.214.342829.66210.520.360.990.421.160.422.762829.76180.970.300.720.632.060.872.362829.86166.660.350.350.310.870.880.98								
2829.37634.760.414.362.255.440.5210.562829.47509.410.354.101.353.910.3311.872829.57276.570.381.650.350.910.214.342829.66210.520.360.990.421.160.422.762829.76180.970.300.720.632.060.872.362829.86166.660.350.350.310.870.880.98								
2829.47509.410.354.101.353.910.3311.872829.57276.570.381.650.350.910.214.342829.66210.520.360.990.421.160.422.762829.76180.970.300.720.632.060.872.362829.86166.660.350.350.310.870.880.98								
2829.57276.570.381.650.350.910.214.342829.66210.520.360.990.421.160.422.762829.76180.970.300.720.632.060.872.362829.86166.660.350.350.310.870.880.98								
2829.66210.520.360.990.421.160.422.762829.76180.970.300.720.632.060.872.362829.86166.660.350.350.310.870.880.98								
2829.76180.970.300.720.632.060.872.362829.86166.660.350.350.310.870.880.98								
2829.86 166.66 0.35 0.35 0.31 0.87 0.88 0.98								
								0.98
					-0.06	-0.14	-0.24	0.59
								·······

Well: Rigs-2 Core 1-4

Well: Rigs-2 Core 1-4							
Depth meter	Total counts/min	K %	U ppm	Th ppm	Ratio Th/K *10**4	Ratio Th/U	Ratio U/K *10**4
meter 2830.06 2830.26 2830.26 2830.26 2830.46 2830.56 2830.66 2830.66 2830.66 2830.96 2831.05 2831.05 2831.13 2831.22 2831.31 2831.40 2831.40 2831.40 2831.57 2831.66 2831.75 2831.66 2832.12 2832.22 2832.22 2832.22 2832.31 2832.41 2832.51 2832.61 2832.61 2832.71 2832.61 2832.61 2832.71 2832.61 2832.71 2832.61 2832.71 2833.00 2833.00 2833.00 2833.20 2833.20 2833.20 2833.20 2833.20 2833.20 2833.20 2833.20 2833.20 2833.20 2833.20	Counts/min 191.86 180.07 173.21 164.84 178.15 182.59 199.83 198.32 174.81 144.67 123.90 173.01 151.63 92.64 144.37 202.76 240.47 253.18 251.56 216.97 174.42 164.94 175.83 172.91 158.29 145.78 163.33 162.62 160.40 161.92 150.92 133.88 144.17 138.32 141.75 133.68 133.68 133.68 116.03	$ \ \ \ \ \ \ \ \ \ \ \$	ppm 0.49 0.20 0.28 0.19 0.43 0.64 0.35 0.09 0.08 0.69 0.71 0.49 0.50 0.92 1.33 0.84 0.97 0.94 0.20 0.34 0.75 0.25 0.30 0.16 0.46 0.41 0.24 0.24 0.21 0.25 0.23 0.27 0.46	ppm 0.66 0.35 0.50 0.80 0.83 0.37 0.07 0.42 0.35 0.26 0.10 0.49 0.24 0.01 0.54 0.18 0.38 0.47 0.11 0.34 -0.15 0.09 -0.50 -0.20 0.17 -0.14 0.22 0.05 0.14 0.22 0.05 0.14 0.25 0.26 0.10 0.33 0.26 0.01 0.54 0.38 0.47 0.11 0.34 -0.15 0.09 -0.50 -0.20 0.17 -0.14 0.22 0.05 0.14 0.33 -0.05 0.14 0.22 0.05 0.14 0.33 -0.05 0.14 0.33 -0.05 0.14 0.25 0.14 0.33 -0.15 0.26 0.10 0.34 -0.15 0.09 -0.50 -0.20 0.17 -0.14 0.22 0.05 0.14 0.33 -0.05 0.14 0.33 -0.05 0.14 0.22 0.05 0.14 0.25 0.14 0.25 0.14 0.33 -0.15 0.26 0.10 0.26 0.10 0.20 0.17 -0.14 0.22 0.05 0.14 0.33 -0.05 0.14 0.33 -0.05 0.14 0.35 0.25 0.14 0.35 0.25 0.14 0.35 0.14 0.35 0.14 0.25 0.14 0.25 0.14 0.25 0.14 0.35 0.14 0.35 0.09 -0.50 0.14 0.25 0.14 0.35 0.09 -0.20 0.14 0.35 0.09 -0.33 -0.33 -0.33 0.25 0.04 -0.33 -0.33 0.25 0.04 -0.33 -0.33 0.25 0.04 -0.33 -0.33 0.25 0.04 -0.33 -0.33 0.25 0.04 -0.14 -0.33 -0.33 -0.33 0.25 0.04 -0.14 -0.14 -0.34 -0.33 -0.33 -0.33 -0.33 0.25 0.04 -0.14 -0.14 -0.15 0.04 -0.33 -0.33 -0.25 0.04 -0.14 -0.14 -0.33 -0.33 -0.33 -0.25 0.04 -0.14 -0.14 -0.33 -0.33 -0.33 -0.25 0.04 -0.14 -0.33 -0.33 -0.33 -0.34 -0.33 -0.33 -0.35 -0.04 -0.14 -0.34 -0.35 -0.45 -0.35 -0.35 -0.45 -0.35 -0.45 -0.45 -0.35 -0.35 -0.35 -0.45 -0.55	Th/K *10**4 1.90 0.83 1.26 2.29 2.14 1.02 0.17 0.87 0.79 0.68 0.29 1.45 0.90 0.07 2.08 0.29 1.45 0.90 0.07 2.08 0.49 1.04 1.00 0.24 0.80 -0.33 0.21 -1.16 -0.44 0.46 -0.37 0.65 0.57 0.12 0.31 0.82 -0.11 -0.83 0.73 0.73 0.11 -0.49	Th/U 1.34 1.76 1.80 4.17 4.29 0.86 0.11 1.21 4.05 3.26 1.28 0.72 0.34 0.03 1.08 0.19 0.28 0.19 0.28 0.19 0.28 0.56 0.12 0.37 -0.78 0.25 -0.66 -0.79 0.56 -0.79 0.56 -0.53 0.53 0.20 1.21 5.74 -0.16 -0.23 -1.29 1.08 0.13 -0.30	U/K *10**4 1.42 0.47 0.70 0.55 0.50 1.18 1.52 0.72 0.19 0.21 2.61 2.68 1.93 2.55 3.66 1.80 2.08 2.19 0.43 0.82 1.76 0.56 0.82 0.43 1.08 2.19 0.43 0.55 0.50 1.23 2.55 3.66 1.80 2.08 2.19 0.43 0.82 1.76 0.56 0.56 0.56 0.56 0.56 1.08 2.19 0.43 0.55 0.50 1.23 2.55 3.66 1.80 2.08 2.19 0.43 0.55 0.56 1.68 1.62 1.68 1.62
2833.69 2833.79 2833.89 2833.99 2834.09 2834.19 2834.28 2834.38	147.29 145.08 121.48 95.56 106.25 127.93 147.19 134.08	0.32 0.34 0.30 0.23 0.31 0.33 0.36 0.34	0.39 0.19 0.48 0.20 0.05 0.05 0.15 0.06	$\begin{array}{c} 0.40 \\ 0.30 \\ -0.13 \\ 0.10 \\ -0.06 \\ 0.34 \\ 0.30 \\ 0.17 \end{array}$	1.26 0.87 -0.44 0.42 -0.20 1.04 0.82 0.48	$1.04 \\ 1.54 \\ -0.28 \\ 0.49 \\ -1.27 \\ 7.25 \\ 2.00 \\ 2.99$	1.22 0.57 1.58 0.85 0.16 0.14 0.41 0.16

Well: Rigs-2 Core 1-4

Depth meter	Igs-2 Core Total counts/min	⊥-4 K %	U mqq	Th ppm	Ratio Th/K *10**4	Ratio Th/U	Ratio U/K *10**4
2834.48	133.68	0.31	0.39	0.00	-0.01	0.00	1.26
2834.57	140.74	0.35	0.18	0.15	0.42	0.85	0.50
2834.67	141.14	0.34	0.25	0.34	1.00	1.36	0.73
2834.77		0.36	0.47	0.00	0.01	0.01	1.29
2834.87 2834.96	143.56 106.76	0.28	0.57	0.46	1.64	0.81	2.03
2835.06	115.63	0.28 0.27	0.13 0.32	-0.08	-0.27	-0.61	0.44
2835.16	139.23	0.27	0.32	-0.03 -0.14	-0.12 -0.39	-0.11 -0.46	1.16
2835.25	131.16	0.34	0.30	-0.14	-0.12	-0.13	0.85 0.89
2835.35	130.76	0.30	0.30	-0.01	-0.04		1.01
2835.45	135.09	0.31	0.42	0.33	1.09	0.80	1.35
2835.55	136.20	0.35	0.16	0.24	0.69		0.46
2835.64	155.56	0.37	0.19	0.22	0.58	1.11	0.52
2835.74	145.88	0.36	0.11	0.21	0.59	1.90	0.31
2835.84	142.76	0.27	0.46	0.47	1.77	1.03	1.72
2835.94	140.13	0.27	0.57	0.22	0.81	0.38	2.14
2836.03	119.66	0.26	0.46	0.07	0.25	0.14	1.75
2836.13	152.34	0.33	0.41	-0.07	-0.22	-0.18	1.24
2836.23	164.84	0.36	0.44	0.17	0.47	0.38	1.23
2836.33 2836.43	172.60 164.03	0.33 0.29	0.70 0.76	0.00 0.24	0.00 0.82	0.00	2.15
2836.53	173.81	0.29	0.98	0.24	1.25	0.32	2.59 3.76
2836.63	170.18	0.31	0.67	0.22	0.70	0.33	2.15
2836.73	168.77	0.35	0.42	0.18	0.49	0.42	1.18
2836.83	164.84	0.34	0.59	0.15	0.44	0.26	1.71
2836.93	147.39	0.33	0.64	0.15	0.45	0.23	1.93
2837.02	164.64	0.28	1.13	-0.06	-0.23	-0.06	4.06
2837.12	201.55	0.46	0.69	0.13	0.28	0.19	1.50
2837.22	205.18	0.47	0.68	••••••	0.37	0.25	1.44
2837.32	216.17	0.51	0.34	0.30	0.59	0.89	0.66
2837.42	204.97	0.46	0.58	0.05	0.11	0.09	1.26
2837.51 2837.61	208.40 220.91	0.53 0.53	$0.75 \\ 0.44$	-0.41 0.08	-0.76 0.16	-0.54 0.19	1.41 0.83
2837.71	216.97	0.56	$0.44 \\ 0.12$	0.18	0.18	1.44	0.83
2837.81	217.08	0.53	0.51	-0.12	-0.22	-0.23	0.97
2837.91	200.54	0.48	0.47	0.12	0.24	0.25	0.97
2838.00	201.85	0.45	0.38	0.29	0.65	0.76	0.85
2838.10	199.73	0.48	0.37	0.13	0.26	0.34	0.77
2838.20	182.29	0.43	0.41	0.08	0.19	0.20	0.95
2838.30	187.43	0.40	0.50	0.42	1.05	0.85	1.23
2838.40	174.22	0.44	0.35	0.25	0.58	0.71	0.81
2838.50	177.55	0.44	0.24	0.33	0.75	1.35	0.55
2838.60	170.49	0.40	0.22	0.52	1.30	2.38	0.55
2838.70	177.75	0.48	0.26	0.15	0.31	0.56	0.55
2838.80 2838.89	199.33 190.05	$0.47 \\ 0.44$	0.21 0.45	0.34 0.14	0.72	1.64 0.32	0.44 1.01
2030.09	190.03	0.74		V.14	0.52	v. J2	±.01

Well: Rigs-2 Core 1-4

Well: R	igs-2 Core :	1-4					
Depth meter	Total counts/min	K %	U mqq	Th ppm	Ratio Th/K *10**4	Ratio Th/U	Ratio U/K *10**4
				·			
2838.99 2839.09	140.94 144.67	0.31 0.37	0.26 0.11	0.45 0.32	1.44 0.87	1.73 2.89	0.83
2839.19		0.33	0.39	0.33	0.98	0.85	1.15
2839.29		0.42	0.36	0.17	0.40	0.47	0.86
2839.39		0.41	0.20	0.54	1.31	2.75	0.48
2839.49		0.40	0.36	0.33	0.82	0.91	0.90
2839.59		0.41	0.15	0.20	0.48	1.32	0.37
2839.69	152.94	0.38	0.15	0.45	1.18	2.95	0.40
2839.79		0.43	0.51	0.10	0.23	0.19	1.19
2839.89	184.40	0.44	0.17	0.49	1.10	2.89	0.38
2839.99	182.18	0.43	0.18	0.63	1.48	3.49	0.42
2840.08 2840.17	200.94 208.50	0.58 0.49	0.06	0.07 0.46	0.12 0.95	1.09 1.57	0.11 0.61
2840.17	197.61	0.49 0.51	0.29	0.40	0.95	4.41	0.81
2840.35	183.50	0.46	0.26	0.23	0.49	0.87	0.57
2840.44		0.60	-0.07	0.13	0.21	-1.73	-0.12
2840.53	218.18	0.61	0.19	0.18	0.30	0.93	0.32
2840.62	206.79	0.52	0.47	0.37	0.72	0.79	0.92
2840.71		0.49	0.00	0.32	0.66	77.31	0.01
2840.80	185.41	0.44	0.24	0.20	0.45	0.82	0.55
2840.89	173.61	0.42	0.13	0.41	0.97	3.16	0.31
2840.98	138.42	0.38	-0.11	0.39	1.01	-3.40	-0.30
2841.08		0.38	0.61	-0.19	-0.49	-0.30	1.64
2841.17		0.46	0.38	0.10	0.22	0.27	0.83
2841.27	184.50	0.47	0.34	0.11	0.23	0.31	0.73
2841.37	179.36	0.49	0.13	0.31	0.64	2.40	0.27
2841.46 2841.56	187.43 205.18	0.45 0.48	0.41 0.25	0.16 0.38	0.35 0.80	0.39 1.51	0.91
2841.66	183.70	0.48	0.23	0.18	0.37	0.80	0.33
2841.76	196.10	0.51	-0.04	0.42	0.84	-10.56	-0.08
2841.85	185.21	0.48	0.15	0.33	0.69	2.22	0.31
2841.95	158.39	0.45	0.11	-0.10	-0.22	-0.86	0.25
2842.05	157.18		0.32		-0.09		0.83
2842.14			0.07	0.20	0.43	2.84	0.15
2842.24			0.16		-0.22		
2842.34	181.38				1.03		
2842.44	168.37					0.18	
2842.53	156.97						
2842.63	147.39				0.78		
2842.73	150.72		0.19			0.45	
2842.83			0.22		-0.41 -0.07		0.55 1.62
2842.92 2843.02	148.30 147.90		0.59 0.33			0.86	
2843.02			0.33			0.54	
2843.21					0.55		
2843.31			0.24		0.02		0.38

