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FACTSHEET 

Reconciliation in Material Flow Analysis 
 

 

The problem of balancing flows and stocks in material flow analysis when there is conflicting input 

information. 

Scope and description 

 

 

1. Introduction 

Material flow analysis (MFA; see Factsheet “Material and Substance Flow Analysis”) consists in 

calculating the quantities of a certain product transiting within a defined system made up of a 

network of local entities referred to as processes, considering input and output flows and 

including the presence of material stocks (Dubois et al., 2014). This method was developed in the 

sixties to study the metabolism of urban systems (e.g., Wolman, 1965, for water networks). A 

material flow system is defined by a number of related processes. Material conservation is the 

basis of MFA: constraints are typically related to conservation laws such as material and energy 

balances. In MFA, the unknowns to be determined are the values of the flows and stocks at each 

process. These flows and stocks must be balanced, through a set of linear equations. The basic 

principle that provides constraints on the flows is that what goes into a process must come out, 

up to the variations of stock. This is translated into mass-balance equations relative to a process 

with n flows in, m flows out and a stock level s of the form: 
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where : INi is inflow i (mass per unit time); OUTj is outlow j (mass per unit time); S is variation of 

stock (mass). 
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In general, by convention, if the sum of outflows exceeds the sum of inflows, the variation of stock is 

negative (the system has released mass). In the opposite case the variation of stock is positive (the 

system has stocked mass). 

 

The most important (and time-consuming) step in MFA is the collection of data regarding the various 

flows in the system. In most situations, estimated inflows, outflows and stocks do not initially satisfy 

Eq. (1) (conservation of mass), in which case the analysist uses some form of data reconciliation. 

 

2. Reconciliation in MFA 

 

Data reconciliation has been defined as a “technique to optimally adjust measured process data so 

that they are consistent with known contraints” (Kelly, 2004).  The traditional approach to data 

reconciliation (Narasimhan and Jordache, 2000) assumes that data come from measurements and 

that measurement errors follow a Gaussian distribution with zero average and a diagonal covariance 

matrix. The precision of each measurement F (understood as a mean value) is characterized by its 

standard deviation (σi). Data reconciliation is then performed by minimizing an objective function.  

Considering the simple case of a process with m entering flows and n exiting flows (with respective 

averages Fi and standard deviations σi ; i=1..m+n) and designating initial estimators for the 

reconciled flows as Fi*, reconciliation is obtained by minimizing the following objective function: 
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under the constraint that the sum of flows entering the process equals the sum of flows exiting the 

process (mass conservation): 
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Several MFA tools (e.g. BILCO; Durance et al., 2004; STAN; Brunner and Rechberger, 2004) perform 

this type of calculation. A drawback of the methodology in the context of MFA is related to the fact 

that in practical situations of MFA projects, available information often does not justify a 

representation of flows using single Gaussian distributions. Information is typically incomplete 

and/or imprecise and therefore other tools for representing uncertainty may be preferred to single 

probability distributions. The factsheet “Parameter uncertainty in mineral intelligence analysis” 

presents such alternative tools. 

 

A practical tool for representing incomplete/imprecise information, especially coming from experts, 

is the well-known min-max interval. But as shown in the uncertainty factsheet, an expert may have 

information that allows him/her to express preferences within the interval. This yields the so-called 

possibility distributions (or fuzzy numbers) that are illustrated in Figure 5 of the uncertainty 

factsheet. Assuming information on flows and stocks in MFA are represented by possibility 

distributions (see Factsheet “Parameter uncertainty in mineral intelligence analysis”), reconciliation 

under fuzzy constraints can be performed using the method of Dubois et al. (2014).  
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To illustrate this method, Figure 1 shows the simple case of a single process with one inflow, one 

outflow and no stock. As seen in Figure 1, the inflow and outflow are affected by uncertainty. There 

are two ways of viewing this uncertainty:  

- (i) the indicated values are preferred values within the intervals, resp., [45; 55] and [50;70] 

- (ii) the indicated values are the mean values of Gaussian distributions with standard 

deviation, resp., 5 and 10. 

