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FACTSHEET 

Parameter uncertainty in mineral  
intelligence analyses 

 

A synthetis of different methods for representing parameter uncertainty in mineral intelligence 

analyses, with an emphasis on the level of information that is available concerning the parameters. 

Scope and description 

 

Uncertainty is an unavoidable aspect of mineral intelligence and the need to address uncertainty can 

appear in a wide variety of situations. For example when addressing the degree of precision of 

measurements or when performing modeling calculations based on uncertain parameters. There are 

many sources of uncertainty; for example data temporal and/or spatial variability, measurement 

imprecision, model uncertainty, etc. In this factsheet we examine uncertainty regarding data and 

parameters, with an emphasis on two fundamentally different aspects of uncertainty: stochastic 

versus epistemic uncertainty (Ferson & Ginzburg, 1996). Stochastic uncertainty, also called “objective 

uncertainty” arises from the random nature of natural processes. Epistemic uncertainty, also called 

“subjective uncertainty”, arises from the partial character of our knowledge of the natural world. The 

confusion between these two types of uncertainty is one of the most common pitfalls in uncertainty 

analysis (Ferson, 1996). The basic message that is underlined herein is that different tools are needed 

to represent different types of information regarding data uncertainy. If information is “rich” (in the 

sense of quantity and quality), then standard probability theory should apply. On the other hand if 

information is poor (scarce or imprecise data, expert judgment, …), then alternative information 

theories, that were specially developed to handle such information, may be preferred. The 

underlying objective is to handle information in a manner which is consistent with the nature of that 

information (Dubois & Guyonnet, 2011). These notions are illustrated below with reference to 

information regarding Neodymium concentrations in earphones, from end-of-life small audio 

applications (WEEE; waste electrical and electronic equipment). In Section I, the illustration below 
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takes the reader gradually from “poor” to “rich” information, while Section II relates to the 

propagation of uncertainty in analyses that are relevant to mineral intelligence capacity. 

 

I Uncertainty representation 

 

I.1 Expert judgment regarding Nd concentrations in earphones 

 

Figure 1 illustrates the use of a simple min-max interval to convey the opinion of an “expert”, 

according to which Neodymium in earphones from small audio applications should lie somewhere 

between 20 and 140 mg per earphone. The min-max interval is represented in Figure 1 as a 

“possibility distribution” (or “fuzzy number”; Zadeh, 1978; Dubois & Prade, 1988) which assigns a 

“membership function” to values within the interval. The min-max interval yields the simplest sort of 

possibility distribution; i.e. where values of possibility within the interval equal 1 (these values are 

considered possible) while values outside the interval equal 0 (these are considered not possible). 

 

 
Figure 1 – Interval representing expert judgment regarding possible values of Nd concentrations in 

earphones 

 

In terms of probabilities, Figure 1 tells us that, according to this expert, there is a 100% probability 

that Nd concentrations in earphones are lower than 140 mg, and a 0% probability that they are lower 

than 20 mg. This yields the “family” of cumulative probability distributions depicted in Figure 2. 

 

For values x located within the [20, 140 mg] interval, the probability P(X<x) lies somewhere between 

0 and 1: there is no information available to justify more precise values. 

 

 
Figure 2 – Upper and lower bounds of the family of cumulative probability distributions 

corresponding to the information in Figure 1 
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It could be argued, in a Bayesian framework and applying a “principle of maximum entropy” (Jaynes, 

1988), that in the absence of any additional information the uniform probability distribution should 

be selected to represent uncertainty regarding such a parameter (Figure 3). However, as pointed out 

by previous researchers, this approach is analogous to selecting just one among all the eligible 

distributions that respect the information provided by the expert, a few representatives of which are 

represented in Figure 4. 

 

 
Figure 3 – Hypothesis of a uniform probability distribution over the [min, max] interval 

 

 
Figure 4 – Some members (in green) of the family of probability distributions  delimited by the 

bounds defined in Figure 2 

 

In many situations an expert is not only able to provide an interval within which he/she feels 

confident that the values of a parameter should lie, but may also be able to express “preferences” 

within this interval. The possibility distribution in Figure 5 conveys the following information:  

- The expert believes that values of Nd concentrations in earphones lie between 20 and 140 

mg/earphone (this interval is termed the “support” of the distribution); 

- The expert considers that the most “likely” value is 80 mg/earphone (this constitutes the 

“core” of the distribution). 