Well: Rigs-2 Core 1-4

Depth meter	Total counts/min	г-4 К %	U ppm	Th ppm	Ratio Th/K *10**4	Ratio Th/U	Ratio U/K *10**4
meter 2843.41 2843.51 2843.60 2843.70 2843.90 2843.90 2843.99 2844.09 2844.29 2844.29 2844.29 2844.39 2844.39 2844.69 2844.69 2844.69 2844.98 2844.98 2844.98 2845.08 2845.18 2845.08 2845.18 2845.27 2845.37 2845.57 2845.57 2845.57 2845.57 2845.57 2845.57 2845.57 2845.57 2845.57 2845.57 2845.57 2845.57 2845.57 2845.57 2845.57 2845.57 2845.57 2845.67 2845.67 2845.67 2845.67 2845.67 2845.67 2845.67 2845.67 2845.67 2845.67 2845.67 2845.67 2845.57 2845.57 2845.67 2845.86 2846.64 2846.73 2846.64 2846.73 2845.93 2847.02	Counts/min 223.63 230.18 285.14 297.65 294.72 275.56 241.78 290.79 300.57 291.90 304.40 306.72 306.52 260.03 242.99 222.32 225.95 246.52 252.27 244.50 238.76 212.34 207.09 226.55 241.68 209.51 195.19 229.28 224.74 223.93 227.16 201.24 205.18 200.74 229.58 207.80 186.82 221.31	<pre>% 0.57 0.61 0.59 0.75 0.64 0.52 0.64 0.52 0.69 0.69 0.69 0.69 0.69 0.69 0.62 0.59 0.62 0.59 0.62 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5</pre>	ppm 0.49 0.37 0.86 0.32 1.08 0.70 0.83 0.80 0.36 0.88 0.96 0.70 0.66 0.28 0.60 0.70 0.66 0.28 0.60 0.57 0.35 0.45 0.26 0.57 0.25 0.55 0.55 0.55 0.55 0	ppm 0.07 -0.33 0.53 0.22 0.06 0.11 0.32 0.47 0.56 0.10 0.41 0.38 0.29 0.27 0.16 0.19 0.22 0.31 0.26 0.17 -0.24 0.25 0.32 0.30 0.21 0.80 -0.04 0.19 0.21 0.58 0.51 0.58 0.51 0.58 0.51 0.58 0.51 0.58 0.51 0.58 0.51 0.55 0.32 0.32 0.31 0.25 0.32 0.31 0.25 0.32 0.31 0.25 0.32 0.31 0.25 0.32 0.31 0.25 0.32 0.31 0.25 0.32 0.31 0.25 0.32 0.31 0.25 0.32 0.31 0.25 0.32 0.31 0.25 0.32 0.31 0.25 0.32 0.31 0.25 0.32 0.31 0.25 0.32 0.31 0.25 0.32 0.30 0.21 0.58 0.51 0.58 0.51 0.58 0.51 0.15 0.32 0.32 0.30 0.21 0.58 0.51 0.55 0.32 0.32 0.30 0.21 0.58 0.51 0.15 0.32 0.55 0.32 0.32 0.55 0.32 0.55 0.32 0.55 0.32 0.55 0.32 0.55 0.32 0.55 0.55 0.55 0.32 0.55	Th/K *10**4 0.13 -0.54 0.89 0.29 0.09 0.18 0.62 0.74 0.79 0.15 0.61 0.56 0.42 0.47 0.26 0.38 0.42 0.47 0.26 0.38 0.42 0.51 0.51 0.42 0.51 0.51 0.51 0.52 0.38 0.42 0.51 0.51 0.52 0.38 0.42 0.51 0.52 0.38 0.42 0.51 0.52 0.38 0.42 0.51 0.52 0.38 0.42 0.51 0.52 0.61 0.52 0.52 0.61 0.52 0.52 0.61 0.52 0.52 0.61 0.53 0.52 0.61 0.00 0.37 0.24 1.04 0.00 0.00 0.14 1.01 0.30	Th/U 0.15 -0.91 0.61 0.69 0.05 0.16 0.39 0.59 1.54 0.12 0.42 0.42 0.41 0.60 0.32 0.38 0.96 0.37 0.48 -0.53 5.04 1.24 0.53 0.45 3.54 -0.16 0.28 0.24 2.35 5.72 0.53 1.89 -3.97 0.00 0.34	U/K *10**4 0.86 0.60 1.45 0.42 1.68 1.11 1.59 1.24 0.51 1.27 1.45 1.02 1.03 1.14 0.44 1.20 1.16 0.53 1.18 0.56 0.72 0.08 0.49 1.12 0.52 1.33 1.03 0.44 0.52 1.33 1.03 0.44 0.52 1.33 1.36 1.22 0.88
2847.12 2847.21 2847.31 2847.40 2847.50 2847.59 2847.69 2847.78	250.25 261.95 223.93 203.97 211.93 204.17 225.24 231.39	0.53 0.61 0.59 0.55 0.54 0.51 0.52 0.52	0.89 0.91 0.17 0.13 0.06 0.41 0.34 0.57	$\begin{array}{c} 0.30 \\ -0.07 \\ 0.51 \\ 0.23 \\ 0.52 \\ -0.04 \\ 0.56 \\ 0.62 \end{array}$	0.57 -0.12 0.87 0.42 0.97 -0.07 1.08 1.19	$\begin{array}{c} 0.34 \\ -0.08 \\ 2.94 \\ 1.85 \\ 8.32 \\ -0.09 \\ 1.63 \\ 1.08 \end{array}$	1.69 1.50 0.30 0.23 0.12 0.81 0.66 1.10

Well: Rigs-2 Core 1-4

Well: Rig: Depth meter co	s-2 Core : Total punts/min	L-4 К %	U mqq	Th ppm	Ratio Th/K *10**4	Ratio Th/U	Ratio U/K *10**4
meter co 2847.88 2847.97 2848.07 2848.07 2848.17 2848.27 2848.36 2848.46 2848.66 2848.66 2848.66 2848.76 2848.95 2849.06 2849.17 2849.28 2849.06 2849.39 2849.50 2849.50 2849.58 2849.66 2849.74 2849.82 2849.90 2849.90 2849.98 2849.90 2849.99 2849.90 2849.98 2850.07 2850.17 2850.27 2850.37 2850.57 2850.77 2850.77 2850.77 2850.77 2850.97 2851.07 2851.16	Dunts/min 188.74 210.12 198.22 200.03 212.64 232.40 244.40 244.30 260.64 238.35 217.48 225.75 254.69 250.66 228.67 207.39 161.71 211.13 257.92 255.19 258.52 218.89 196.40 233.51 229.28 192.87 159.60 126.42 119.26 129.24 127.53 112.30 85.88 100.00 120.37	$ \ \ \ \ \ \ \ \ \ \ \$	ppm 0.30 0.34 -0.22 0.27 0.33 0.42 0.37 0.29 0.02 0.09 0.45 -0.02 0.34 0.33 0.25 0.29 0.13 0.25 0.29 0.13 0.97 1.02 0.32 0.82 0.64 0.66 0.49 0.17 0.76 0.53 -0.11 0.42 0.29 0.01 0.29 0.01 0.29 0.02 0.29 0.13 0.29 0.13 0.29 0.13 0.29 0.13 0.29 0.13 0.29 0.13 0.29 0.13 0.29 0.13 0.29 0.13 0.29 0.13 0.29 0.13 0.29 0.13 0.29 0.13 0.29 0.13 0.29 0.13 0.29 0.13 0.29 0.13 0.97 1.02 0.64 0.53 -0.11 0.42 0.29 0.02 0.29 0.12 0.32 0.64 0.53 -0.11 0.29 0.02 0.02 0.29 0.12 0.29 0.13 0.29 0.13 0.29 0.13 0.29 0.13 0.29 0.13 0.29 0.13 0.29 0.12 0.29 0.13 0.29 0.13 0.29 0.12 0.29 0.13 0.29 0.12 0.29 0.13 0.29 0.12 0.29 0.13 0.29 0.12 0.29 0.12 0.29 0.12 0.29 0.12 0.29 0.12 0.29 0.12 0.29 0.12 0.29 0.12 0.29 0.12 0.29 0.12 0.29 0.17 0.76 0.29 0.01 0.29 0.01 0.29 0.01 0.29 0.01 0.29 0.01 0.29 0.01 0.29 0.01 0.29 0.01 0.29 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.29 0.02 0.02 0.29 0.02 0.29 0.02 0.29 0.02 0.29 00	ppm 0.32 -0.09 0.44 0.28 0.16 0.30 0.27 0.08 0.24 0.51 -0.19 0.48 0.06 0.50 0.43 0.37 0.43 0.37 0.84 -0.01 0.18 0.61 0.37 0.13 0.04 0.63 -0.03 0.12 0.22 0.12 0.22 0.14 0.23 0.21 0.14	Th/K *10**4 0.72 -0.16 0.78 0.58 0.30 0.53 0.47 0.13 0.34 0.81 -0.34 0.81 -0.34 0.82 0.09 0.84 0.79 0.75 2.43 -0.03 0.35 1.10 0.69 0.26 0.09 0.84 1.16 -0.07 0.09 0.84 1.16 -0.07 0.99 0.84 1.16 -0.07 0.99 0.84 1.16 -0.34 0.99 0.84 1.16 -0.39 0.87 0.62 0.47 0.98 0.78 0.48	Th/U 1.08 -0.26 -2.06 1.03 0.50 0.71 0.73 0.29 15.94 5.38 -0.43 -23.38 0.19 1.51 1.71 1.29 6.47 -0.01 0.18 1.94 0.45 0.21 0.06 0.92 3.73 -0.04 0.06 -1.09 -0.28 0.94 20.02 6.30 4.96 -3.27 0.50	$\begin{array}{c} U/K \\ *10 \\ *10 \\ *4 \\ \hline \\ 0.67 \\ 0.61 \\ -0.38 \\ 0.57 \\ 0.60 \\ 0.74 \\ 0.64 \\ 0.45 \\ 0.02 \\ 0.15 \\ 0.79 \\ -0.04 \\ 0.55 \\ 0.46 \\ 0.58 \\ 0.38 \\ 2.24 \\ 1.93 \\ 0.57 \\ 1.52 \\ 1.23 \\ 1.51 \\ 0.91 \\ 0.31 \\ 1.77 \\ 1.36 \\ -0.32 \\ 1.40 \\ 0.93 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.20 \\ -0.24 \\ 0.96 \\ \end{array}$
2851.26 2851.36 2851.46 2851.66 2851.75 2851.85 2851.95 2852.05 2852.15 2852.25	117.34 128.13 141.55 114.32 126.52 141.75 143.56 136.50 130.76 153.45 149.92	0.33 0.27 0.29 0.31 0.37 0.35 0.34 0.32	0.45 0.36 -0.01 0.13 0.08 0.23 0.35 0.28	$\begin{array}{c} 0.19\\ 0.37\\ -0.07\\ 0.34\\ 0.19\\ 0.39\\ 0.03\\ 0.12\\ 0.50\end{array}$	1.37 -0.25 1.08 0.51 1.04 0.08 0.37 1.58	$\begin{array}{r} 0.69 \\ 0.82 \\ -0.20 \\ -42.53 \\ 1.45 \\ 5.15 \\ 0.12 \end{array}$	1.67 1.25 -0.03 0.35 0.20 0.66 1.04

Well: Rigs-2 Core 1-4

well: R	igs-2 Core	1-4			_		
Depth meter	Total counts/min	K %	U ppm	Th ppm	Ratio Th/K *10**4	Ratio Th/U	Ratio U/K *10**4
meter 2852.35 2852.45 2852.54 2852.64 2852.64 2852.94 2852.94 2853.04 2853.14 2853.24 2853.24 2853.34 2853.34 2853.63 2853.63 2853.63 2853.63 2853.93 2853.93 2854.02 2854.12 2854.22 2854.22 2854.52 2854.62 2854.62 2854.62 2854.62 2854.62 2854.62 2854.90 2854.90 2855.00 2855.00 2855.00 2855.00 2855.02 2855.12 2855.12 2855.16 2855.21 2855.26 2855.26	132.87 136.81 126.02 147.70 145.98 152.44 123.09 120.97 152.84 156.87 142.15 148.00 158.08 173.51 173.31 177.04 169.98 156.37 161.51 166.66 174.72 160.60 146.59 145.48 153.85 142.76 129.55 117.14 101.92 133.78 154.35 175.93 197.41 191.66 185.51 192.47 186.72 186.12 196.30 197.11 204.67 174.62 192.07 178.86	$ \ \ \ \ \ \ \ \ \ \ \$	ppm 0.17 0.02 -0.02 0.66 0.34 0.27 0.33 0.63 0.59 0.18 0.29 0.30 -0.05 0.34 0.30 0.32 0.32 0.32 0.32 0.32 0.32 0.34 0.35 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.35 0.32 0.32 0.32 0.35 0.32 0.32 0.35 0.32 0.35 0.32 0.35 0.32 0.35 0.32 0.35 0.32 0.35 0.32 0.35 0.32 0.35 0.32 0.35 0.32 0.35 0.32 0.35 0.32 0.35 0.32 0.35 0.35 0.32 0.35 0.32 0.35 0.35 0.32 0.35 0.35 0.32 0.35 0.35 0.35 0.35 0.30 0.58 0.28 0.21 0.11 0.56 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.23 0.58 0.23 0.58 0.23 0.55 0.30 0.58 0.23 0.55 0.30 0.58 0.23 0.55 0.30 0.58 0.23 0.55 0.30 0.58 0.23 0.55 0.15 0.56 0.57 0.23 0.23 0.58 0.23 0.58 0.23 0.58 0.23 0.58 0.56 0.50 0.58 0.23 0.58 0.56 0.50 0.58 0.59 0.58 0.56 0.50 0.62 0.58 0.59 0.58 0.59 0.58 0.56 0.50 0.58 0.59 0.58 0.56 0.50 0.58 0.59 0.58 0.59 0.58 0.56 0.50 0.58 0.59 0.58 0.56 0.50 0.58 0.59 0.58 0.59 0.58 0.56 0.50 0.58 0.56 0.50 0.58 0.56 0.50 0.58 0.56 0.50 0.58 0.56	ppm 0.05 -0.09 -0.13 -0.08 0.35 0.20 0.13 0.01 -0.02 -0.24 0.08 -0.09 0.29 0.28 0.57 0.09 -0.29 0.28 0.13 0.57 0.09 -0.29 0.28 0.15 -0.01 0.45 -0.01 0.45 -0.01 0.45 -0.01 0.45 0.21 0.34 -0.03 0.18 -0.03 0.61 0.65 0.14 0.38 -0.02 -0.24 0.34 -0.03 0.13 0.13 0.21 0.34 -0.02 -0.24 0.34 -0.02 -0.21 0.34 -0.03 0.13 0.13 0.21 0.34 -0.03 0.13 0.21 0.34 -0.03 0.13 0.21 0.34 -0.03 0.13 0.21 0.34 -0.03 0.13 0.21 0.34 -0.03 0.13 0.21 0.34 -0.03 0.13 0.21 0.34 -0.03 0.13 0.21 0.34 -0.03 0.13 0.21 0.34 -0.03 0.14 0.25 0.14 0.38 -0.02 -0.06 0.37 0.09 0.33 0.40 -0.10 -0.02 -0.00 -0.29 0.21 0.34 -0.03 0.14 0.25 0.14 0.25 0.14 0.25 0.14 0.25 0.14 0.25 0.14 0.25 0.14 0.25 0.14 0.38 -0.02 -0.06 0.37 0.09 -0.29 0.21 0.34 -0.02 -0.06 0.37 0.09 -0.29 0.29 0.21 0.34 -0.02 -0.06 0.37 0.09 -0.29 0.29 0.21 0.34 -0.02 -0.06 0.37 0.09 -0.02 -0.06 0.13 0.25 0.09 -0.02 -0.06 0.37 0.09 0.33 0.40 -0.10 -0.	*10**4 0.14 -0.22 -0.35 -0.22 1.04 0.53 0.43 0.05 -0.07 -0.64 0.22 -0.22 0.22 1.35 0.20 -0.62 0.71 0.48 0.55 1.22 -0.04 0.55 1.22 -0.04 0.55 1.22 -0.04 0.55 1.22 -0.04 0.65 0.72 0.93 -1.19 0.65 -0.10 1.96 1.55 0.31 0.81 -0.06 -0.12 0.79 0.12 0.79 0.12 0.93 -0.65 -0.10 1.96 -0.12 0.79 0.12 0.22 0.22 0.22 0.55 -0.10 1.96 -0.12 0.79 0.12 0.21 0.21 0.22 0.22 0.22 0.52 0.93 -0.65 -0.10 1.96 -0.12 0.79 0.12 0.21 0.21 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.52 0.31 0.48 0.80 0.92 -0.24	Th/U 0.30 -3.88 5.89 -0.12 1.05 0.74 0.38 0.04 -0.04 -0.40 0.44 -0.30 0.28 -10.85 0.26 -0.95 0.85 0.26 -0.95 0.88 0.77 0.16 0.60 1.51 -0.02 0.86 1.19 1.09 3.13 -0.77 1.214 5.47 -7.59 0.59 2.53 -0.03 -0.29 1.61 0.24 0	$\begin{array}{c} *10**4\\ 0.47\\ 0.06\\ -0.06\\ 1.90\\ 0.99\\ 0.71\\ 1.11\\ 1.16\\ 1.80\\ 1.59\\ 0.50\\ 0.74\\ 0.77\\ -0.12\\ 0.76\\ 0.65\\ 0.81\\ 1.11\\ 0.91\\ 1.44\\ 0.76\\ 0.65\\ 0.81\\ 1.11\\ 0.91\\ 1.44\\ 0.76\\ 0.60\\ 0.48\\ 0.30\\ 1.55\\ 0.53\\ 0.70\\ 0.36\\ -0.20\\ 0.52\\ 0.32\\ 1.68\\ 0.42\\ 0.49\\ 1.33\\ 1.30\\ 1.05\\ 0.12\\ 0.77\\ 0.91\\ 1.45\end{array}$
2855.31 2855.33	194.39 181.88	0.46 0.45	0.55 0.30	0.01 0.25	0.03 0.55	0.02 0.82	1.21 0.67