 

Figure 1 – Single process with one inflow, one outflow and no stock 

Assuming the first interpretation, reconciliation is obtained by identifying the values that satisfy mass 

conservation and flow membership information (see Dubois et al., 2014). As illustrated in Figure 2, 

these conditions are satisfied for all values located within the intersection between the two 

possibility distributions: i.e. the interval [50; 55] with a “preferred” (most possible) value of 53.3. A 

value of e.g. 48 is not possible, as it does not lie within this intersection. 

 
Figure 2 – Schematic illustration of reconciliation under fuzzy constraints 

Considering now the second interpretation and applying equations (2) and (3) yields a reconciled 

flow of mean 52 and standard deviation 4.5. In this simple example, the two interpretations of 

uncertainty and their ensuing treatment yield very similar results, but this is not always the case. In 

particular if there were large discrepancies between estimates of inflow and outflow, the first 

method might indicate that it is not possible to find an intersection: either the model or the flow 

estimates are erroneous. On the other hand the second method will always yield a result because 

Gaussian probability distributions are defined over the interval [-; +]: a solution will be found 

albeit in areas of very low probability. This may be a problem in the case of outliers (erratic values) 

and therefore tools such as STAN incorporate checks to verify that the reconciled “solution” is not 

too remote from initial estimates. 

 

 

 

 



H2020 MICA PROJECT 

Page 4 / 13 
 

3. Case study: application to rare earths in the EU-28 

 

From 2011 through 2015, the ASTER project on rare earth flows and stocks in the EU-28 (see 

Guyonnet et al., 2015) was led by BRGM in partnership with Solvay, BIO by Deloitte and the 

University of Toulouse, with the suppor of the French Research Agency (ANR). Consistent with the 

standard MFA procedure, the system under inverstigation was first defined and then information 

regarding individual flows was collected. For the case of Neodymium in magnet applications, the 

defined system is depicted in Figure 3. 

 

 

 

Figure 3 – System investigated for the case of Neodymium in magnet applications. Notes: F = flow; L 

= loss; I = import; E = export; S = stock variation 

 

The following table lists the applications considered in the analysis. 

Table 1. Neodymium-containing applications considered in this study 

Applications using NdFeB permanent magnets Applications using NiMH batteries 

Electric and Non electric vehicles Portable batteries (rechargeable batteries): 
Hard drives    - Cameras 
Cell phones    - Electric shavers  
Laptops and desktops    - Cell phones and cordless phones 
Wind turbine generators (REE magnet-based)    - Laptops 
MRI machines    - Handheld tools 
Refrigerators     - Remote-controlled toys 
Washing machines    - Emergency lighting equipment 
Air conditioners Industrial batteries:  
Cameras    - Hybrid vehicles (HEV) 
Headphones and earphones    - Electrical aircraft systems 
CD player    - Satellite pinpointing systems 
Fax, printers, scanner  
Shavers and electric epilators  
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Data sources included statistical databases (e.g. import, export and production data from EUROSTAT, 

World Trade Atlas, USGS, BGS, …), specialized reports (e.g., ROSKILL, company reports, …), data 

published in the literature regarding (i) quantities of REEs in components used in applications, (ii) 

weights of these components in applications and (iii) quantities of applications sold or used per year 

as reported by manufacturers, expert information, etc. An invaluable source of information in this 

study was Solvay’s knowledge of the REE markets. The experts participating in the project were 

asked to provide estimates for flows, not as single values, but instead to: 

- provide an interval which, based on their analysis, must include the actual flow value; 

- express a preference within this interval. 

 

While the experts provided estimates for flow intervals, they expressed the preferred values at the 

centre of the intervals. The resulting data are presented in Table 2. The year investigated is 2010. 

Table 2. Values from the data mining (tons Nd metal, year 2010).  