It should be noted that the core of the distribution is not necessarily a single value (in which case the 

distribution is triangular) but can also be an interval of values (in which case the distribution is 

trapezoidal). Values of possibility assigned to the core of the distribution equal 1, which conveys a 

notion of “lack of surprise” that actual parameter values should fall within the core. 
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Figure 5 – Possibility distribution over support [20, 140 mg], with a preference expressed for value 80 

mg (core) 

 

As for the simple min-max interval, the information in Figure 5 can be conveyed in the form of a 

family of cumulative probability distributions (Figure 6). 

 

 
 

Figure 6 – Upper and lower bounds of the family of cumulative probability distributions 

corresponding to the information in Figure 5 

 

For example, according to Figure 6, the probability that Nd/earphone is lower than 120 mg, is 

between 67% and 100% (Figure 7). We will see further below a means to define a single indicator of 

the evidence of lying below a certain threshold. 

 

 
Figure 7 – Probability that Nd content of earphones is lower than 120 mg/earphone 
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I.2 Scarce data regarding Nd concentrations in earphones 

 

Table 1 shows results of Nd contents in earphones reported by Westphal and Kuchta (2013). The 

data can ne reported in the form of a cumulative frequency plot (Figure 8) 

 

Table 1 – Nd content of earphones (data from Westphal and Kuchta, 2013) 

Unit mg Nd 

Aiwa 75,52 

Apple 129,08 

Nokia 50,33 

Samsung 92,66 

Sony Erikson 70,84 

Sony I 123,92 

Sony II 38,88 

 

  

 
Figure 8 – Cumulative frequency distribution of Nd content of earphones (data from Westphal and Kuchta, 

2013) 

 

As mentioned above, in a classical probabilistic approach, one option could be to fit a uniform 

probability distribution to these data (Figure 9). 

 

 
Figure 9 – Fit of the Nd data with a uniform distribution (data from Westphal and Kuchta, 2013) 
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But these data are scarce and therefore selecting just one distribution introduces a bias in the 

analysis. Figure 10 shows an alternative, where the data are “bounded” by the family of probability 

distributions of Figure 6.  

 

 
Figure 10 – Upper and lower bounds of probability for the proposal: “Nd-content in earphones is 

lower than a certain value x” 

 

As will be shown in Section II, such information can be “propagated” in forward modelling (e.g., in 

life-cycle analysis; Clavreul et al., 2013) or used for data reconciliation in material flow analysis (MFA; 

Dubois et al., 2014). 

 

Another set of tools, which refers to the general framework of imprecise probabilities of Walley 

(1991), is probability-boxes (Beer et al., 2013, Ferson et al., 2003). For the data shown in Table 1, one 

could define the upper and lower bounds of the family of probability distributions based on 

parametric distributions. Figure 11 shows such a probability box where the upper and lower limits 

are defined by two triangular distributions (with resp. support [5, 120 mg]; mode = 50 mg and 

support [10, 180 mg]; mode = 80 mg). The limits could also have been defined using, e.g., normal 

distributions. However, the latter present the disadvantage of being defined over ± , which can be 

inconvenient regarding outlier values. 

 

 

 

 
 

Figure 11 – Probability box where the upper and lower bounds are defined by triangular probability 

distributions 
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I.3 “Rich” information regarding Nd concentrations in earphones 

 

Figure 12 illustrates the (hypothetical) situation where there are many measurements of Nd 

concentrations in earphones. In this case, a single probability distribution can be fitted (using e.g. 

least-squares) to the data (in this case a normal distribution with average 90 mg and standard 

deviation 20 mg). The upper and lower probability bounds of Figure 10 are indicated for comparison. 

 

 
 

Figure 12 – Least-squares best fit of a normal probability distribution (in green) to a cumulative 

relative frequency diagram of Nd concentrations in earphone data (black dots; hypothetical data) 

 

 

II Uncertainty propagation 

 

As most readers will be familiar with Monte Carlo uncertainty propagation, the following illustration 

will refer largely to the latter. We consider a “Model”, noted “M”, which is a function of a certain 

number of parameters, some of which may be constants (K1, K2, …, Km), while others are represented 

by single (due to “rich information” availability) cumulative probability distributions (P1, P2, …, Pn). 

We are interested in the uncertainty (variability) of M(K1, K2, …Km, P1, P2, …Pn). The Monte Carlo 

method consists in: 

 

(i) Generating “n” random numbers a1, a2, … an 

(ii) Selecting the values p1, p2, …, pn of, resp., P1, P2, … Pn, such that: P1(X<p1=a1), P2(X<p2=a2), 

etc. 