Well: Rigs-2 Core 1-4

NOLL. R	190 2 COLC .	T I			Datis		- · ·
Depth	Total	к	U	шЪ	Ratio		Ratio
meter	counts/min	۲. ج		Th	Th/K	Ratio	U/K
meter	counce/ min	6	ppm	ppm	*10**4	Th/U	*10**4
2855.36	196.81	0.47	0.51	0 0 0 0		0 05	1 00
2855.38	206.39	0.47	0.51	0.03	0.05	0.05	1.08
2855.40	192.77	0.44	0.13	0.10	0.23	0.14	1.58
2855.43	188.13	0.45	0.13	0.56	1.24	4.19	0.30
2855.45				0.33	0.75	1.13	0.67
2855.45	187.13	0.41	0.57	0.19	0.45	0.33	1.37
	189.75	0.47	0.30	0.15	0.32	0.50	0.64
2855.50	176.74	0.48	0.04	0.06	0.13	1.54	0.09
2855.52	181.08	0.45	0.31	0.21	0.47	0.69	0.67
2855.55	186.72	0.46	0.43	-0.09	-0.21	-0.22	0.94
2855.57	191.66	0.42	0.32	0.51	1.20	1.59	0.75
2855.60	193.58	0.46	0.36	0.24	0.52	0.66	0.79
2855.62	203.76	0.50	0.30	0.06	0.12	0.20	0.59
2855.64	187.33	0.43	0.37	0.18	0.43	0.51	0.86
2855.67	190.96	0.42	0.34	0.58	1.39	1.72	0.81
2855.69	188.13	0.48	0.25	0.07	0.14	0.27	0.51
2855.75	182.99	0.42	0.57	0.08	0.19	0.14	1.37
2855.85	190.76	0.43	0.39	0.37	0.86	0.95	0.90
2855.95	176.74	0.43	0.13	0.11	0.25	0.80	0.31
2856.05	157.68	0.38	0.25	0.31	0.82	1.25	0.66
2856.15	184.60	0.44	0.33	0.25	0.58	0.76	0.76
2856.24	176.13	0.50	-0.23	0.49	0.98	-2.16	-0.46
2856.34	187.63	0.50	0.21	-0.03	-0.07	-0.16	0.42
2856.44	185.01	0.52	0.19	-0.30	-0.58	-1.62	0.36
2856.54	191.97	0.52	0.21	-0.08	-0.15	-0.38	0.40
2856.64	188.03	0.44	0.36	0.17	0.38	0.46	0.83
2856.74	193.78	0.44	0.42	0.30	0.68	0.71	0.96
2856.83	202.15	0.46	0.20	0.55	1.20	2.73	0.44
2856.93	169.28	0.41	0.24	0.44	1.10	1.88	0.58
2857.03	138.62	0.38	0.04	0.33	0.87	7.95	0.11
2857.13	163.43	0.41	0.17	0.43	1.04	2.54	0.41
2857.22	177.04	0.45	0.24	0.11	0.25	0.48	0.52
2857.32	184.81	0.50	-0.02	0.27	0.54	-11.37	-0.05
2857.42	202.35	0.46	0.70	0.13	0.28	0.18	1.51
2857.52	221.01	0.58	0.37	-0.04	-0.08	-0.12	0.63
2857.61	257.71	0.67	0.23	0.30	0.45	1.30	0.34
2857.71	287.16	0.83	-0.08	0.11	0.13	-1.35	-0.10
2857.81	269.41	0.81	-0.19	0.25	0.30	-1.33	-0.23
2057.01	202.41	0.01	0.15	0.25	0.50		-0.25

0.59

0.53

0.53

0.73

0.76

0.69

0.67

0.49

0.40

218.99 201.75

218.69

258.82

296.34

274.86

257.01

180.07

185.92

2857.91

2858.00 2858.10

2858.20

2858.30

2858.40

2858.50

2858.60

2858.68

0.35

0.28

0.56

0.35

0.60

0.33

0.37

0.50

-0.08

Page 75

-0.09

0.37

0.03

0.60

0.20

0.15

0.22

-0.17

-0.18

-0.14

0.70

0.05

0.83

0.26

0.23

0.55

-0.26

-0.36

-0.24

1.32

0.05

-7.89

-0.30

-0.47

0.56

0.46

0.44

0.60

0.53

1.06 -0.10

0.46

0.86

0.49

0.77

1.24

Page 76

Well: Rigs-2 Core 1-4

WEIT: K	195-2 COLE	T . I			Dobło		Date ! -
Depth	Total	К	U	Th	Ratio	Dotio	Ratio
meter	counts/min	8			Th/K *10**4	Ratio	U/K
mecer	councs/min	ō	ppm	ppm	^1U^*4	Th/U	*10**4
	2						
2858.75	213.04	0.57	-0.07	0.53	0 03	7 0 2	0 1 0
2858.83	239.16	0.65	0.04		0,93	-7.83	-0.12
				0.20	0.31	4.89	0.06
2858.91	244.40	0.65	-0.01	0.32	0.48	-31.80	-0.02
2858.98	262.35	0.69	0.17	0.35	0.50	2.08	0.24
2859.08	298.35	0.76	0.55	0.22	0.29	0.40	0.73
2859.17	288.17	0.74	0.16	0.45	0.61	2.85	0.22
2859.27	286.25	0.71	0.34	0.37	0.51	1.08	0.48
2859.37		0.71	0.52	-0.10	-0.14	-0.20	0.74
2859.47	244.10	0.64	0.31	0.16	0.24	0.51	0.48
2859.57	230.49	0.61	0.32	0.21	0.34	0.65	0.52
2859.67	217.08	0.57	0.00	0.37	0.66	75.74	0.01
2859.77		0.47	0.62	0.06	0.14	0.10	1.33
2859.87	183.80	0.50	0.30	0.01	0.02	0.04	0.60
2859.97	151.43	0.41	0.14	0.21	0.51	1.50	0.34
2860.06	166.76	0.44	0.20	0.13	0.29	0.64	0.45
2860.16	188.03	0.47	0.35	0.20	0.43	0.57	0.75
2860.26	213.85	0.54	0.48	-0.03	-0.05	-0.06	0.89
2860.35	208.91	0.48	0.36	0.48	1.01	1.36	0.74
2860.45	194.08	0.45	0.36	0.11	0.25	0.31	0.80
2860.55	203.66	0.51	0.27	0.52	1.02	1.93	0.53
2860.65	205.08	0.56	0.12	0.13	0.24	1.14	0.21
2860.74	199.93	0.49	0.35	-0.01	-0.03	-0.04	0.71
2860.84	199.02	0.52	0.50	0.23	0.44	0.46	0.96
2860.94	177.95	0.47	0.36	0.00	0.00	0.00	0.77
2861.03	176.94	0.47	0.39	-0.11	-0.23	-0.27	0.84
2861.13	193.78	0.51	0.15	0.27	0.54	1.77	0.30
2861.23	203.97	0.50	0.35	0.41	0.83	1.17	0.71
2861.33	201.85	0.47	0.22	0.47	1.00	2.16	0.46
2861.43	214.15	0.53	0.30	0.26	0.49	0.86	0.56
2861.53	207.09	0.53	0.40	0.33	0.65	0.83	0.78
2861.63	193.88	0.48	0.40	0.23	0.47	0.05	0.62
	211.13	0.40	0.30	0.58	1.17	1.49	0.79
2861.72		0.50	0.39	-0.06	-0.13	-0.26	0.49
2861.82	188.54		0.25	0.09	0.20	0.20	0.49
2861.92	185.51	0.47			1.00	1.68	0.59
2862.02	190.35	0.43	0.26	0.43		0.56	
2862.12	226.96	0.52	0.36	0.20	0.39		0.69
2862.22	233.41	0.57	0.20	0.48	0.86	2.45	0.35
2862.32	241.38	0.57	0.27	0.39	0.68	1.44	0.47
2862.41	255.29	0.59	0.20	0.60	1.01	2.93	0.35
2862.51	229.38	0.50	0.05	0.81	1.61	16.65	0.10
2862.61	236.74	0.50	0.25	0.81	1.63	3.18	0.51
2862.71	226.35	0.55	0.17	0.30	0.55	1.78	0.31
2862.81		0.57	0.13	0.26	0.46	1.93	0.24
2862.91		0.39	0.37	0.35	0.90	0.93	0.97
2863.01		0.30	0.71	0.11	0.38	0.16	2.35
2863.10	152.54	0.27	0.78	0.24	0.86	0.31	2.83
				· · · · · · · · · · · · · · · · · · ·			

Well: Rigs-2 Core 1-4

WEII: K	-				Ratio		Ratio
Depth	Total counts/min	K %	U	Th	Th/K	Ratio	U/K
meter	counce/ min	6	ppm	ppm	*10**4	Th/U	*10**4
	<u> </u>						
2863.20	151.33	0.25	0.85	0.20	0.80	0.23	3.40
2863.30	125.61	0.16	0.59	0.58	3.60	0.98	3.66
2863.39	146.29	0.18	0.78	0.71	3.95	0.92	4.31
2863.49	249.34	0.29	1.04	1.29	4.53	1.25	3.64
2863.59	552.67	0.60	1.80	3.69	6.17	2.05	3.01
2863.68	828.47	0.79	3.72	4.61	5.85	1.24	4.72
2863.78	1054.35	0.96	4.62	6.71	7.01	1.45	4.83
2863.88 2863.98	1264.40 1093.38	1.21 1.02	5.68	6.84	5.68	1.21	4.71
2864.08	1121.11	0.90	5.33 5.67	5.70 6.41	5.57 7.09	$1.07 \\ 1.13$	5.21 6.28
2864.18	1133.01	0.82	6.93	5.45	6.64	0.79	8.44
2864.28	1011.09	0.72	6.18	5.34	7.40	0.86	8.57
2864.38	1006.96	0.71	6.65	4.45	6.31	0.67	9.43
2864.48	971.87	0.58	7.28	4.02	6.90	0.55	12.48
2864.58	1152.77	0.76	7.63	4.97	6.56	0.65	10.07
2864.68	1514.49	0.94	10.04	7.35	7.80	0.73	10.65
2864.78	1484.74	0.94	9.13	7.16	7.60	0.78	9.70
2864.88	1255.13	0.80	7.62	6.28	7.83	0.82	9.50
2864.98	1105.38	0.72	7.59	4.83	6.74	0.64	10.57
2865.08	1037.41	0.71	6.96	3.79	5.33	0.54	9.78
2865.18	903.80	0.53	6.00	4.40	8.24	0.73	11.23
2865.27	980.44	0.57	6.98	3.79	6.60	0.54	12.16
2865.37	1355.56	0.82	8.95	6.53	7.97	0.73	10.92
2865.47	1887.29	1.24	10.83	10.09	8.11	0.93	8.70
2865.57 2865.66	1924.60 1456.10	1.39 1.01	11.30 8.30	9.62 7.78	6.92 7.70	0.85 0.94	8.12 8.22
2865.76	1102.25	0.70	7.59	4.36	6.23	0.94 0.57	10.84
2865.86	910.86	0.63	5.68	4.07	6.51	0.72	9.09
2865.95	742.15	0.48	5.37	2.86	5.94	0.53	11.15
2866.05	738.82	0.57	5.31	2.15	3.77	0.40	9.32
2866.15	879.29	0.64	5.89	3.83	6.02	0.65	9.28
2866.25	936.77	0.78	5.58	3.73	4.76	0.67	7.12
2866.35	1036.00	0.86	5.99	4.37	5.06	0.73	6.94
2866.45	1028.64	0.88	5.96	4.66	5.31	0.78	6.78
2866.55	1057.88	0.85	6.20	4.83	5.71	0.78	7.34
2866.65	953.92	0.81	5.36	4.26	5.25	0.79	6.60
2866.75	896.03	0.79	4.46	5.00	6.30	1.12	5.62
2866.85	976.00	0.87	5.02	5.17	5.92	1.03	5.75
2866.95	888.37	0.83	4.38	4.98	6.02	1.14	5.30
2867.04	993.14 1062.82	$1.06 \\ 1.15$	3.23 2.99	6.84 7.53	6.45 6.53	$2.11 \\ 2.52$	3.05 2.59
2867.14 2867.23	646.25	1.15 0.73	1.51	5.33	7.29	3.52	2.59
2867.23	384.67	0.40	1.65	2.50	6.29	1.51	4.16
2867.33	342.72	0.36	1.24	2.40	6.69	1.93	3.47
2867.52	333.04	0.35	0.88	2.54	7.30	2.90	2.52
2867.62	369.04	0.45	0.99	2.51	5.54	2.54	2.18

P	а	q	e	7	8

Well: R	igs-2 Core	1-4					
Depth meter	Total counts/min	K %	U ppm	Th ppm	Ratio Th/K *10**4	Ratio Th/U	Ratio U/K *10**4
2867.71	630.32	0.77	1.26	5.09	6.59	4.03	1.63
2867.81 2867.91	937.48 933.24	1.16 1.06	1.77 2.61	7.16 6.58	6.19 6.18	4.04 2.52	$1.53 \\ 2.45$
<u></u>							