Flow/Stock Min value Max value 
Preferred 

value 
Flow/Stock Min value Max value 

Preferred 
value 

F1 100 300 200 F15 300 400 350 

F2 2 10 6 F16 250 450 350 

F3 150 250 200 F17 500 650 575 

F4 5 25 15 F18 12 20 16 

F5 40 70 55 F19 3 5 4 

F6 150 250 200 F20 350 450 400 

F7 120 220 170 F21 150 190 170 

F8 2 10 6 S1 -100 -300 -200 

F9 150 200 175 S2 70 120 87 

F10 150 250 200 S3 180 400 290 

F11 220 350 285 S4 300 500 400 

F12 550 650 600 S5 150 260 205 

F13 200 450 325 L1 5 15 10 

F14 750 1000 875 L2 25 40 32.5 

Notes : F = Flow ; S = stock ; L = losses; data derived from Guyonnet et al. (2015) but not identical. 

The reconciliation of this data is presented below using the two methods illustrated above. It is 

reminded that each method corresponds to a distinct interpretation of the indicated uncertainty : 

imprecision in the first method, and random variability in the second method. For the second 

method, values were defined by considering that: 

- the preferred value in Table 2 is a “mean” value; 

- the ranges between the mean and the min values (or max values) represent 3 standard 

deviations (i.e., 99,7% of the data in a normal distribution). 

 

Results of the reconciliation under fuzzy constraints (Dubois et al., 2014) yields values in Table 3. 
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Table 3. Flows and stocks of Nd in the EU-28: results of reconciliation under fuzzy constraints (tons 

Nd metal, year 2010) 

Flow/Stock 
Support Optimal core 

Flow /Stock 
Support Optimal 

core min max min max 

F1 150 288 215.8 F15 300 400 351.3 

F2 2 10 6.4 F16 250 450 358.5 

F3 150 250 198.7 F17 515 650 579.8 

F4 5 25 14.5 F18 12 20 16.1 

F5 40 70 55.7 F19 3 5 3.9 

F6 150 250 202.8 F20 350 450 393.2 

F7 120 220 161.8 F21 150 190 166.6 

F8 2 10 6.6 S1 -150 -288 -215.8 

F9 150 200 173.3 S2 70 120 88.3 

F10 150 250 208.0 S3 180 400 282.3 

F11 220 350 285.0 S4 350 450 393.2 

F12 550 650 605.0 S5 180 245 207.6 

F13 200 450 337.6 L1 5 15 9.0 

F14 750 1000 865.6 L2 25 40 32.0 

Notes : F = Flow ; S = stock ; L = losses 

The optimal core values are represented in the Sankey diagram below. 

 

Figure 4 – Sankey diagram with values from reconciliation under fuzzy constraints (tons Nd metal, 

year 2010, diagram built with STAN) 

The input data for reconciliation using the second method is shown in Table 4. It is reminded that 

“mean” values are the same as the “preferred” values of Table 2. 
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Table 4. Input for least-squares reconcilition 

Flow /Stock Mean Sigma Flow /Stock Mean Sigma 

F1 200 33.3 F15 350 16.7 

F2 6 1.3 F16 350 33.3 

F3 200 16.7 F17 575 25.0 

F4 15 3.3 F18 16 1.3 

F5 55 5.0 F19 4 0.3 

F6 200 16.7 F20 400 16.7 

F7 170 16.7 F21 170 6.7 

F8 6 1.3 S1 -200 33.3 

F9 175 8.3 S2 87 5.7 

F10 200 16.7 S3 290 36.7 

F11 285 21.7 S4 400 33.3 

F12 600 16.7 S5 205 18.3 

F13 325 41.7 L1 10 1.7 

F14 875 41.7 L2 32.5 2.5 

Notes : F = Flow ; S = stock ; L = losses 

Results of the reconciliation are presented in Table 5 and graphically in the Sankey diagram of Figure 

5. 