(iii) Calculating M(K1, K2, …Km, p1, p2, …pn) 

(iv) Going back to step (i) and iterating “i” times 

Number “i” is selected sufficiently large so as to yield a “smooth” cumulative distribution for M(K1, 

K2, …Km, P1, P2, …Pn). This distribution is obtained by ranking all calculated values in increasing order, 

assigning a relative frequency of 1/i to each value and then adding up the frequencies. 

In the case where certain parameters are based on incomplete/imprecise data, while others can be 

represented by single probability distributions, methods that allow “joint” propagation of stochastic 

and epistemic uncertainties are required. One such method is the “independent random set” (IRS) 

method of Baudrit et al. (2006). We consider a “Model” noted “M”, which is a function of a number 
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of parameters, some of which are considered constants (K1, K2, …, Km) while others are represented 

by single cumulative probability distributions (P1, P2, …, Pn) and yet others by possibility distributions 

(F1, F2, …Fq). The IRS methods consists in:  

(i) Generating n random numbers a1, a2, …, an and q random numbers b1, b2, …, bq 

(ii) Selecting the values p1, p2, …, pn of, resp., P1, P2, … Pn, such that: P1(X<p1=a1), P2(X<p2=a2), 

etc. 

(iii) Selecting the intervals f1, f2, …, fq, of F1, F2, …, Fq, at resp. possibility levels b1, b2, …, bq 

(i.e., alpha-cuts; Dubois & Prade, 1988) 

(iv) Calculating the min and max values of M(K1, K2, …Km, p1, p2, …pn, f1, f2, …, fq) 

(v) Going back to step (i) and iterating “i” times. 

 

The upper and lower bounds of the family of probability distributions P(X<x) are obtained by ranking 

all min values in increasing order, all max values in increasing order, and assigning a relative 

frequency of 1/i to each min-max pair and then adding up the frequencies. 

 

These methods are illustrated graphically in Figure 13, where they are applied for estimating the risk 

of leakage from leach pads used for the extraction of gold in the mining industry. In leach pads, ore is 

heaped onto barrier materials (clays, geomembranes, …) and leached with aggressive (e.g. acid) 

solutions to mobilize the economic metal (in this case gold). Leakage through the barrier system 

(estimated here in liters per hectare per day) represents a risk for groundwater resources. In the 

calculation result in Figure 13, the Monte Carlo curve fits precisely between the upper and lower 

bounds obtained from the IRS calculation, because the same shapes were assumed for the possibility 

distributions as for the probability density functions in the Monte Carlo calculation. Note that in 

belief theory (Shafer, 1976), the upper probability bound is termed “Plausibility”, while the lower 

probability bound is termed “Belief”. 

 

 

 

Figure 13 – Example of comparison between IRS and Monte Carlo calculations (Guyonnet & Touze-

Foltz, 2011) 

 

In order to obtain a single indicator of the probability of lying below a certain threshold, Dubois & 

Guyonnet (2011) propose to compute a “confidence index” as a weighted average of the upper and 

lower bounds of Figure 13. The choice of the weight is subjective and is selected to reflect the 
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decision-maker’s level of “aversion to risk”. However, this subjectivity is introduced at the final 

decision-making stage, which is more easily justified than to arbitrarily select single probability 

distributions at the modeling stage, despite incomplete information. This confidence index is 

illustrated in Figure 14, where a weight of 1/3 is assigned to the “optimistic” distribution (here the 

upper bound) while a weight of 2/3 is assigned to the “pessimistic” distribution (the lower bound). It 

would seem “natural” to assign more weight to the “pessimistic” distribution, but without 

completely ignoring the “optimistic” one. 

 
Figure 14 – Illustration of the confidence index for a weight of 1/3 (Guyonnet & Touze-Foltz, 2011) 

  

Contexts of use, application fields 

-> contexts (e.g., environmental, economic, 
social assessment) 
-> which types of stakeholder questions are 
concerned? 
-> link to published studies that implement the 
method 

 

Uncertainty representation and propagation can be applied to:  

- Measurement errors 

- Risk analysis 

- Material flow analysis (MFA – see the factSheet) 

- Life cycle assessment (LCA – see the factsheet) 

- Cost-benefit analysis 

- Etc. 

 

The context and applicability is very transverse, as variability and imprecision/incompleteness affect 

nearly all areas of mineral intelligence capacity. 