Well: Rigs-2A Core 1

Well: R	igs-2A Core	1					
Depth meter	Total counts/min	K %	U mqq	Th ppm	Ratio Th/K *10**4	Ratio Th/U	Ratio U/K *10**4
meter 2971.17 2971.27 2971.36 2971.36 2971.66 2971.66 2971.66 2971.66 2971.96 2972.06 2972.06 2972.26 2972.26 2972.66 2972.66 2972.66 2972.66 2972.66 2972.66 2972.66 2972.66 2972.66 2972.66 2973.65 2973.65 2973.65 2973.65 2973.65 2973.75 2973.85 2973.95 2974.05 2974.24 2974.44 2974.54	Counts/min 265.13 282.57 277.43 255.24 227.21 192.62 198.87 205.13 197.36 227.51 264.82 253.23 264.62 273.39 245.36 257.16 257.76 273.90 240.32 186.57 162.27 156.32 192.12 205.53 196.15 202.60 216.32 242.44 267.95 249.70 239.51 238.81 242.13 215.51 193.33	$ \ \ \ \ \ \ \ \ \ \ \$	ppm 0.10 0.30 0.01 0.53 0.49 0.45 -0.21 0.13 0.09 0.55 0.70 0.16 0.39 0.57 0.10 0.48 0.24 0.33 -0.16 -0.01 0.20 0.15 0.30 0.28 -0.23 0.42 0.28 -0.23 0.42 0.30 0.42 0.30 0.28 -0.23 0.42 0.28 -0.23 0.42 0.28 -0.21 0.10 0.20 0.15 0.30 0.28 -0.23 0.42 0.28 -0.23 0.42 0.28 -0.21 0.10 0.28 -0.23 0.42 0.28 -0.23 0.42 0.28 -0.23 0.42 0.28 -0.20 0.10 0.28 -0.20 0.10 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.28 -0.23 0.42 0.28 -0.23 0.42 0.28 -0.20 0.10 0.28 -0.20 0.10 0.28 -0.20 0.10 0.28 -0.20 0.10 0.28 -0.20 0.10 0.28 -0.20 0.10 0.28 -0.20 0.10 0.28 -0.20 0.10 0.28 -0.20 0.10 0.28 -0.20 0.10 0.28 -0.20 0.10 0.20 0.10 0.28 -0.20 0.10 0.20 0.10 0.28 -0.20 0.10 0.20 0.10 0.20 0.10 0.20 0.10 0.20 0.10 0.28 -0.26 0.10 0.34 0.26 0.10 0.10 0.10 0.26 0.10 0.10 0.28 -0.26 0.10 0.10 0.26 0.10 0.10 0.26 0.10 0.10 0.10 0.28 -0.06 0.10 0.26 0.10 0.10 0.26 0.10 0.26 0.10 0.26 0.10 0.26 0.10 0.26 0.10 0.26 0.10 0.26 0.10 0.26 0.10	ppm 0.48 0.06 0.28 -0.27 0.15 -0.11 0.30 0.22 0.12 -0.01 0.38 0.16 0.07 0.06 0.58 0.09 -0.10 0.25 -0.24 0.02 -0.12 0.01 0.36 0.32 -0.14 0.06 0.32 -0.14 0.06 0.32 -0.14 0.06 0.32 -0.14 0.06 0.32 -0.14 0.06 0.32 -0.14 0.06 0.32 -0.14 0.05 0.25 0.32 -0.14 0.06 0.32 -0.14 0.36 0.32 -0.14 0.05 0.29 0.15 0.29 0.15 0.20 0.33 0.25 0.20 0.36 0.32 -0.14 0.36 0.32 -0.14 0.36 0.32 -0.14 0.36 0.32 -0.14 0.36 0.32 -0.15 0.32 -0.14 0.36 0.32 -0.14 0.36 0.32 -0.14 0.36 0.32 -0.14 0.36 0.32 -0.14 0.25 0.15 0.36 0.32 -0.14 0.25 0.32 -0.14 0.25 0.32 -0.14 0.25 0.24 0.36 0.32 -0.14 0.25 0.25 0.32 -0.14 0.25 0.25 0.32 -0.14 0.25 0.25 0.32 -0.12 0.36 0.32 -0.12 0.36 0.25 0.24 0.36 0.32 -0.12 0.36 0.25 0.32 -0.12 0.36 0.25 0.25 0.32 -0.12 0.36 0.25 0.25 0.32 -0.12 0.36 0.25 0.32 -0.12 0.36 0.25 0.20 0.38 0.25 0.32 -0.12 0.36 0.25 0.32 0.18 0.05 0.20 0.33 0.25 0.20 0.25 0.20 0.18 0.25 0.20 0.33 0.25 0.20 0.33 0.25 0.20 0.33 0.25 0.20 0.33 0.35 0.20 0.33 0.35 0.20 0.33 0.55 0.20 0.33 0.55 0.20 0.33 0.55 0.20 0.33 0.55 0.20 0.35 0.20 0.35 0.20 0.35 0.20 0.33 0.35 0.35 0.20 0.33 0.35 0.55 0.5	Th/K *10**4 0.69 0.09 0.35 -0.40 0.26 -0.22 0.51 0.41 0.22 -0.02 0.64 0.25 0.10 0.08 0.98 0.14 -0.13 0.38 -0.46 0.05 -0.27 0.01 0.67 0.59 -0.29 0.11 0.25 0.65 0.29 0.11 0.25 0.65 0.29 0.52 0.65 0.28 0.52 0.64 0.52 0.67 0.59 -0.29 0.65 0.28 0.52 0.65 0.28 0.52 0.65 0.28 0.52 0.65 0.28 0.52 0.69	Th/U 4.66 0.21 29.82 -0.51 0.30 -0.24 -1.44 1.67 1.23 -0.02 0.54 0.99 0.17 0.10 5.94 0.19 -0.41 0.29 -1.53 32.31 0.10 -0.75 0.02 1.31 -1.41 -0.34 0.23 -2.64 4.80 0.53 0.63 1.56 0.18 0.75 3.30	U/K *10**4 0.15 0.40 0.01 0.79 0.88 0.93 -0.35 0.25 0.18 0.25 0.18 0.25 0.58 0.25 0.58 0.25 0.58 0.25 0.58 0.46 0.74 0.35 0.46 0.25 -0.01 0.51 0.35 0.57 0.51 -0.42 0.55 0.50 -0.99 0.42 0.55 0.50 -0.42 0.55 0.50 -0.42 0.55 0.50 -0.42 0.55 0.50 -0.42 0.55 0.50 -0.42 0.55 0.50 -0.42 0.55 0.50 -0.42 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5
2974.64 2974.73 2974.83 2974.93 2975.03 2975.12 2975.22 2975.32 2975.41 2975.51 2975.61	176.49 163.68 166.00 172.45	0.47 0.42 0.52 0.38 0.42 0.51 0.49 0.47 0.46 0.49 0.54	$\begin{array}{c} 0.26 \\ 0.59 \\ 0.19 \\ 0.33 \\ 0.03 \\ 0.10 \\ 0.13 \\ -0.15 \\ 0.31 \\ -0.17 \\ -0.07 \end{array}$	$\begin{array}{c} 0.22 \\ 0.13 \\ 0.14 \\ 0.34 \\ -0.08 \\ -0.14 \\ 0.33 \\ 0.27 \\ 0.08 \\ 0.39 \\ 0.07 \end{array}$	0.48 0.30 0.28 0.90 -0.18 -0.28 0.69 0.58 0.18 0.79 0.14	$\begin{array}{c} 0.86\\ 0.21\\ 0.75\\ 1.04\\ -3.11\\ -1.44\\ 2.56\\ -1.86\\ 0.27\\ -2.37\\ -1.07\end{array}$	0.56 1.42 0.37 0.86 0.06 0.19 0.27 -0.31 0.68 -0.33 -0.13

Well: Rigs-2A Core 1

Well: R	igs-2A Core	1					
Depth meter	Total counts/min	K %	U ppm	Th ppm	Ratio Th/K *10**4	Ratio Th/U	Ratio U/K *10**4
2975.70	218.74	0.57	-0.03	0.41	0.71	-12.69	-0.06
2975.80	216.52	0.60	-0.05	0.16	0.27	-3.14	-0.08
2975.90	187.08	0.51	0.04	0.08	0.16	2.01	0.08
2975.99	208.69	0.54	0.11	0.41	0.77	3.66	0.21
2976.09	244.66	0.60	0.37	0.50	0.84	1.34	0.63
2976.19	271.58	0.68	0.42	0.10	0.15	0.24	0.62
2976.29	261.60	0.62	0.73	-0.23	-0.36	-0.31	1.18
2976.39	233.97	0.60	0.02	0.57	0.95	31.38	0.03
2976.49	235.48	0.57	0.31	0.04	0.07	0.13	0.55
2976.59	240.22	0.64	0.25	0.44	0.69	1.78	0.39
2976.68	248.18	0.66	0.14	0.18	0.27	1.32	0.21
2976.78	258.47	0.64	0.32	0.57	0.89	1.78	0.50
2976.88	241.53	0.62	0.48	0.08	0.13	0.17	0.77
2976.98		0.51	-0.14	-0.04	-0.07	0.25	-0.27
2977.08		0.42	0.00	0.28	0.67	-310.30	0.00
2977.17	158.34	0.42	0.36	0.22	0.53	0.61	0.87
2977.27	201.80	0.58	0.07	-0.02	-0.03	-0.27	0.12
2977.37	236.69	0.65	0.14	0.14	0.21	1.00	0.21
2977.46	230.03	0.59	0.31	0.29	0.49	0.93	0.53
2977.56	231.45	0.61	-0.04	0.46	0.76	-11.43	-0.07
2977.65	220.76	0.61		0.66	1.08	-4.67	-0.23
2977.75	235.68	0.53	0.59	0.38	0.73	0.65	1.12
2977.84	207.34	0.43	0.52	0.34	0.79	0.65	1.21
2977.94	154.60	0.40	-0.27	0.64	1.60	-2.39	-0.67
2978.04	227.61	0.53	0.30	0.44	0.83	1.44	0.58
2978.14		0.64	0.16	0.39	0.61	2.38	0.25
2978.23		0.75	0.46	0.10	0.13	0.21	0.61
2978.33		0.84	0.23	0.55	0.66	2.42	0.27
2978.43		1.00	-0.08	0.06	0.06	-0.76	-0.08
2978.53		1.04	0.06	-0.09	-0.09	-1.47	0.06
2978.63	342.07	0.97	-0.28	0.49	0.50	-1.77	-0.29
2978.73		0.86	0.16	0.41		2.49	0.19
2978.82		0.81	0.36	0.33	0.41	0.92	0.45
2978.92		0.70	0.08	0.55	0.79	6.92	0.11
2979.02		0.47	0.03	-0.05	-0.11	-1.56	0.07
2979.12		0.43	0.24	0.20	0.46	0.83	0.55
2979.21		0.67	0.00	0.56	0.84	149.74	0.01
2979.31		0.83	0.28	0.47	0.57	1.67	0.34
2979.41		0.83	0.29	0.22	0.26	0.77	0.34
2979.50		0.76	0.27	0.54	0.71	1.95	0.36 0.42
2979.60		0.72	0.30	0.60	0.84	2.02	
2979.70		0.74	0.15	0.05	0.07	0.34 0.89	0.21 0.54
2979.79		0.68	0.37	0.32	0.47	1.68	0.34
2979.89		0.67	0.22	0.37	$0.55 \\ 0.04$	0.08	0.53
2979.99		0.58	0.31	$0.02 \\ 0.44$	0.04	3.33	0.22
2980.08	235.98	0.60	0.13	0.44	0.75		0.22

Well: R	Well: Rigs-2A Core 1									
Depth meter	Total counts/min	K %	U mqq	Th ppm	Ratio Th/K *10**4	Ratio Th/U	Ratio U/K *10**4			
2980.17 2980.25 2980.34 2980.43 2980.53	228.92 165.80 66.97 0.92	0.73 0.66 0.49 0.18 0.02	-0.02 -0.04 -0.13 0.26 0.26	0.02 0.34 0.11 -0.20 -0.28	0.03 0.51 0.22 -1.14 -14.34	-1.05 -8.27 -0.81 -0.76 -1.10	-0.03 -0.06 -0.28 1.50 13.07			
2980.63 2980.73	-11.28 -15.71	0.00 -0.01	-0.28 0.12	-0.06 -0.18	-28.79 13.34	0.23 -1.58	-126.83 -8.46			

LISTING OF LIQUID PERMEABILITY CORE LOG DATA WELL: RIGS-2 CORE 1 - 4 .

Plug Nomber	Depth meter	Plug type	Gas perm. mD	Liq. perm. mD	Gas perm./ liq. perm. Factor	Linear Interpol	Est. liq. perm mD
1	2797.00	1	0.268	-9	-9	6.3133	0.04
2	2797.13	2	0.398	-9	-9	6.3133	0.06
3	2797.42	2	1.332	-9	-9	6.3133	0.21
4	2797.62	2	0.474	0.075	6.3133	6.3133	0.07
5	2797.77	2	0.475	-9	-9	5.9147	0.08
Ġ	2798.10	2	0.441	-9	-9	5.0370	0.09
7	2798.40	2	0.459	-9	-9	4.2398	0.11
8	2798.70	1	2.200	-9	-9	3.4418	0.64
9	2798.80	2	2.300	-9	-9	3.1759	0.72
10	2799.00	2	2.982	1.1277	2.6441	2.6441	1.13
12	2799.20	2	4.128	-9	-9	2.7546	1.50
13	2799.50	2	0.792	-9	-9	2.9204	0.27
14	2799.55	2	1.360	-9	-9	2.9480	0.46
15	2800.00	1	1.903	-9	-9	3.1967	0.60
16	2800.20	2	1.989	-9	-9	3.3072	0.60
17	2800.35	2	1.956	-9	-9	3.3901	0.58
18	2800.63	2	1.149	0.324	3.5448	3.5448	0.32
19	2801.05	2	1.481	-9	-9	4.0993	0.36
20	2801.50	2	0.975	-9	-9	4.6933	0.21
21	2801.71	2	1.186	-9	-9	4.9706	0.24
22	2802.00	1	0.127	-9	-9	5.3534	0.02
23	2802.10	2	0.533	-9	-9	5.4855	0.10
24	2802.40	2	0.274	-9	-9	5.8813	0.05
25	2802.68	2	1.208	0.1933	6.2509	6.2509	0.19
26	2803.15	2	0.894	-9	-9	7.0288	0.13
27	2803.40	2	0.979	-9	-9	7.4426	0.13
28	2803.73	2	1.013	-9	-9	7.9890	0.13
29	2804.00	1	1.396	-9	-9	8.4359	0.17
30	2804.10	2	3.099	-9	-9	8.6016	0.36
31	2804.45	2	0.592	-9	-9	9.1808	0.06
32	2804.65	2	0.327	0.0344	9.5116	9.5116	0.03
33	2805.10	2	1.683	-9	-9	8.2259	0.20
34	2805.30	2	2.524	-9	-9	7.6550	0.33
35	2805.42	2	1.879	-9	-9	7.3126	0.26
36	2805.70	2	1.440	-9	-9	6.5126	0.22
37	2806.00	- 1	1.274	-9	-9	5.6559	0.23
38	2806.21	2	1.960	-9	-9	5.0561	0.39
39	2806.40	2	1.602	-9 -9	-9	4.5138	0.35
40	2806.70	2	1.831	0.5008	3.6567	3.6567	0.50
40 41	2807.10	2	1.645	-9	-9	4.2601	0.39
45	2809.15	2	3.539	0.4814	7.3513	7.3513	0.48
45 44	2809.15	2	2.314	-9	-9	7.2976	0.32
44 48	2809.20 2810.65	2	2.002	-9 -9	-9	5.7450	0.35
48 50	2810.05	1	8.464	-9 -9	-9	5.1559	1.64
50 52	2811.20	2	8.464 2.716	- 9 0.5948	- 5 4.5669	4.5669	0.59
					-9		
53	2812.10	2	2.999	-9	-3	4.6259	0.65

LISTING OF LIQUID PERMEABILITY CORE LOG DATA WELL: RIGS-2 CORE 1 - 4

Plug Nomber	Depth meter	Plug type	Gas perm. mD	Liq. perm.	Gas perm./ liq. perm.	Linear Interpol	Est. liq. perm
				mD	Factor		mD
54 55	2812.40	2	5.043	-9	-9	4.6765	1.08
55	2812.50	2	2.666	-9	-9	4.6933	0.57
59	2813.56	2	2.509	-9	-9	4.8720	0.51
60	2813.76	2	2.939	-9	-9	4.9057	0.60
62	2814.15	1	1.445	-9	-9	4.9714	0.29
63	2814.35	2	2.700	0.5394	5.0052	5.0052	0.54
64	2814.65	2	1.628	-9	-9	5.0069	0.33
67	2815.82	2	2.265	-9	-9	5.0136	0.45
70	2816.60	2	1.304	0.2599	5.0181	5.0181	0.26
72	2817.30	2	3.279	-9	-9	4.7531	0.69
73	2817.55	2	1.133	-9	-9	4.6585	0.24
74	2818.04	1	3.232	-9	-9	4.4730	0.72
75	2818.10	2	1.251	-9	-9	4.4503	0.28
76	2818.40	2	2.132	-9	-9	4.3368	0.49
78	2819.15	2	2.154	-9	-9	4.0529	0.53
81	2820.00	1	1.285	-9	-9	3.7311	0.34
82	2820.10	2	2.126	-9	-9	3.6932	0.58
83	2820.35	2	1.329	-9	-9	3.5986	0.37
84	2820.56	2	1.653	-9	-9	3.5191	0.47
85	2821.35	2	1.347	-9	-9	3.2200	0.42
86	2821.40	2	1.260	-9	-9	3.2012	0.39
87	2821.70	2	240.677	77.9495	3.0876	3.0876	77.95
89	2822.30	2	5.270	-9	-9	3.2643	1.61
91	2823.58	2	0.193	-9	-9	3.6413	0.05
92	2823.70	2	0.234	0.0073	-9	3.6766	0.06
93	2824.00	1	0.170	. -9	-9	3.7650	0.05
94	2824.10	2	0.692	-9	-9	3.7945	0.18
95	2824.42	2	0.531	-9	-9	3.8887	0.14
96	2824.70	2	0.842	-9	-9	3.9712	0.21
97	2825.10	2	0.191	-9	-9	4.0890	0.05
98	2825.30	2	1.840	-9	-9	4.1479	0.44
99	2825.72	2	0.544	0.1274	4.2716	4.2716	0.13
100	2826.00	1	0.230	-9	-9	4.7863	0.05
101	2826.10	2	0.418	-9	-9	4.9704	0.08
102	2826.40	2	2.221	-9	-9	5.5215	0.40
104	2827.11	2	2.787	-9	-9	6.8272	0.41
105	2827.55	2	3.592	-9	-9	7.6359	0.47
106	2827.70	2	4.093	0.5173	7.9117	7.9117	0.52
107	2828.10	2	15.454	-9	-9	6.8226	2.27
108	2828.40	2	5.114	-9	-9	6.0066	0.85
109	2828.65	2	5.138	-9	-9	5.3261	0.96
111	2829.10	2	1.120	-9	-9	4.1007	0.27
112	2829.45	2	0.813	-9	-9	3.1483	0.26
113	2829.70	2	3.878	1.5714	2.4678	2.4678	1.57
114	2830.05	2	4.272	-9	-9	2.4577	1.74
115	2830.40	2	1.723	-9	-9	2.4477	0.70

LISTING OF LIQUID PERMEABILITY CORE LOG DATA WELL: RIGS-2 CORE 1 - 4 .