Table 5. Results of least-squares reconciliation 

Flow /Stock Mean Sigma Flow /Stock Mean Sigma 

F1 215.2 15.2 F15 350.0 16.7 

F2 6.0 1.3 F16 350.0 33.3 

F3 196.2 14.9 F17 584.9 14.6 

F4 15.0 3.3 F18 16.0 1.3 

F5 54.6 4.9 F19 4.0 0.3 

F6 204.8 12.2 F20 395.6 14.0 

F7 165.2 12.2 F21 169.3 6.5 

F8 6.0 1.3 S1 -215.2 15.2 

F9 175.0 8.3 S2 99.6 22.1 

F10 202.2 16.2 S3 280.6 51.7 

F11 281.3 20.5 S4 395.6 14.0 

F12 602.2 16.2 S5 211.8 7.2 

F13 338.5 32.7 L1 10.0 1.7 

F14 861.5 32.7 L2 32.5 2.5 

Notes : F = Flow ; S = stock ; L = losses 
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Figure 5 – Sankey diagram for values from least-squares reconciliation (tons Nd metal, year 2010, 

diagram built with STAN) 

 

4. Conclusion 

 

In this specific example, the two reconciliation methods yield very similar results: as seen in Table 6, 

values differ by 0.3 to 12.8%. But a basic question that should be addressed by the investigator at the 

data mining stage is: “does the uncertainty in this data arise from random variability or from the 

incomplete/imprecise character of my knowledge regarding these parameters?”. If the answer is the 

latter, then representing the information using intervals (with or without preferences) may seem 

more “natural” than using means and standard deviations. Hence the method of reconciliation under 

fuzzy constraints proposed by Dubois et al. (2014). 

 

As mentioned previously, the least-squares reconciliation method will always yield an answer and in 

some cases this may be misleading because the reconciled values may have very low levels of 

probability. The fuzzy-constraint method is less “robust” in the sense that it may fail to provide an 

answer. But this is an indication of inconsistency in the flow values or in the system structure and 

therefore that the investigator needs to reexamine the data further. 
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Table 6. Percent differences between results from the two methods 

Flow /Stock % difference Flow /Stock % difference 

F1 0,3% F15 0,4% 

F2 6,3% F16 2,4% 

F3 1,3% F17 0,9% 

F4 3,4% F18 0,6% 

F5 2,0% F19 2,6% 

F6 1,0% F20 0,6% 

F7 2,1% F21 1,6% 

F8 9,1% S1 0,3% 

F9 1,0% S2 12,8% 

F10 2,8% S3 0,6% 

F11 1,3% S4 0,6% 

F12 0,5% S5 2,0% 

F13 0,3% L1 11,1% 

F14 0,5% L2 1,6% 

 

Contexts of use, application fields 

-> contexts (e.g., environmental, economic, 
social assessment) 
-> which types of stakeholder questions are 
concerned? 
-> link to published studies that implement the 
method 

 

Data reconciliation in MFA is used to: 

- Optimize industrial ore treatment processes; 

- Estimate urban flows/stocks; 

- Identify bottlenecks for supply in a system of varying dimensions (plant, city, region, country, 

…); 

- Identify potentialities for secondary resources; 

- Etc. (see Factsheet ‘Using dynamic MFA or system dynamic modelling’) 

 

The uncertainty representation tools used above can be applied to:  

- Measurement errors; 

- Risk analysis; 

- Life cycle assessment (LCA); 

- Cost-benefit analysis; 

- Etc. 

 

The context and applicability is transverse, as variability and imprecision/incompleteness affect 

nearly all areas of mineral intelligence capacity. 
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Input parameters 
-> which parameters  are needed to run the 
method 

 

For the input parameters to material flow analysis, refer to the Factsheet “Using dynamic MFA or 

system dynamic modelling”. For the application of reconciliation methodologies, input parameters 

depend on the selected method. For a purely stochastic approach to uncertainties, moments 

describing the probability distributiuons are required (e.g., averages and standard deviations in the 

case of Gaussian probability distributions). In the case of possibility distributions based on expert 

knowledge or scarce information, the support and core of the distributions are required (see 

Factsheet ‘Parameter uncertainty in mineral intelligence analysis’).  