 

Input parameters 
-> which parameters  are needed to run the 
method 
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Input parameters depend on the selected method of uncertainty representation. For a purely 

stochastic approach to uncertainties, moments describing the probability distributiuons are required 

(e.g., averages and standard deviations in the case of Gaussian probability distributions). In the case 

of possibility distributions, based on expert knowledge or scarce information, the supports and cores 

of the distributions are required.  

 

Type(s) of related input data or 
knowledge needed and their 
possible source(s) 

-> which types of data are needed to run the 
method, from which sources could they come… 
-> could be qualitative data or quantitative data, 
and also tacit knowledge, hybrid, etc. 

 

As above. Selected method should be tailored to the type of information at hand (expert judgment, 

scarce data, rich data, etc.). 

 

Model used (if any, geological 
mathematical, heuristic…)  

-> e.g., geological model for mapping 
-> e.g., mathematical model such as mass 
balancing, matrix inversion, can be stepwise 
such as agent -based models, dynamic including 
time or quasidynamic specifying time series…  
-> can also be a scenario 

 

The approach is particularly well suited to models that are in a “closed form”; i.e. a mathematical 

equation. Numerical models may also be amenable but may be costly in terms of calculation times. 

 

System and/or parameters 
considered 

-> the system can be described by its 
boundaries. These can refer to a geographic 
location, like a country, or a city, the time period 
involved, products, materials, processes etc. 
involved, like flows and stocks of copper, or the 
cradle-to-grave chain of a cell phone, or the car 
fleet, or the construction sector, or the whole 
economy… 
-> parameters could possibly refer to geographic 
co-ordinates, scale, commodities considered, 
genesis of ore deposits and others…  
 

 

The approach is generic and therefore suited to a wide variety of systems. 
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Time / Space / Resolution 
/Accuracy / Plausibility… 

-> to which spatio-temporal domain it applies, 
with which resolution and/or accuracy (e.g., near  
future, EU 28, 1 year, country/regional/local 
level…) 
-> for foresight methods can also be plausibility, 
legitimacy and credibility… 

 
 

Case by case basis. 

Indicators / Outputs / Units  

-> this refers to what the method is actually 
meant for. Units are an important part but that 
is most of the time not sufficient to express the 
meaning. For example, the indicators used in 
LCA  express the cradle-to-grave environmental 
impacts of a product or service. This can be 
expressed in kg CO2-equivalent. But also in €. Or 
in millipoints. Or in m2year land use. 
-> for foresight methods the outputs are products or 
processes 

 

Case by case basis. 

 

Treatment of uncertainty, 
verification, validation 

-> evaluation of the uncertainty related to this 
method, how it can be calculated/estimated 

 

This is the object of the FactSheet. 
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Related methods 

-> List of comparable methods, their  
particularities…  
->  link to one or several other existing fact 
sheet(s) 

 

Related methods are: 

- Sensitivity analysis 

- Scenario analysis 

- Geostatistics 

- Probability boxes 

- 2D Monte Carlo 

- Bayesian methods 

- … 

 

Related factSheets are (among others): 
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- FactSheet: ‘Life Cycle Assessment’ 

- FactSheet: ‘Using dynamic MFA or system dynamic modelling’ 

- FactSheet: ‘Cost Benefit Analysis’ 

- FactSheet: ‘Input Output Analysis’ 

 

Some examples of operational 
tools (CAUTION, this list is not 
exhaustive) 

-> e.g., software… Only give a listing and a 
reference (publication, website/page…) 
-> should be provided only if ALL main actors 
are properly cited 

 

Examples of tools available either free or commercially: 

- Commercially available: Purely stochastic risk analysis: @RISK; 

http://www.palisade.com/risk/ 

 

- Public domain: joint stochastic/epistemic propagation: HYRISK; 

https://cran.r-project.org/web/packages/HYRISK/index.html 

 

 

Key relevant contacts  
-> list of relevant types of organisations that 
could provide further expertise and help with 
the methods described above.  

  

Purely stochastic uncertainty analysis is routinely performed by consulting companies. Joint 

propagation methods are currently developed in research institutes. A reference institute for such 

methods is: https://www.irit.fr 

 

 

Glossary of acronyms 
/abbreviations used 

-> Definition  

  

  

  

  

  

 

http://www.palisade.com/risk/
https://cran.r-project.org/web/packages/HYRISK/index.html
https://www.irit.fr/