Plug	Depth	Plug type	Gas perm. mD	n. Liq. perm. Gas perm./ liq. perm. mD Factor		Linear Interpol	Est. liq. perm mD
Nomber	meter		5.699	-9	-9	2.4420	2.33
116	2830.60	2	8.210	-9 -9	-9 -9	2.4296	3.38
117	2831.03	2	3.570	-9 -9	-9	2.4270	1.47
118	2831.12	2 1	8.358	-9 -9	-9	2.4018	3.48
121	2832.00		8.363	-9 -9	-9	2.3960	3.49
122	2832.20	2	7.620	-9 -9	-9	2.3903	3.19
123	2832.40	2	5.691	-9 -9	-9	2.3845	2.39
124	2832.60	2	5.691 8.911	-9 -9	-9	2.3702	3.76
125	2833.10	2	8.127	-9 -9	-9	2.3616	3.44
126	2833.40	2	5.140	2.183	2.3544	2.3544	2.18
127	2833.65	2		-9	-9	2.3599	3.04
128	2834.00	1	7.172 6.136	-9	-9	2.3614	2.60
129	2834.10	2	7.160	-9 -9	-9	2.3622	3.03
130	2834.15	2	6.766	-9 -9	-9	2.3661	2.86
131	2834.40	2	6.985	-9 -9	-9 -9	2.3708	2.95
132	2834.70	2		-9 -9	-9	2.3771	2.38
133	2835.10	2	5.646	-9 -9	- 9	2.3817	2.44
134	2835.40	2	5.800	- 9 2.4218	2.3849	2.3849	2.42
135	2835.60	2	5.776	-9	-9	2.6390	2.18
136	2836.00	1	5.757	-9 -9	-9	2.7026	2.03
137	2836.10	2	5.487 6.464	-9 -9	-9	2.8931	2.23
138	2836.40	2		-9 -9	-9	3.0519	1.86
139	2836.65	2	5.669 9.007	-9 -9	-9	3.3380	2.70
140	2837.10	2	9.007 8.430	-9 -9	-9	3.5285	2.39
141	2837.40	2	0.450 10.114	- 3 2.7428	3.6874	3.6874	2.74
142	2837.65	2	8.141	-9	-9	3.5932	2.27
144	2838.10	2	5.899	-9 -9	-9	3.5306	1.67
145	2838.40	2		-9 -9	-9	3.4783	1.94
146	2838.65	2	6.743 3.419	-9 -9	-9	3.3842	1.01
147	2839.10	2		-9 -9	-9	3.3737	1.07
148	2839.15	2	3.618 4.133	-9 -9	-9	3.3215	1.24
149	2839.40	2	4.133 6.793	- 3 2.0844	3.2587	3.2587	2.08
150	2839.70	2	7.404	-9	-9	3.1642	2.34
151	2840.12	1 2	6.378	-9 -9	-9	3.1394	2.03
152	2840.23		4.879	-9	-9	3.1282	1.56
153	2840.28	2	4.879 7.190	-9	-9	2.8873	2.49
156	2841.35 2841.70	2	5.527	1.968	2.8085	2.8085	1.97
157		2 2	9.819	-9	-9	3.4698	2.83
158	2842.07		7.758	-9	-9	3.8806	2.00
159	2842.30 2842.70	2 2	5.053	-9 -9	-9	4.5953	1.10
160		2	4.034	-9	-9	5.2028	0.78
161	2843.04	2 1	8.868	-9	-9	5.3459	1.66
162	2843.12 2843.20	2	9.338	-9	-9	5.4887	1.70
163 164	2843.20 2843.40	2	9.538 6.572	-9	-9	5.8458	1.12
164 165	2843.40 2843.60	2	8.915	1.437	6.2035	6.2035	1.44
165 166	2843.00 2844.05	2	5.071	-9	-9	5.8680	0.86
166	2044.00	2	5.071	<u> </u>	<u>~</u>		

LISTING OF LIQUID PERMEABILITY CORE LOG DATA WELL: RIGS-2 CORE 1 - 4.

Plug Nomber	Depth meter	Plug type	Gas perm. mD	Liq. perm. mD	Gas perm./ liq. perm. Factor	Linear Interpol	Est. liq. perm mD
167	2844.25	2	6.879	-9	-9	5.7188	1.20
168	2844.27	2	6.634	-9	-9	5.7039	1.16
169	2845.00	1	5.928	-9	-9	5.1595	1.15
170	2845.08	2	7.327	-9	-9	5.0997	1.44
171	2845.40	2	6.402	-9	-9	4.8612	1.32
173	2846.10	2	6.016	-9	-9	4.3390	1.39
174	2846.40	2	6.293	-9	-9	4.1154	1.53
175	2846.70	2	7.734	-9	-9	3.8916	1.99
176	2847.00	1	4.776	-9	-9	3.6679	1.30
177	2847.10	2	5.866	-9	-9	3.5932	1.63
178	2847.40	2	4.563	-9	-9	3.3696	1.35
179	2847.65	2	5.040	1.5833	3.1832	3.1832	1.58
180	2848.10	2	7.215	-9	-9	3.3012	2.19
181	2848.40	2	4.769	-9	-9	3.3798	1.41
182	2848.72	2	5.918	-9	-9	3.4637	1.71
183	2849.00	1	5.061	-9	-9	3.5371	1.43
184	2849.10	2	5.301	-9	-9	3.5634	1.49
185	2849.35	2	6.206	-9	-9	3.6289	1.71
186	2849.73	2	7.586	2.0346	3.7285	3.7285	2.03
188	2850.44	2	8.021	-9	-9	3.5430	2.26
189	2850.78	2	6.966	-9	-9	3.4541	2.02
190	2851.10	2	5.752	-9	-9	3.3704	1.71
191	2851.45	2	5.590	-9	-9	3.2790	1.70
192	2851.63	2	5.977	1.8492	3.2320	3.2320	1.85
194	2852.15	2	5.509	-9	-9	3.2165	1.71
195	2852.40	2	8.183	-9	-9	3.2091	2.55
196	2852.65	2	8.248	-9	-9	3.2016	2.58
197	2853.10	2	9.039	-9	-9	3.1882	2.84
198	2853.40	2	5.786	-9	-9	3.1793	1.82
199	2853.72	2	9.640	3.0413	3.1698	3.1698	3.04
200	2854.00	1	8.598	-9	-9	3.2500	2.65
201	2854.15	2	6.994	-9	-9	3.2930	2.12
202	2854.40	2	5.832	-9	-9	3.3646	1.73
203	2854.60	2	8.034	-9	-9	3.4220	2.35
204	2855.00	1	5.930	-9	-9	3.5365	1.68
205	2855.10	2	6.580	-9	-9	3.5652	1.85
206	2855.16	2	6.156	-9	-9	3.5824	1.72
207	2855.40	2	6.856	-9	-9	3.6511	1.88
209	2856.10	2	4.181	-9	-9	3.8518	1.09
210	2856.40	2	4.339	-9	-9	3.9377	1.10
211	2856.70	2	4.519	-9	-9	4.0237	1.12
212	2857.00	1	6.292	-9	-9	4.1097	1.53
213	2857.10	2	6.349	-9	-9	4.1383	1.53
214	2857.40	2	6.166	-9	-9	4.2242	1.46
215	2857.57	2	5.436	1.2721	4.2730	4.2730	1.27
216	2858.10	2	6.503	-9	-9	4.1328	1.57

LISTING OF LIQUID PERMEABILITY CORE LOG DATA WELL: RIGS-2 CORE 1 - 4 .

Plug Nomber	Depth meter	Plug type	Gas perm. mD	Liq. perm. mD	Gas perm./ liq. perm. Factor	Linear Interpol	Est. liq. perm mD
217	2858.26	2	5.554	-9	-9	4.0904	1.36
				-			
218	2858.31	2	8.879	-9	-9	4.0772	2.18
219	2859.00	1	6.032	-9	-9	3.8946	1.55
220	2859.35	2	5.832	-9	-9	3.8019	1.53
221	2859.45	2	6.676	-9	-9	3.7755	1.77
223	2860.35	2	6.060	-9	-9	3.5373	1.71
224	2860.40	2	11.761	-9	-9	3.5241	3.34
225	2860.70	2	5.884	-9	-9	3.4447	1.71
226	2861.00	1	8.050	-9	-9	3.3653	2.39
227	2861.13	2	10.464	-9	-9	3.3309	3.14
228	2861.35	2	6.542	-9	-9	3.2727	2.00
229	2861.60	2	5.106	1.5923	3.2065	3.2065	1.59
230	2862.36	2	24.464	-9	-9	3.2065	7.63
233	2863.16	2	0.893	-9	-9	3.2065	0.28
234	2863.35	2	0.276	-9	-9	3.2065	0.09
235	2863.65	2	1.867	0.0074	-9	3.2065	0.58
236	2864.10	2	2.483	-9	-9	3.2065	0.77
237	2864.40	2	11.460	-9	-9	3.2065	3.57
239	2865.00	1	0.306	-9	-9	3.2065	0.10
240	2865.11	2	0.162	-9	-9	3.2065	0.05
243	2866.10	2	0.137	-9	-9	3.2065	0.04
244	2867.28	2	0.141	-9	-9	3.2065	0.04
245	2867.35	2	3.182	-9	-9	3.2065	0.99

- Note: -9 = No value
 - 1 = Vertical plug
 - 2 = Horizontal plug

LISTING OF LIQUID PERMEABILITY CORE LOG DATA WELL: RIGS-2A CORE 1.

Plug Nomber	Depth meter	Plug type	Gas perm. mD	Liq. perm. mD	as perm./ liq. per Factor	Linear Interpol	Est. liq. perm
269	2971.3	2	19.351	-9	-9	2.758	mD 7.02
270	2971.63	2	7.742	2.808	2.758	2.758	2.81
271	2972	1	7.578	-9	-9	2.758	2.81
273	2972.38	2	4.804	-9	-9	2.758	1.74
274	2972.7	2	4.912	0.393	-9	2.758	0.39
275	2973.1	2	5.686	-9	-9	2.758	2.06
276	2973.4	2	6.27	-9	-9	2.759	2.00
277	1973.7	2	5.285	2.4	2.202	2.202	2.4
279	2974.15	2	5.089	-9	-9	3.004	1.69
280	2974.6	2	4.733	-9	-9	3.005	1.58
281	2974.7	2	5.078	1.69	3.005	3.005	1.69
284	2975.45	2	-9	3.353	-9	2.861	3.35
285	2975.53	2	8.564	-9	-9	2.846	3.01
286	2976	1	6.37	-9	-9	2.756	2.31
290	2977.19	2	7.793	3.083	2.528	2.528	3.08
291	2977.28	2	8.491	-9	-9	2.528	3.36
292	2977.6	2	2.092	-9	-9	2.528	0.83
295	2979.02	2	8.395	-9	-9	2.528	3.32

- Note: -9 = No value
 - 1 = Vertical plug
 - 2 = Horizontal plug

Conventional Core Analysis

For Amerada Hess (Denmark) A/S Well: Rigs-2. Core: 1, 2, 3 and 4 Well: Rigs-2A. Core: 1

Core Photos

GEUS Core Analysis Laboratory By Christian Høier and Finn Jacobsen

Released 01.10.2001

Please note:

Core Photos - See GEUS Report File no. 17389 RIGS-2 Danish north Sea well; Scanned core photos. CD-ROM and print-outs

Conventional Core Analysis

For Amerada Hess (Denmark) A/S Well: Rigs-2. Core: 1, 2, 3 and 4 Well: Rigs-2A. Core: 1

Lithological description of plugs

GEUS Core Laboratory By Christian Høier and Finn Jacobsen

Conventional Core Analysis

For Amerada Hess (Denmark) A/S Well: Rigs-2. Core: 1, 2, 3 and 4 Well: Rigs-2A. Core: 1

Lithological description of plugs

GEUS Core Laboratory By Christian Høier and Finn Jacobsen

Released 01.10.2001

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND MINISTRY OF ENVIRONMENT AND ENERGY

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

GEUS CORE LABORATORY

Lithological description Final report Compiled by Finn Jakobsen

> Rigs-2, Core 2,3,4 Rigs-2A, Core 1

Printed : 23-OCT-96

WELL: Rigs-2 PAGE: 2 CORE: 2, 3 and 4

----- GENERAL INFORMATION ON THE ANALYSIS -------

COMPANY	: Amerada Hess	LOCATION	:	Syd Arne
depth interval	: 2789.00 - 2868.00	CORE NO.'S	:	2, 3 and 4
DEPTHS ARE MEAS	SURED FROM KB	ANALYSTS	:	GG,HJL,MJ,LB
DEPTHS ARE IN N	ETRES	DATE	:	231096
		FILE	:	LITRIG2

! ! REMARKS :	!
: ! !	! !
1 1	!
: ! !	! !
! !	!
: : :	
!	1
! ! !	- - -
! !	

THE GEOLOGICAL SURVEY OF DENMARK AND GREENLAND IS FULLY RESPONSIBLE FOR THE ANALYTICAL RESULTS IN THE PRESENT REPORT. THE SURVEY, HOWEVER, BEARS NO RESPONSIBILITY OF DECIS-IONS AND INTERPRETATIONS BASED ON THE DATA PRESENTED.

WELL	:	Rigs-2
CORE	:	2, 3 and 4

PAGE: 3

ABBREVIATIONS FOR LITHOLOGICAL DESCRIPTIONS:

Rock type	carb cly	Carbonate Claystone	Miscellaneous	arg ccenn fw	Argillaceous Calcite cemented Few
Colour	br gn gy ol rd wh vl- l- ml- md- d-	Brown Green Grey Olive Red White Very light Light, ex. lgy = light gr Medium light Medium Medium Medium dark Dark	ъу	hrd hom ids mot mold o shl slg sme sort w	Hard Hanogeneous Indistinct Mottled Moldic porosity Open Shell fragment Slightly Same Sorting With
Structures	-sh blk var bed	-ish, ex. brsh = brownish Black Varicoloured Bedding	n Fracture	FRC FT FRC SG FRC F FRC H FRC	Fracture Fatal fracture Significant fracture Fine fracture Hairline
	bio bur cla cvn fos lam slmp slmp slmp sol sm	Bioturbation Burrow(-s) Clast(-s) Calcite vein (-s) Fossil(-s) Lamina/lamination Slumped Slumped Solution seam(-s)	Minera ls	cal carb mica qtz py sil	Calcitic Carbonate Mica flakes Quartz/silica Pyrite Silicified
Trace fossils	trc fos cho pla	Trace fossils Chondrites Planolites Thalassimoides			

Tha lass inoides Zoop lycos tha

z00

SAMPLE NO.	depth Meter	plug Type	GAS PERM mD	POROSITY	GRAIN DENS G/COM	Lithology
1	2797.00	VERT	0.268	29.04	2.695	chk, lgy, hrd, bio, trc fos
2	2797.13	HOR	0.398	28.10	2.697	chk, vlgy, hrd, bio mot, pla, trc fos
3	2797.42	HOR	1.33	36.25	2.692	chk, vlgy, hrd, hom, F FRC, ccem
4	2797.62	HOR	0.473	28.68	2.688	chk, lgy, hrd, hom, trc fos, cho, zoo
5	2797.77	HOR	0.475	29.30	2.694	chk, lgy, hrd, bio mot, trc fos
6	2798.10	HOR	0.441	29.65	2.697	chk, vlgy, hrd, bio mot
7	2798.40	HOR	0.459	30.71	2.684	chk, vlgy, hrd, bio mot, trc fos
8	2798.70	VERT	2.20	43.67	2.687	chk, vlgy, hrd, hom-slg lam
9	2798.80	HOR	2.30	41.05	2.683	chk, vlgy, hrd, hom
10	2799.00	HOR	2.98	43.86	2.705	chk, vlgy, hrd, hom, SG FRC, ccem
11	2799.04	HOR		42.37	2.690	chk, gysh wh, hrd, hom, FT FRC
12	2799.20	HOR	4.13	42.06	2.698	chk, vlgy, hrd, hom,trc fos w porous chk
13	2799.50	HOR	0.792	30.01	2.700	chk, lgy-gy, hrd, mot, sty
14	2 799. 55	HOR	1.36	36.02	2.694	chk, vlgy, hrd, mot, sty, F FRC
15	2800.00	VERT	1.90	41.33	2.685	chk, gysh wh, m har, hom, H FRC
16	2800.20	HOR	1.99	40.84	2.685	chk, gysh wh, m hrd, hom
17	2800.35	HOR	1.96	40.71	2.691	chk, vlgy, hrd, hom, H FRC, SG FRC
18	2800.63	HOR	1.15	36.61	2.697	chk, vlgy, hrd, hom, F FRC, ccem
19	2801.05	HOR	1.48	38.22	2.680	chk, vlgy, hrd, hom, H FRC, F FRC
20	2801.50	HOR	0.975	35.23	2.684	chk, vlgy, hrd, hom-mot, trc fos
21	2801.71	HOR	1.19	36.32	2.685	chk, vìgy, hrd, hơm, SG FRC
22	2802.00	VERT	0.127	23.90	2.697	vhk, vlgy, hrd,hom-lam,sol sm,trc fos,py