 

Type(s) of related input data or 
knowledge needed and their 
possible source(s) 

-> which types of data are needed to run the 
method, from which sources could they come… 
-> could be qualitative data or quantitative data, 
and also tacit knowledge, hybrid, etc. 

 

For sources of data and knowledge in material flow analysis, see Factsheet “Using dynamic MFA or 

system dynamic modelling”. 

 

Model used (if any, geological 
mathematical, heuristic…)  

-> e.g., geological model for mapping 
-> e.g., mathematical model such as mass 
balancing, matrix inversion, can be stepwise 
such as agent -based models, dynamic including 
time or quasidynamic specifying time series…  
-> can also be a scenario 

 

The “model” is the “System” defined during the first steps of the material flow analysis. See 

Factsheet “Using dynamic MFA or system dynamic modelling”. 

 

System and/or parameters 
considered 

-> the system can be described by its 
boundaries. These can refer to a geographic 
location, like a country, or a city, the time period 
involved, products, materials, processes etc. 
involved, like flows and stocks of copper, or the 
cradle-to-grave chain of a cell phone, or the car 
fleet, or the construction sector, or the whole 
economy… 
-> parameters could possibly refer to geographic 
co-ordinates, scale, commodities considered, 
genesis of ore deposits and others…  
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The approach is generic and therefore suited to a wide variety of systems. Systems can be of various 

scales: an individual process, a processing plant, a city, a country, the world, … 

 

Time / Space / Resolution 
/Accuracy / Plausibility… 

-> to which spatio-temporal domain it applies, 
with which resolution and/or accuracy (e.g., near  
future, EU 28, 1 year, country/regional/local 
level…) 
-> for foresight methods can also be plausibility, 
legitimacy and credibility… 

 
 

Case by case basis. Material Flow Analalysis applies to historical data but may also be used for 

prospectivity analysis. 

 

Indicators / Outputs / Units  

-> this refers to what the method is actually 
meant for. Units are an important part but that 
is most of the time not sufficient to express the 
meaning. For example, the indicators used in 
LCA  express the cradle-to-grave environmental 
impacts of a product or service. This can be 
expressed in kg CO2-equivalent. But also in €. Or 
in millipoints. Or in m2year land use. 
-> for foresight methods the outputs are products or 
processes 

 

The most common units in Material Flow Analysis are masses per unit time. For example tonnes per 

year. 

 

Treatment of uncertainty, 
verification, validation 

-> evaluation of the uncertainty related to this 
method, how it can be calculated/estimated 

 

This is the object of the present Factsheet. 
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Related methods 

-> List of comparable methods, their  
particularities…  
->  link to one or several other existing fact 
sheet(s) 

 

Related methods are: 

- Sensitivity analysis 

- Scenario analysis 

- Geostatistics 

- Probability boxes 

- 2D Monte Carlo 

- Bayesian methods 

- … 

 

Related factSheets: 

- FactSheet: ‘Parameter uncertainty in mineral intelligence analysis’  

- Factsheet: ‘Using dynamic MFA or system dynamic modelling‘ 

 

Some examples of operational 
tools (CAUTION, this list is not 
exhaustive) 

-> e.g., software… Only give a listing and a 
reference (publication, website/page…) 
-> should be provided only if ALL main actors 
are properly cited 
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Examples of MFA tools available either free or commercially: 

- STAN (Brunner & Rechberger, 2004) 

- BILCO (Durance et al., 2004) 

 

Key relevant contacts  
-> list of relevant types of organisations that 
could provide further expertise and help with 
the methods described above.  

  

Technical University Vienna (STAN): http://www.stan2web.net/ 

Caspeo (BILCO): http://www.caspeo.net/fr 

 

 

Glossary of acronyms 
/abbreviations used 

-> Definition  
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