-	Sample No.	depth Meter	plug Type	GAS PERM mD	POROSITY %	GRAIN DENS. G/COM	Lithology
	23	2802.10	HOR	0.533	29.93	2.691	chk, lgy, hrd, mot
	24	2802.40	HOR	0.274	25.78	2.693	chk, lgy, hrd, mot, sty
	25	2802.68	HOR	1.21	31.90	2.703	chk,lgy,hrd,mot,trc fos,sty,H FRC,SG FRC
	26	2803.15	HOR	0.894	28.61	2.679	chk, vlgy, hrd, mot, F FRC
	27	2803.40	HOR	0.979	33.25	2.692	chk, vlgy, hrd, hom, cla
	28	2803.73	HOR	1.01	33.89	2.692	chk, lgy, hrd, lam, trc fos
	29	2804.00	VERT	1.40	37.37	2.690	chk, lgy, hrd, hom, bio, trc fos, F FRC
	30	2804.10	HOR	3.10	41.72	2.680	chk, vlgy, hrd, hom-mot, H FRC
	31	2804.45	HOR	0.592	30.70	2.684	chk, lgy, hrd, hom, trc fos, zoo
	32	2804.65	HOR	0.327	28.43	2.693	chk, 1gy, hrd, mot
	33	2805.10	HOR	1.68	40.14	2.732	chk, 1gy, hrd, hom, H FRC
	34	2805.30	HOR	2.52	43.55	2.731	chk, lgy, hrd, hom
	35	2805.42	HOR	1.88	40.89	2.695	chk, lgy, hrd, hom, trc fos, zoo
	36	2805.70	HOR	1.44	38.29	2.691	chk, lgy, hrd, hom
	37	2806.00	VERT	1.27	38.90	2.698	chk, vlgy, hrd, hom
	38	2806.21	HOR	1.96	39.78	2.689	chk, vlgy, hrd, hom-lam
	39	2806.40	HOR	1.60	38.80	2.694	chk, vlgy, hrd, hom, trc fos, F FRC
	40	2806.70	HOR	1.83	38.89	2.710	chk, vlgy, hrd, lam-mot, trc fos
	41	2807.10	HOR	1.64	36.40	2.702	chk, vlgy, hrd, hom, H FRC
	42	2809.00	VERT		39.91	2.702	chk, vlgy, hrd, hom, SG FRC, FT FRC
	43	2809.10	HOR		38.37	2.686	chk, vlgy, hrd, hom, SG FRC, FT FRC
	44	2809.20	HOR	2.31	38.13	2.695	chk, vlgy, hrd, hom, F FRC

PAGE	:	6
------	---	---

SAMPLE NO.	depth Meter	plug Type	GAS PERM mD	POROSITY %	GRAIN DENS. G/COM	Lithology
45	2809.15	HOR	3.54	38.81	2.706	chk, vlgy, hrd, hom, trc fos, SG FRC, o
46	2810.30	HOR		39.20	2.695	chk,vlgy,hrd,hom,sol sm,SG FRC,o,FT FRC
47	2810.35	HOR		39.20	2.698	chk, vlgy, hrd, hom, SG FRC, FT FRC
48	2810.65	HOR	2.00	39.31	2.696	chk, vlgy, hrd, hom, H FRC
49	2811.01	HOR		40.56	2.697	chk, vlgy, hrd, hom, SG FRC, FT FRC
50	2811.20	VERT	8.46	38.12	2.702	chk, vlgy, hrd, lam-hom,trc fos,SG FRC,o
51	2811.40	HOR		37.64	2.709	chk,vlgy,hrd,hom,sol sm,SG FRC,o,FT FRC
52	2811.75	HOR	2.72	37.46	2.712	chk,vlgy,hrd,hom-lam,sol sm,trc fos,F FR
53	2812.10	HOR	3.00	34.94	2.698	chk, arg, 1gy, hrd, 1am, so1 sm
54	2812.40	HOR	5.04	39.81	2.699	chk, vlgy, hrd, hom, trc fos, SG FRC, o
55	2812.50	HOR	2.67	40.81	2.700	chk, vlgy, hrd, mot, F FRC, SG FRC
56	2813.00	VERT		36.53	2.704	chk, 1gy, hrd, 1am, sol sm, FT FRC
57	2813.05	HOR		37.61	2.706	chk, 1gy, hrd, 1am, sol sm, FT FRC
58	2813.26	HOR	2.03	38.47	2.694	chk, lgy, hrd, ham, trc fos, sol sm
59	2813.56	HOR	2.51	36.71	2.712	chk, vlgy, hrd, lam, trc fos, sol sm, SG FRC
60	2813.76	HOR	2.94	39.29	2.700	chk, vlgy, hrd, lam, sol sm, F FRC
61	2814.03	HOR		44.52	2.723	chk, vlgy, hrd, hom-mot, H FRC, FT FRC
62	2814.15	VERT	1.44	38.79	2.701	chk, lgy, hrd, lam, sol sm, sty
63	2814.35	HOR	2.70	40.47	2.698	chk, lgy, hrd, lam, slmp
64	2814.65	HOR	1.63	36.85	2.702	chk, vlgy, hrd, mot, slmp
65	2815.18	HOR		43.75	2.704	chk, vlgy, m hrd, hom, FT FRC
66	2815.45	HOR		42.37	2.717	chk, vlgy, m hrd, hom, H FRC, FT FRC

Sample No.	depth Meter	plug Type	GAS PERM mD	POROSITY %	GRAIN DENS. G/COM	Lithology
67	2815.82	HOR	2.27	41.15	2.691	chk, vlgy, m hrd, hom, trc fos
68	2816.20	VERT		36.63	2.699	chk, lgy, hrd, mot
69	2816.25	HOR		43.19	2.686	chk, vlgy, m hrd, hom, F FRC, FT FRC
70	2816.60	HOR	1.30	36.11	2.697	chk, lgy, hrd, lam, sol sm
71	2817.10	HOR		40.89	2.689	chk, vìgy, m hrd, hom, FT FRC
72	2817.30	HOR	3.28	42.72	2.706	chk, vlgy, m hrd, hom
73	2817.55	HOR	1.13	36.17	2.709	chk, vlgy, m hrd, mot, bio, trc fos
74	2818.04	VERT	3.23	44.73	2.724	chk, vlgy, m hrd, mot, bio, trc fos
75	2818.10	HOR	1.25	34.56	2.693	chk, vlgy, m hrd, lam, trc fos
76	2818.40	HOR	2.13	38.33	2.711	chk, vìgy, hrd, hơm, soì sm
77	2818.70	HOR		41.03	2.716	chk, vlgy, hrd, hom, trc fos, tha,FT FRC
78	2819.15	HOR	2.15	37.84	2.692	chk, vlgy, hrd, hom, sol sm, F FRC
79	2819.40	HOR		35.84	2.713	chk, 1gy-gy, hrd, 1am, so1 sm, FT FRC
80	2819.70	HOR		34.55	2.720	chk, lgy-gy, hrd, lam, sol sm, FT FRC
81	2820.00	VERT	1.28	36.77	2.706	chk, lgy, hrd, lam, sol sm
82	2820.10	HOR	2.13	39.20	2.703	chk, vlgy-gy, hrd, hom-lam, sol sm,F FRC
83	2820.35	HOR	1.33	34.25	2.709	chk, vlgy, hrd, lam, sol sm, F FRC
. 84	2820.56	HOR	1.65	36.83	2.707	chk, vlgy, hrd, hom, F FRC
85	2821.35	HOR	1.35	34.76	2.714	chk, vlgy, hrd, hom-lam, sol sm
86	2821.40	HOR	1.26	34.02	2.696	chk, lgy, hrd, lam, trc fos
87	2821.70	HOR	241	25.46	2.711	chk, gy, v hrd, mot, sty, py, SG FRC, o
88	2822.00	VERT		26.35	2.699	chk, lgy, hrd, lam, trc fos,H FRC,FT FRC

Sample NO.	depth Meter	plug Type	GAS PERM mD	POROSITY %	GRAIN DENS. G/CCM	Lithology
89	2822.30	HOR	5.27	28.94	2.703	chk, 1gy, hrd, hom, bio,trc fos,SG FRC,o
90	2823.05	HOR		27.49	2.691	chk, lgy, hrd, mot-lam, F FRC,FT FRC
91	2823.58	HOR	0.193	18.12	2.714	chk, lgy, v hrd, lam, sol sm, F FRC
92	2823.70	HOR	0.233	22.83	2.688	chk, lgy, v hrd, lam, sol sm, F FRC
93	2824.00	VERT	0.170	25.20	2.683	chk, lgy, v hrd, mot, bio, py
94	2824.10	HOR	0.692	28.10	2.688	chk, lgy, v hrd, lam, sol sm, py, H FRC
95	2824.42	HOR	0.531	29.06	2.679	chk, lgy, v hrd, lam, sol sm, py, F FRC
96	2824.70	HOR	0.842	26.45	2.689	chk, lgy, v hrd, lam, sol sm, FRC. o
97	2825.10	HOR	0.191	18.60	2.689	chk, lgy, v hrd, lam, trc fos
98	2825.30	HOR	1.84	33.94	2.685	chk, arg, lgy,hrd,hom,trc fos,F FRC,ccem
99	2825.72	HOR	0.544	24.26	2.709	chk, lgy, hrd, mot, trc fos
100	2826.00	VERT	0.230	19.75	2.692	chk, vlgy, v hrd, lam sol sm, F FRC, o
101	2826.10	HOR	0.418	12.38	2.702	chk, vlgy, v hrd,hom-lam,trc fos,F FRC,o
102	2826.40	HOR	2.22	21.35	2.706	chk, vlgy, v hrd, hom-lam,sol sm,F FRC,o
103	2826.70	HOR		23.74	2.703	chk,vlgy,v hrd,lam,sol sm,sty,F FRC,ccem
104	2827.11	HOR	2.79	28.49	2.704	chk, vlgy, hrd, lam, trc fos,cho,F FRC,o
105	2827.55	HOR	3.59	27.45	2.712	chk, vlgy,v hrd,hom-mot,trc fos,SG FRC,o
106	2827.70	HOR	4.09	25.20	2.722	chk,vlgy,v hrd,mot,sol sm,sty,sty FRC,o
107	2828.10	HOR	15.5	26.83	2.713	chk, vlgy, v hrd, mot, py, SG FRC, o
108	2828.40	HOR	5.11	31.27	2.704	chk, vlgy,hrd,bio,trc fos,sol sm,F FRC,o
109	2828.65	HOR	5.14	30.99	2.708	chk, lgy, hrd, hom, bio trc fos
110	2829.03	VERT		21.70	2.710	chk, vlgy, v hrd, ham, sol sm,sty,FT FRC

PAGE	:	9
------	---	---

Sample No.	depth Meter	plug Type	GAS PERM mD	POROSITY %	GRAIN DENS. G/COM	Lithology
111	2829.10	HOR	1.12	17.87	2.718	chk, lgy, v hrd, hom, bio
112	2829.45	HOR	0.813	30.01	2.696	chk, lgy, hrd, lam, trc fos, py
113	2829.70	HOR	3.88	40.27	2.728	chk, vlgy, hrd, ham,trc fos,zoo,py,H FRC
114	2830.05	HOR	4.27	40.29	2.708	chk, vlgy, hrd, hom, H FRC
115	2830.40	HOR	1.72	32.86	2.700	chk, lgy, hrd, hom, trc fos, sty, py
116	2830.60	HOR	5.70	42.09	2.700	chk, vlgy, m hrd, ham, H FRC
117	2831.03	HOR	8.21	41.60	2.708	chk, vlgy, m hrd, hom, H FRC, SG FRC, o
118	2831.12	HOR	3.57	37.91	2.705	chk, vlgy, hrd, lam, sty, F FRC
119	2831.42	HOR		43.54	2.709	chk, vìgy, m hrd, ham, F FRC, o, FT FRC
120	2831.50	HOR		41.60	2.698	chk, vlgy, m hrd, ham, FT FRC
121	2832.00	VERT	8.36	42.53	2.707	chk, vlgy, m hrd, hom, cla
122	2832.20	HOR	8.36	45.03	2.710	chk, wh, m hrd, hom, cla
123	2832.40	HOR	7.62	43.82	2.707	chk, vlgy, m hrd, hom,cla,SG H FRC,F FRC
124	2832.60	HOR	5.69	41.88	2.704	chk,lgy,m hrd,lam,trc fos,cla,H FRC,F FR
125	2833.10	HOR	8.91	45.36	2.710	chk, wh, m hrd, hom, cla, H FRC
126	2833.40	HOR	8.13	44.62	2.706	chk, vlhy, m hrd, hom-mot, cla, F FRC
127	2833.65	HOR	5.14	41.68	2.705	chk, vlgy, m hrd, lam, sty, shl
128	2834.00	VERT	7.17	42.65	2.707	chk,vlgy-lgy,m hrd,lam,trc fos,shl,H FRC
129	2834.10	HOR	6.14	41.85	2.704	chk, vlgy, m hrd, hom, cla, H FRC
130	2834.15	HOR	7.16	42.18	2.706	chk, vlgy, m hrd, hom, H FRC
131	2834.40	HOR	6.77	43.82	2.707	chk, vlgy-gy, m hrd, hom, sty, SG H FRC
132	2834.70	HOR	6.99	43.83	2.705	chk, 1gy, m hrd, hom, bio, cla, H FRC

PAGE :10

GRAIN DENS. G/COM	Lithology	

133	2835.10	HOR	5.65	42.51	2.703	chk, wh, m hrd, hom, sh1, H FRC
134	2835.40	HOR	5.80	43.18	2.723	chk, wh, m hrd, hom, SG H FRC
135	2835.60	HOR	5.78	42.84	2.724	chk, wh, m hrd, hom, sol sm
136	2836.00	VERT	5.76	41.35	2.706	chk, wh, m hrd, hom, SG H FRC
137	2836.10	HOR	5.49	40.99	2.701	chk, wh, m hrd, hom, trc fos, cla,shl,py
138	2836.40	HOR	6.46	42.69	2.709	chk, vlgy, m hrd, hom, SG H FRC
139	2836.65	HOR	5.67	42.48	2.709	chk, vlgy, m hrd, hom cla, SG H FRC
140	2837.10	HOR	9.01	44.96	2.680	chk, wh, m hrd, hom, H FRC
141	2837.40	HOR	8.43	45.81	2.709	chk, wh, m hrd, hom, sol sm, H FRC
142	2837.65	HOR	10.1	43.72	2.716	chk,vlgy,m hrd,hom,sty,SG H FRC,F FRC,o
143	2838.00	VERT		44.89	2.711	chk, vlgy,m hrd,hom,cla,sty FRC,o,FT FRC
144	2838.10	HOR	8.14	44.53	2.682	chk, vlgy, m hrd, ham, H FRC
145	2838.40	HOR	5.90	42.63	2.708	chk, vlgy, hrd, ham, sty, H FRC
146	2838.65	HOR	6.74	45.14	2.712	chk, wh, m hrd, ham, SG H FRC
147	2839.10	HOR	3.42	36.83	2.689	chk, vlgy, hrd, hom, SG H FRC
148	2839.15	HOR	3.62	36.47	2.691	chk, vìgy, hrd, ham, SG H FRC
149	2839.40	HOR	4.13	40.35	2.714	chk, arg, vlgy.gy, hrd,hom,sol sm,H FRC
150	2839.70	HOR	6.79	44.23	2.719	chk, vlgy, m hrd, ham,sol sm,H FRC,F FRC
151	2840.12	VERT	7.40	43.66	2.717	chk, vlgy, m hrd, ham, H FRC
152	2840.23	HOR	6.38	41.64	2.691	chk, vlgy, m hrd, hom, fw sol sm, H FRC
153	2840.28	HOR	4.88	40.88	2.713	chk, vlgy, m hrd, hom, H FRC

GAS

mD

PERM POROSITY

%

SAMPLE

NO.

DEPTH PLUG

METER TYPE

41.55 2.717 chk, vlgy, m hrd, hom, H FRC, FT FRC 2841.00 VERT 154

Sample NO.	depth Meter	plug Type	GAS PERM mD	POROSITY %	GRAIN DENS. G/COM	Lithology
155	2841.10	HOR		41.42	2.687	chk, vlgy, m hrd, hom, H FRC, FT FRC
156	2841.35	HOR	7.19	44.65	2.711	chk, wh, m hrd, hom,solsm,H FRC,F FRC,o
157	2841.70	HOR	5.53	41.41	2.682	chk, wh, m hrd, hom,trc fos,sol sm,H FRC
158	2842.07	HOR	9.82	44.21	2.681	chk, wh, m hrd, hom, sty,H FRC,STY FRC,o
159	2842.30	HOR	7.76	44.22	2.700	chk, wh, m hrd, hom, sty, H FRC
160	2842.70	HOR	5.05	40.88	2.701	chk, wh, m hrd, hom, H FRC, F FRC, o
161	2843.04	HOR	4.03	35.07	2.688	chk, vlgy, hrd, hom, sty, F FRC, o
162	2843.12	VERT	8.87	43.15	2.700	chk, vlgy, m hrd, hom, SG H FRC, FRC, o
163	2843.20	HOR	9.34	43.78	2.720	chk, wh, m hrd, hom, sty, H FRC
164	2843.40	HOR	6.57	41.64	2.712	chk, wh, m hrd, hom, mold, trc fos,F FRC
165	2843.60	HOR	8.91	30.52	2.698	chk,vlgy,hrd,hom-mot,sty H FRC,sty FRC,o
166	2844.05	HOR	5.07	38.88	2.700	chk, vlgy, m hrd, hom, cla, F FRC, o
167	2844.25	HOR	6.88	42.98	2.722	chk, wh, m hrd, hom, FRC
168	2844.27	HOR	6.63	43.21	2.738	chk, wh, m hrd, hom, H FRC
169	2845.00	VERT	5.93	42.83	2.715	chk, wh, m hrd, hom, sty, H FRC
170	2845.08	HOR	7.33	44.53	2.709	chk, wh, m hrd, hom, H FRC
171	2845.40	HOR	6.40	43.93	2.715	chk, wh, m hrd, hom, fw H FRC
172	2845.70	HOR		44.08	2.722	chk, wh,m hrd,hom,trc fos,cho,sty,H FRC

1 , wri, iii firu, noiii, uru Tos, cho, sty, i 6.02 173 2846.10 HOR 43.10 2.700 chk, wh, m hrd, hom, trc fos, sty, H FRC 2846.40 HOR 6.29 43.38 2.700 chk, wh, m hrd, hom, trc fos, cho, py 174 175 2846.70 HOR 7.73 44.02 2.695 chk, wh, m hrd, hom, H FRC

176 2847.00 VERT 4.78 39.53 2.723 chk, vlgy, m hrd, hom, sty, sol sm, FRC, o

Sample NO.	depth Meter	PLUG TYPE	GAS PERM mD	POROSITY %	GRAIN DENS. G/COM	Lithology
177	2847.10	HOR	5.87	44.20	2.721	chk, wh, m hrd, hom, fw H FRC
178	2847.40	HOR	4.56	40.60	2.719	chk, vlgy, m hrd, hom, trc fos, zoo
179	2847.65	HOR	5.04	39.86	2.700	chk, vlgy, m hrd, ham, fw H FRC
180	2848.10	HOR	7.21	43.73	2.726	chk, vlgy, m hrd, hom, trc fos, cho
181	2848.40	HOR	4.77	40.66	2.699	chk, vlgy, m hrd, ham, H FRC
182	2848.72	HOR	5.92	41.86	2.714	chk,vlgy,m hrd,hom,trc fos,pla,sty,H FRC
183	2849.00	VERT	5.06	41.36	2.711	chk, vlgy, m hrd, hom, sty, H FRC
184	2849.10	HOR	5.30	41.50	2.694	chk, wh, m hrd, hom, sty, sol sm, H FRC
185	2849.35	HOR	6.21	43.60	2.724	chk, wh, m hrd, hom, fw H FRC
186	2849.73	HOR	7.59	42.06	2.722	chk, vlgy, m hrd, hom, sty, F FRC, o
187	2850.00	VERT		34.37	2.714	chk, vlgy, m hrd, hom, SG H FRC, FT FRC
188	2850.44	HOR	8.02	42.67	2.700	chk, wh, m hrd, hom, sty, o, H FRC
189	2850.78	HOR	6.97	41.16	2.688	chk, vlgy, m hrd, ham, trc fos, H FRC
190	2851.10	HOR	7.02	43.09	2.707	chk, wh, m hrd, hom, bio, H FRC
191	2851.45	HOR	5.59	43.18	2.730	chk, wh, m hrd, hom, H FRC
192	2851.63	HOR	5.98	41.94	2.680	chk, wh, m hrd, hom, SG H FRC
193	2852.00	VERT		42.72	2.680	chk, wh,m hrd,hom,sty FRC,o,H FRC,FT FRC
194	2852.15	HOR	5.51	41.40	2.709	chk, wh, m hrd, hom, sty, H FRC
195	2852.40	HOR	8.18	43.55	2.698	chk, wh, m hrd, hom,sol sm,H FRC,F FRC,o
196	2852.65	HOR	8.25	43.25	2.685	chk, wh, m hrd, hom, bio, H FRC
197	2853.10	HOR	9.04	45.07	2.716	chk, wh, m hrd, hom, fw sol sm, H FRC
198	2853.40	HOR	5.79	40.66	2.724	chk, vlgy,m hrd,hom,trc fos,pla,SG H FRC

cha, wh, m hrd, hom, sol sm, H FRC, F FRC, o

chk, wh, m hrd, hom, trc fos, pla, SG H FRC

chk, wh, m hrd, hom, trc fos, pla, H FRC

chk, wh, m hrd, hom, sol sm, H FRC

PAGE	:13
	* * •

2855.10	HOR	6.58	42.19	2.718	chk, wh, m hrd, hom-mot, bio, H FRC
2855.16	HOR	6.16	41.41	2.700	chk, wh, m hrd, hom, H FRC
2855.40	HOR	6.86	40.08	2.689	chk, vlgy, m hrd, lam, sty, shl, F F
2855.70	HOR		42.11	2.714	chk, vlgy, m hrd, hom, H FRC, FT FRC
2856.10	HOR	4.18	37.32	2.705	chk, vlgy,m hrd,hom,trc fos,pla,SG H
2856.40	HOR	4.34	38.41	2.695	chk, vlgy, hrd, hom, sty, cla, shl,H
2856.70	HOR	4.52	38.58	2.701	chk, vlgy, hrd, hom-mot, cla, SG shl

GAS

PERM

9.64

8.60

6.99

5.83

8.03

5.93

mD

POROSITY

%

43.48

40.30

42.41

41.33

SAMPLE

NO.

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

217

DEPTH

2853.72

2854.00

2854.15

2854.40

2854.60

2855.00

2857.00

2857.10

METER TYPE

PLUG

HOR

VERT

HOR

HOR

HOR

VERT

chk, wh, m hrd, hom-mot, H FRC 45.04 2.673 chk, wh, m hrd, hom-mot, H FRC 42.82 2.711

Lithology

GRAIN

DENS.

G/COM

2.684

2.682

2.687

2.689

)R	6.16	41.41	2.700	chk, wh, m hrd, hom, H FRC
)R	6.86	40.08	2.689	chk, vlgy, m hrd, lam, sty, shl, F FRC,o
OR		42.11	2.714	chk, vlgy, m hrd, hom, H FRC, FT FRC
OR	4.18	37.32	2.705	chk, vlgy,m hrd,hom,trc fos,pla,SG H FRC

HOR	4.18	37.32	2.705	chk, vlgy,m hrd,hom,trc fos,pla,SG H FRC
HOR	4.34	38.41	2.695	chk, vlgy, hrd, hom, sty, cla, shl,H FRC

HOR	4.52	38.58	2.701	chk, vlgy, hrd, hom-mot, cla, SG shl
VERT	6.29	42.67	2.697	chk, vlgy, m hrd, hom, SG H FRC
HOR	6.35	42.43	2.699	chk, wh, m hrd, hom, SG H FRC

2857.40	HOR	6.17	41.27	2.702	chk, wh, m hrd, hom, sol sm, H FRC
		-			• • • • •

2.715 chk, wh, m hrd, hom, cla, H FRC 5.44 41.11 215 2857.57 HOR

216 2858.10 6.50 42.80 2.701 chk, wh, m hrd, hom, H FRC HOR

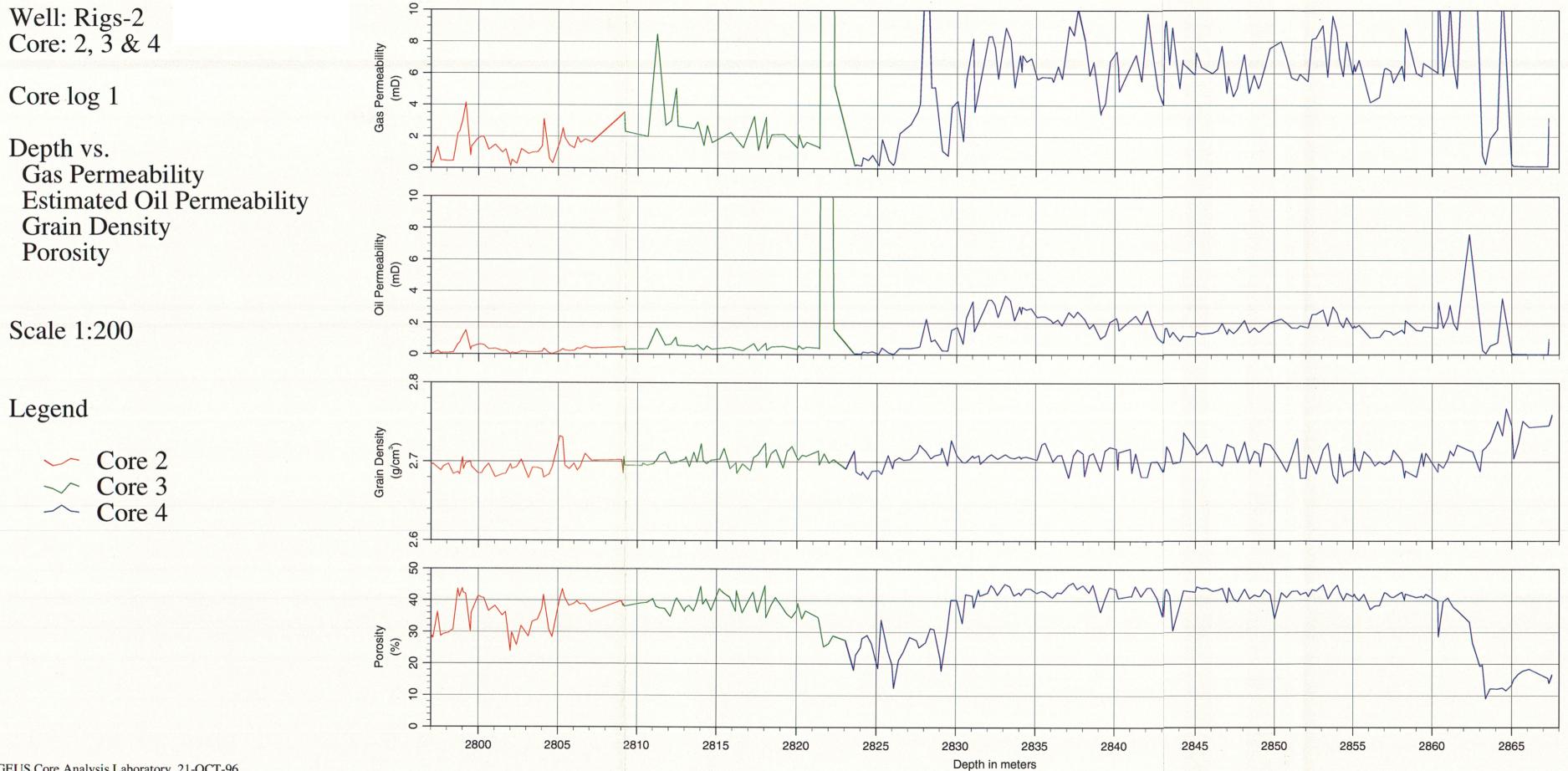
- chk, wh, m hrd, hom-mot, zoo, H FRC, F FRC 40.26 2.680 2858.26 HOR 5.55
- chk, wh, hrd, hom, sty, H FRC, sty FRC,o 218 2858.31 HOR 8.88 42.22 2.689
- 2.681 chk, vlgy, hrd, hom, H FRC, F FRC, o 219 2859.00 VERT 6.03 41.14

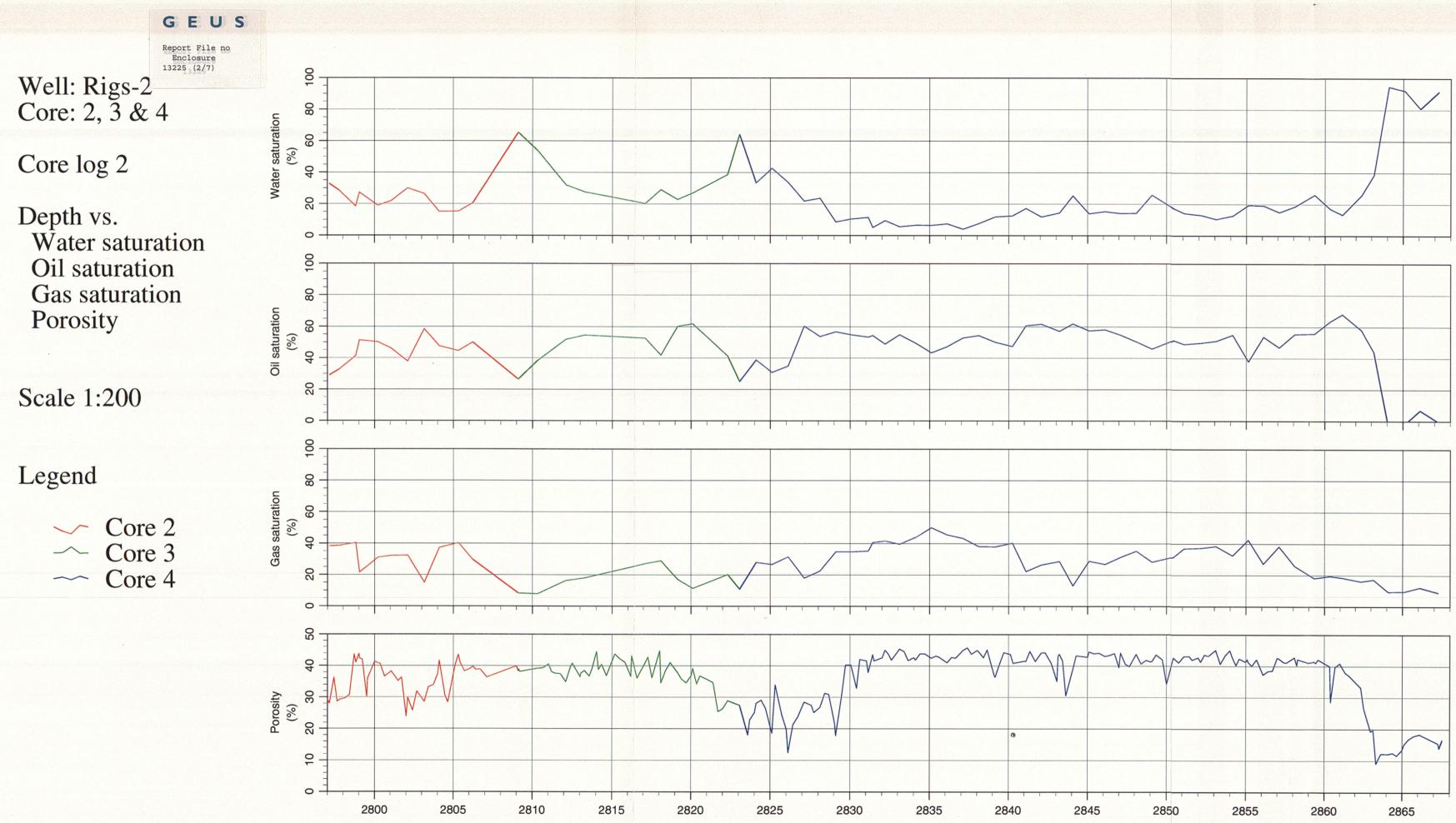
chk, wh, m hrd, hom-mot, sh1 220 2859.35 HOR 5.83 41.43 2.712

Sample NO.	depth Meter	plug Type	GAS PERM mD	POROSITY %	GRAIN DENS. G/COM	Lithology
221	2859.45	HOR	6.68	41.06	2.695	chk, wh, m hrd, hom, cla, SG H FRC
222	2859.60	HOR		42.10	2.712	chk, wh, m hrd, hom-mot, sty, FT FRC
223	2860.35	HOR	6.06	39.98	2.688	chk, wh, m hrd, hom-mot, shl, py, ccem
224	2860.40	HOR	11.8	28.65	2.698	chk, vlgy, hrd, hom, sty, sty FRC, o
225	2860.70	HOR	5.88	39.78	2.693	chk, vlgy, hrd, mot, cla, shl, F FRC
226	2861.00	VERT	8.05	40.94	2.704	chk, vlgy, hrd, mot, trc fos tha, shl
227	2861.13	HOR	10.5	39.74	2.715	chk, vlgy,hrd,mot,cho,shl,ccem,sty FRC,o
228	2861.35	HOR	6.54	38.01	2.708	chk,vlgy,hrd,mot,tha,sty,H FRC,sty FRC,o
229	2861.60	HOR	5.11	37.09	2.722	chk, vlgy, hrd, mot, trc fos,shl,F FRC,o
230	2862.36	HOR	24.5	33.26	2.715	chk, lgy, hrd, mot,trc fos,tha,sty FRC,o
231	2862.55	HOR		26.76	2.713	chk, sil, lgy,hrd,mot,tha,sty FRC,FT FRC
232	2863.00	VERT		19.31	2.688	chk, sil vlgy, v hrd, mot, FT FRC
233	2863.16	HOR	0.893	19.70	2.715	chk, vlgy, hrd, mot, zoo, tha, cla, shl
234	2863.35	HOR	0.276	9.09	2.719	chk,sil,vlgy,v hrd,mot,tha,cla,shl,F FRC
235	2863.65	HOR	1.87	12.21	2.726	v arg chk, lgy.dgy,hrd,lam,sg cla,sol sm
236	2864.10	HOR	2.48	12.14	2.752	v arg chk, gy-dgy,hrd,lam,cla,sol sm,FRC
237	2864.40	HOR	11.5	12.47	2.734	calc cly, dgy, hrd, lam, trc fod,F FRC,o
238	2864.65	HOR		11.67	2.768	calc cly, dgy, hrd, lam, F FRC, o,FT FRC
239	2865.00	VERT	0.306	13.41	2.746	cly, gy-dgy, hrd, bed, F FRC, o
240	2865.11	HOR	0.162	15.11	2.705	calc cly, gy, hrd, lam, trc fos, pla
241	2865.40	HOR		16.83	2.724	calc cly, gy,hrd,lam,trc fos,pla,FT FRC
242	2865.70	HOR		17.84	2.752	calc cly, gy, hrd, lam, FT FRC

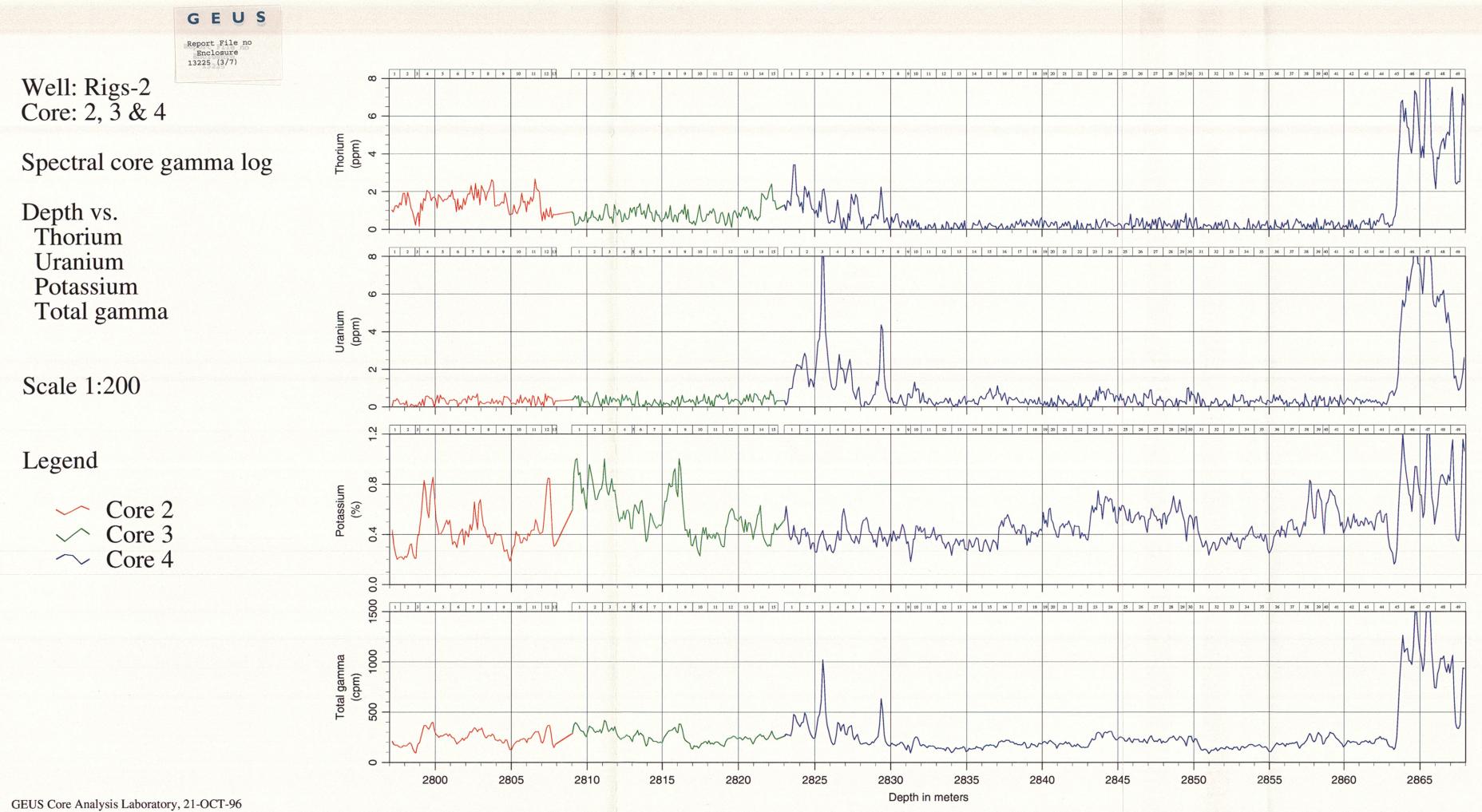
SAMPLE NO.	depth Meter	plug Type	GAS PERM mD	POROSITY %	GRAIN DENS. G/COM	Lithology
243	2866.10	HOR	0.137	18.43	2.744	calc cly, lgy, hrd, lam-hom, F FRC, o
244	2867.28	HOR	0.141	15.52	2.746	chk,sil,vlgy,v hrd,mot,shl,SG FRC,o,ccem
245	2867.35	HOR	3.18	14.02	2.747	chk, sil, lgy, v hrd, mot, cho, F FRC, o
246	2867.55	HOR		16.62	2.760	chk, sil, lgy, v hrd,mot,trc fos,F FRC,o

WELL	:	Rigs-2A	PAGE	:16
CORE	:	1		


COMPANY : Amerada Hess	LOCATION	: Syd Arne
DEPTH INTERVAL : 2971.00 - 2980.50	CORE NO.'S	:1
DEPTHS ARE MEASURED FROM KB	ANALYSTS	: MJ,HJL,GG
DEPTHS ARE IN METRES	DATE	: 231096
	FILE	: LITR2A


! ! REMARKS :	
r 7 8	
! ! !	
• 	
! ! !	
1	
1 !	
! !	

THE GEOLOGICAL SURVEY OF DENMARK AND GREENLAND IS FULLY RESPONSIBLE FOR THE ANALYTICAL RESULTS IN THE PRESENT REPORT. THE SURVEY, HOWEVER, BEARS NO RESPONSIBILITY OF DECIS-IONS AND INTERPRETATIONS BASED ON THE DATA PRESENTED.

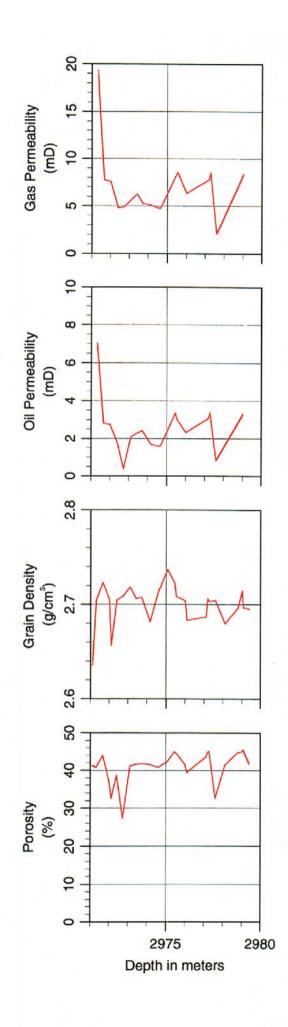

Sample No.	depth Meter	plug Type	GAS PERM mD	POROSITY %	GRAIN DENS G/COM	Lithology
268	2971.10	HOR		41.29	2.636	chk, wh, hrd, hom, SG FRC,FR FRC
269	2971.30	HOR	19.4	40.79	2.705	chk, wh, hrd, hom, sty, sty FRC, o
270	2971.63	HOR	7.74	43.96	2.723	chk, wh, hrd, hom, SG H FRC
271	2972.00	VERT	7.58	36.89	2.706	chk, wh, hrd, hom, H FRC, F FRC, o
272	2972.10	HOR		34.03	2.713	chk, wh, hrd, hom, sty, sty FRC,o,FT FRC
273	2972.38	HOR	4.80	38.66	2.705	chk, wh, m hrd, hom, H FRC, F FRC,o
274	2972.70	HOR	4.91	27.39	2.709	chk, vlgy, hrd, mot, bio, mol, sty, o
275	2973.10	HOR	5.69	41.10	2.718	chk, wh, m hrd, hom so'l sm, H FRC
276	2973.40	HOR	6.27	41.59	2.706	chk, wh, m hrd, hom, sol sm, sty, H FRC
277	2973.70	HOR	5.28	41.82	2.707	chk, wh, m hrd, hom, SG FRC
278	2974.00	VERT				Not measured
279	2974.15	HOR	5.09	41.51	2.681	chk, wh, m hrd, hom, SG H FRC
280	2974.60	HOR	4.73	40.81	2.715	chk, wh, m hrd, hom, H FRC
281	2974.70	HOR	5.08	41.18	2.719	chk, wh, m hrd, hom, H FRC
282	2975.00	VERT				Not measured
283	2975.07	HOR		42.42	2.737	chk, wh, m hrd, hom, SG H FRC, FT FRC
284	2975.45	HOR		45.01	2.723	chk, wh, m hrd, hom, H FRC, FT FRC
285	2975.53	HOR	8.56	44.58	2.709	chk, wh, m hrd, hom, sh1, F FRC,o,FT FRC
286	2976.00	VERT	6.37	41.52	2.704	chk, wh, m hrd, hom, sty, sty FRC, o
287	2976.10	HOR		39.44	2.683	chk, wh, m hrd, hom,sty,sty FRC,o,FT FRC
288	2976.16	HOR				Not measured
289	2977.10	HOR		43.54	2.687	chk,wh,m hrd,hom,sty,H FRC,F FRC,o,FT FR

290 2977.19 HOR 7.79 44.84 2.706 chk, wh, m hrd, hom, H FRC 291 2977.28 HOR 8.49 45.13 2.703 chk, wh, m hrd, hom, py, SG H FRC 292 2977.60 HOR 2.09 32.56 2.704 chk, wh, hrd, hom, sol sm, H FRC	Sample NO.	depth Meter	plug Type	GAS PERM mD	POROSITY %	GRAIN DENS. G/COM	Lithology
292 2977.60 HOR 2.09 32.56 2.704 chk, wh, hrd, hom, solsm, HFRC	290	2977.19	HOR	7.79	44.84	2.706	chk, wh, m hrd, hom, H FRC
	291	2977.28	HOR	8.49	45.13	2.703	chk, wh, m hrd, hom, py, SG H FRC
	292	2977.60	HOR	2.09	32.56	2.704	chk, wh, hrd, hom, sol sm, H FRC
293 29/8.10 HUR 41.40 2.080 CNK, WN, MINNA, NOM, FIRC, FIRC	293	2978.10	HOR		41.40	2.680	chk, wh, m hrd, hom, F FRC, FT FRC
294 2978.78 VERT 44.75 2.697 chk, wh, m hrd, hom, FT FRC	294	2978.78	VERT		44.75	2.697	chk, wh, m hrd, hom, FT FRC
295 2979.02 HOR 8.39 44.99 2.714 chk, wh, m hrd, mot-hom,solsm,shl,HFRC	295	2979.02	HOR	8.39	44.99	2.714	chk, wh, m hrd, mot-hom,sol sm,shl,H FRC
296 2979.08 HOR 45.40 2.697 chk, wh, m hrd, hom, F FRC, o, FT FRC	296	2979.08	HOR		45.40	2.697	chk, wh, m hrd, hom, F FRC, o, FT FRC
297 2979.40 HOR 41.73 2.696 chk, wh, m hrd, hom, H FRC, FT FRC	297	2979.40	HOR		41.73	2.696	chk, wh, m hrd, ham, H FRC, FT FRC

Depth in meters

Report File no Enclosure 13225 (4/7)

Well: Rigs-2A Core: 1


Core log 1

Depth vs. Gas Permeability Estimated Oil Permeability Grain Density Porosity

Scale 1:200

Legend

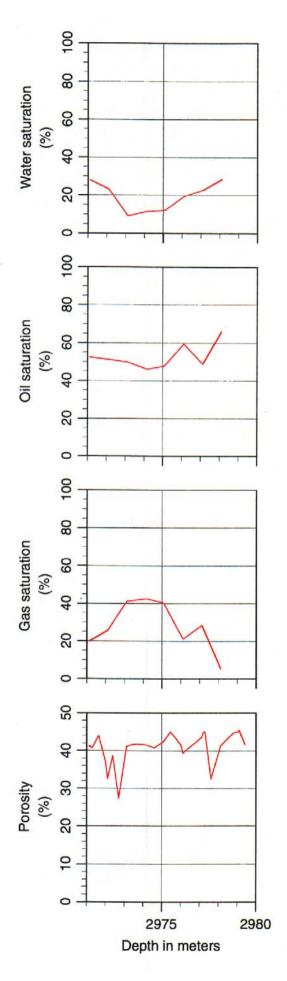
Core 1

GEUS Core Analysis Laboratory, 21-OCT-96

GEUS

Report File no Enclosure 13225 (5/7)

Well: Rigs-2A Core: 1


Core log 2

Depth vs. Water saturation Oil saturation Gas saturation Porosity

Scale 1:200

Legend

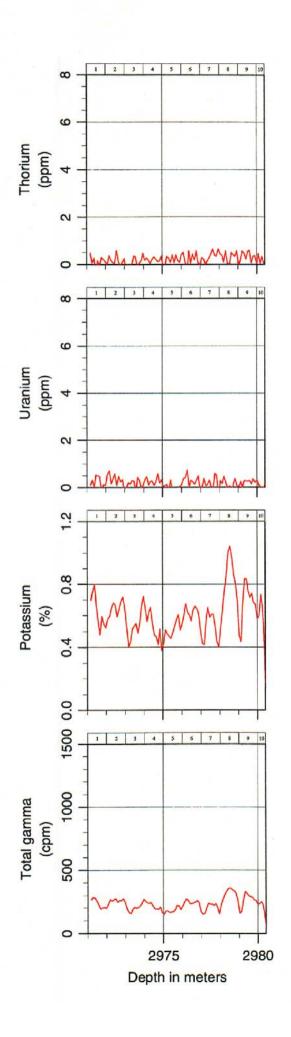
Core 1

GEUS Core Analysis Laboratory, 21-OCT-96

GEUS

Report File no Enclosure 13225 (6/7)

Well: Rigs-2A Core: 1


Spectral core gamma log

Depth vs. Thorium Uranium Potassium Total gamma

Scale 1:200

Legend

✓ Core 1

GEUS Core Analysis Laboratory, 21-OCT-96